Structure and Spacing of Jets in Barotropic Turbulence

Citation:

Farrell, B. F., & Ioannou, P. J. (2007). Structure and Spacing of Jets in Barotropic Turbulence. J. Atmos. Sci. , 64, 3652-3665 . J. Atmos. Sci.
.pdf983 KB

Abstract:

Turbulent flows are often observed to be organized into large-spatial-scale jets such as the familiar zonal 
jets in the upper levels of the Jovian atmosphere. These relatively steady large-scale jets are not forced 
coherently but are maintained by the much smaller spatial- and temporal-scale turbulence with which they 
coexist. The turbulence maintaining the jets may arise from exogenous sources such as small-scale convec-
tion or from endogenous sources such as eddy generation associated with baroclinic development processes 
within the jet itself. Recently a comprehensive theory for the interaction of jets with turbulence has been 
developed called stochastic structural stability theory (SSST). In this work SSST is used to study the 
formation of multiple jets in barotropic turbulence in order to understand the physical mechanism produc-
ing and maintaining these jets and, specifically, to predict the jet amplitude, structure, and spacing. These 
jets are shown to be maintained by the continuous spectrum of shear waves and to be organized into stable 
attracting states in the mutually adjusted mean flow and turbulence fields. The jet structure, amplitude, and 
spacing and the turbulence level required for emergence of jets can be inferred from these equilibria. For 
weak but supercritical turbulence levels the jet scale is determined by the most unstable mode of the SSST 
system and the amplitude of the jets at equilibrium is determined by the balance between eddy forcing and 
mean flow dissipation. At stronger turbulence levels the jet amplitude saturates with jet spacing and 
amplitude satisfying the Rayleigh-Kuo stability condition that implies the Rhines scale. Equilibrium jets 
obtained with the SSST system are in remarkable agreement with equilibrium jets obtained in simulations 
of fully developed -plane turbulence.

Last updated on 10/01/2015