The Stochastic Parametric Mechanism for Growth of Wind-Driven Surface Water Waves

Citation:

Farrell, B. F., & Ioannou, P. J. (2008). The Stochastic Parametric Mechanism for Growth of Wind-Driven Surface Water Waves. J. Phys. Ocean , 38, 862-879.
.pdf1.33 MB

Abstract:

Theoretical understanding of the growth of wind-driven surface water waves has been based on two distinct mechanisms: growth due to random atmospheric pressure fluctuations unrelated to wave amplitude and growth due to wave coherent atmospheric pressure fluctuations proportional to wave amplitude. Wave-independent random pressure forcing produces wave growth linear in time, while coherent forcing proportional to wave amplitude produces exponential growth. While observed wave development can be parameterized to fit these functional forms and despite broad agreement on the underlying physical process of momentum transfer from the atmospheric boundary layer shear flow to the water waves by atmospheric pressure fluctuations, quantitative agreement between theory and field observations of wave growth has proved elusive. Notably, wave growth rates are observed to exceed laminar instability predictions under gusty conditions. In this work, a mechanism is described that produces the observed enhancement of growth rates in gusty conditions while reducing to laminar instability growth rates as gustiness vanishes. This stochastic parametric instability mechanism is an example of the universal process of destabilization of nearly all time-dependent flows.

Last updated on 07/15/2014