Formation of Jets by Baroclinic Turbulence

Citation:

Farrell, B. F., & Ioannou, P. J. (2008). Formation of Jets by Baroclinic Turbulence. In (65th ed. pp. 3353-3375) . J. Atmos. Sci.
.pdf1.46 MB

Abstract:

Turbulent fluids are frequently observed to spontaneously self-organize into large spatial-scale jets; geophysical examples of this phenomenon include the Jovian banded winds and the earth’s polar-front jet. These relatively steady large-scale jets arise from and are maintained by the smaller spatial- and temporal- scale turbulence with which they coexist. Frequently these jets are found to be adjusted into marginally stable states that support large transient growth. In this work, a comprehensive theory for the interaction of jets with turbulence, stochastic structural stability theory (SSST), is applied to the two-layer baroclinic model with the object of elucidating the physical mechanism producing and maintaining baroclinic jets, understanding how jet amplitude, structure, and spacing is controlled, understanding the role of parameters such as the temperature gradient and static stability in determining jet structure, understanding the phe- nomenon of abrupt reorganization of jet structure as a function of parameter change, and understanding the general mechanism by which turbulent jets adjust to marginally stable states supporting large transient growth. When the mean thermal forcing is weak so that the mean jet is stable in the absence of turbulence, jets emerge as an instability of the coupled system consisting of the mean jet dynamics and the ensemble mean eddy dynamics. Destabilization of this SSST coupled system occurs as a critical turbulence level is exceeded. At supercritical turbulence levels the unstable jet grows, at first exponentially, but eventually equilibrates nonlinearly into stable states of mutual adjustment between the mean flow and turbulence. The jet structure, amplitude, and spacing can be inferred from these equilibria.

With weak mean thermal forcing and weak but supercritical turbulence levels, the equilibrium jet structure is nearly barotropic. Under strong mean thermal forcing, so that the mean jet is unstable in the absence of turbulence, marginally stable highly nonnormal equilibria emerge that support high transient growth and produce power-law relations between, for example, heat flux and temperature gradient. The origin of this power-law behavior can be traced to the nonnormality of the adjusted states.

As the stochastic excitation, mean baroclinic forcing, or the static stability are changed, meridionally confined jets that are in equilibrium at a given meridional wavenumber abruptly reorganize to another meridional wavenumber at critical values of these parameters.

The equilibrium jets obtained with this theory are in remarkable agreement with equilibrium jets ob- tained in simulations of baroclinic turbulence, and the phenomenon of discontinuous reorganization of confined jets has important implications for storm-track reorganization and abrupt climate change.

Last updated on 10/01/2015