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ABSTRACT

Vertically banded zonal jets are frequently observed in weakly or nonrotating stratified turbulence, with

the quasi-biennial oscillation in the equatorial stratosphere and the ocean’s equatorial deep jets being two

examples. Explaining the formation of jets in stratified turbulence is a fundamental problem in geophysical

fluid dynamics. Statistical state dynamics (SSD) provides powerful methods for analyzing turbulent sys-

tems exhibiting emergent organization, such as banded jets. In SSD, dynamical equations are written di-

rectly for the evolution of the turbulence statistics, enabling direct analysis of the statistical interactions

between the incoherent component of turbulence and the coherent large-scale structure component that

underlie jet formation. A second-order closure of SSD, known as S3T, has previously been applied to show

that meridionally banded jets emerge in barotropic b-plane turbulence via a statistical instability referred

to as the zonostrophic instability. Two-dimensional Boussinesq turbulence provides a simple model of

nonrotating stratified turbulence analogous to the b-plane model of planetary turbulence. Jets known as

vertically sheared horizontal flows (VSHFs) often emerge in simulations of Boussinesq turbulence, but

their dynamics is not yet clearly understood. In this work S3T analysis of the zonostrophic instability is

extended to study VSHF emergence in two-dimensional Boussinesq turbulence using an analytical for-

mulation of S3T amenable to perturbation stability analysis. VSHFs are shown to form via an instability

that is analogous in stratified turbulence to the zonostrophic instability in b-plane turbulence. This in-

stability is shown to be strikingly similar to the zonostrophic instability, suggesting that jet emergence in

both geostrophic and nonrotating stratified turbulence may be understood as instances of the same generic

phenomenon.

1. Introduction

Coherent zonal jets are a common feature of geo-

strophic turbulence. The meridionally banded zonal

winds of Jupiter (Vasavada and Showman 2005) and

the striations of Earth’s midlatitude oceans (Maximenko

et al. 2005) provide striking examples. Zonal jets also

emerge in laboratory experiments and numerical sim-

ulations modeling the planetary turbulence regime

(Williams 1978; Huang and Robinson 1998; Read

et al. 2007; Galperin and Read 2018). The barotropic

b-plane system serves as a paradigmatic model for

zonal jet emergence in planetary turbulence due to its

simplicity as well as its role in the problem’s history

(Rhines 1975).1
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1 Recent satellite observations suggest that Jupiter’s banded

winds have deep structure (Kaspi et al. 2018), although the inter-

pretation of these observations is debated (Kong et al. 2018). Be-

cause deep structure can arise from shallow dynamics (Showman et al.

2006; Farrell and Ioannou 2017), observations indicating deep jets

do not constrain the jet formation mechanism itself to be deep.

Mechanisms that involve forcing originating in the planetary in-

terior, such as the production of differential rotation by deep co-

lumnar convection, have been advanced to explain Jupiter’s jets

(Busse 1976).
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Organization of geostrophic turbulence into zonal jets is

sometimes referred to as ‘‘zonation’’ and the mechanism

giving rise to zonation is sometimes referred to as the

‘‘zonostrophic instability’’. The zonostrophic instability

is a statistical instability in which weak jets arising ran-

domly from turbulent fluctuations or initial conditions

break the statistical homogeneity of geostrophic turbu-

lence resulting in the organization of the turbulent

Reynolds stresses in a manner such that these stresses

drive the jets. The instability is intrinsically statistical with

stochastically fluctuating Reynolds stresses reinforcing the

jets in statistical average but not at each instant or location.

Because the process is intrinsically statistical, an analytical

solution for themechanisms and structures giving rise to the

zonostrophic instability is not possible using individual re-

alizations, essentially due to the presence of turbulent fluc-

tuations in the realizations. When the turbulence dynamics

is instead formulated for the statistical state of the turbu-

lence, an approach referred to as statistical state dynamics

(SSD), the obscuring impediment of turbulent fluctuations

is eliminated and the zonostrophic instability assumes the

form of a canonical linear instability amenable to the fa-

miliar analytical techniques of dynamical systems analysis

(Farrell and Ioannou 2018).

Organization of turbulence into persistent zonal jets also

occurs in weakly and nonrotating stratified turbulence.

Vertically banded (or ‘‘stacked’’) jets known as equatorial

deep jets are observed in all equatorial ocean basins below

approximately 1000-m depth and consist of alternating

eastward and westward zonal jets with a spacing of ap-

proximately 500m (Youngs and Johnson 2015). The quasi-

biennial oscillation of the equatorial stratosphere provides

another example in which the vertically banded structure

takes the formof regularly descending easterly andwesterly

jets (Baldwin et al. 2001). Laboratorymodels of nonrotating

stratified turbulence in a reentrant annulus also develop

banded jets similar to the quasi-biennial oscillation (Plumb

and McEwan 1978).

The system appropriate for modeling stacked jet

formation in stratified turbulence is the stably strati-

fied Boussinesq system. Like the b-plane system, the

Boussinesq system does not generate turbulence spon-

taneously in the absence of an externally forced jet, so

turbulence in these systems is traditionally maintained

by a stochastic parameterization accounting for exoge-

nous forcing of the turbulence. Numerical simulations

of Boussinesq turbulence frequently develop strong

vertically banded horizontal jets (Laval et al. 2003;

Waite and Bartello 2004, 2006; Brethouwer et al. 2007;

Marino et al. 2014; Rorai et al. 2015; Herbert et al. 2016;

Kumar et al. 2017). These jets, often referred to as

vertically sheared horizontal flows (VSHFs) or shear

modes, develop in both 2D and 3D turbulence and in

both nonrotating and weakly rotating regimes (Smith

2001; Smith and Waleffe 2002). In previous work we

showed that, in 2D stratified turbulence, VSHFs form

via a statistical instability of homogeneous stratified

turbulence analogous to the zonostrophic instability

(Fitzgerald and Farrell 2018). We refer to this insta-

bility, which belongs to a larger class of SSD instabil-

ities that includes the zonostrophic instability, as the

VSHF-forming instability.

Because the underlying instability is due to statistical

organization of the turbulence, the zonostrophic and

VSHF-forming instabilities have analytical expression in

the SSD of turbulence, rather than in the dynamics of

individual turbulent realizations. SSD refers to any the-

oretical approach to the analysis of fluctuating chaotic

systems in which equations of motion are formulated

directly for statistical variables of the system rather than

for the detailed system state. For example, the Fokker–

Planck equation is an SSD written for the time evolution

of the probability density function of the state of any

system whose realizations evolve according to a stochas-

tic differential equation. The Fokker–Planck equation is

an exact SSD, so that the statistical predictions of the

Fokker–Planck equation correspond exactly to the evolu-

tion of the probability density function of the underlying

stochastic differential equation. However, for systems of

practical interest the Fokker–Planck equation cannot be

solved numerically due to the extremely high dimension

of its state space. Stochastic structural stability theory

(S3T) (Farrell and Ioannou 2003) provides an approximate

SSD, closed at second order, that is amenable to numerical

solution and theoretical analysis and therefore provides

an attractive system for studying the zonostrophic in-

stability and the VSHF-forming instability.

Recent progress in the application of SSD has resulted

from the realization that second-order closure of the

SSD comprises the fundamental mechanisms underlying

the dynamics of anisotropic turbulence dominated by

large coherent structures. To obtain the second-order

S3T closure, the dynamical variables of the flow are

decomposed into two components: a coherent compo-

nent and an incoherent component. For example, in the

present work we take the coherent component to be the

horizontal mean state and the incoherent component to

be the perturbations relative to this mean. In the equa-

tions of motion of the coherent component all nonlinear

interactions are kept intact. In the equations of motion of

the incoherent component the nonlinear interactions be-

tween the coherent and incoherent components are

retained, but the self-interactions of the incoherent com-

ponent are not retained consistent with S3T constituting a

canonical second-order closure (Herring 1963). The dy-

namics of the incoherent component is then equivalent to
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linear evolution about the instantaneous coherent flow.

The incoherent component feeds back on the coherent

component via theReynolds stresses and buoyancy fluxes.

S3T is appropriate for analyzing turbulent systems in

which the fundamental underlying mechanism is spec-

trally nonlocal interaction between coherent large-scale

structure and incoherent smaller-scale turbulence. The

absence of perturbation–perturbation nonlinearity in the

dynamics of the incoherent component of the turbulence

in S3T dynamics precludes mechanisms based on a spec-

trally local turbulent cascade.

The state variables of S3T are the mean state of the

turbulence (the first cumulant, which is the coherent com-

ponent) and the covariance of the perturbations from the

mean state (the second cumulant, which is the incoherent

component). The mean and the covariance interact quasi-

linearly within the second-order closure due to the absence

of the self-interactions of the perturbations. S3T, and

the related second-order closure referred to as CE2 (for

second-order cumulant expansion) (Marston et al. 2008),

has been successfully applied to study many different tur-

bulent systems that exhibit large-scale coherent structure.

Even though nonlinearity is highly restricted in quasi-linear

(QL) dynamics, the results ofQL and S3T simulations have

demonstrated that QL dynamics correctly reproduces the

inhomogeneous structure observed in simulations made

using barotropic, shallow-water, and two-layer models of

planetary turbulence (Farrell and Ioannou2003, 2007, 2008,

2009a,b; Marston 2010, 2012; Srinivasan and Young 2012;

Tobias and Marston 2013; Bakas and Ioannou 2013a;

Constantinou et al. 2014; Bakas and Ioannou 2014;

Constantinou et al. 2016; Farrell and Ioannou 2017). These

results imply that QL dynamics comprises the physical

mechanisms responsible for the formation and mainte-

nance of the statistical state of anisotropic turbulence and

that it is dominated by incoherent turbulence interacting

with large-scale coherent structures. S3T has also been

applied to analyze the interaction of turbulence with large-

scale coherent structure in the driftwave–zonal flowplasma

system (Farrell and Ioannou 2009c; Parker and Krommes

2013), unstratified 2D flow (Bakas and Ioannou 2011), ro-

tating magnetohydrodynamics (Tobias et al. 2011; Squire

and Bhattacharjee 2015; Constantinou and Parker 2018),

and the turbulence of stable ion-temperature-gradient

modes in plasmas (St-Onge and Krommes 2017).

Zonal jet emergence in barotropic b-plane turbulence

has been analyzed in depth using S3T. Early applications

of S3T (Farrell and Ioannou 2003, 2007) showed that,

for a broad range of parameter values, zonal jets form

via the instability referred to as the zonostrophic in-

stability. The primary mechanism of jet growth was

shown to be spectrally nonlocal transfer of energy from

the perturbations into the jets, with the spectrally local

incoherent cascade being inessential for the observed jet

formation. The analytical framework of S3T has since

been extended to enable analysis of the jet formation

instability in unbounded turbulence using a differential

representation (Srinivasan andYoung 2012) aswell as the

emergence of nonzonal coherent structures (Bernstein

and Farrell 2010; Bakas and Ioannou 2013a) and their

coexistence with coherent zonal jets (Constantinou et al.

2016). The predictions of S3T andCE2 have been verified

through comparison with fully nonlinear simulations

(Tobias and Marston 2013; Bakas and Ioannou 2014;

Constantinou et al. 2014). S3T has also been used to

demonstrate that zonal jets can be analyzed within the

mathematical and conceptual framework of pattern for-

mation (Parker andKrommes 2014; Bakas et al. 2018).Of

particular relevance to the present study, S3T has been

applied to analyze the mechanism of the zonostrophic

instability in great detail, including determining the con-

tribution of specific physical processes, such as shear

straining and Rossby wave propagation, to the wave–

mean flow interaction that underlies the zonostrophic

instability (Bakas and Ioannou 2013b; Bakas et al. 2015).

Wave–mean flow interactions similar to those that un-

derlie the zonostrophic instability have also been proposed

as the drivers of vertically banded jets in stratified turbu-

lence. Wave–mean flow interactions between the zonal

flow and gravity waves propagating upward from the tro-

posphere underpin the conventional mechanistic expla-

nation of the quasi-biennial oscillation (Holton and

Lindzen 1972; Plumb 1977). In the case of the equatorial

deep jets, a number of theoretical explanations have been

suggested for their existence, including direct driving by

surface winds (Wunsch 1977; McCreary 1984), an in-

stability of finite-amplitude equatorial waves (Hua et al.

2008), and nonlinear cascade of baroclinic-mode energy in

the equatorial region (Salmon 1982). However, recent re-

alistic numerical simulations (Ascani et al. 2015) corrob-

orate earlier theoretical analysis (Muench and Kunze

1999), arguing that the jets instead result fromwave–mean

flow interaction. Despite the ubiquity of VSHFs in simu-

lations of stratified turbulence, fewer mechanisms have

been proposed for their existence. A commonly advanced

idea is that resonant and near-resonant interactions among

gravity waves may play an important role (Smith 2001;

Smith and Waleffe 2002). Recently, we have applied S3T

in its finite-difference matrix formulation to show that in

2D stratified turbulence the VSHF emerges as a result of

an S3T instability analogous to the zonostrophic instability,

and to analyze how the VSHF is equilibrated and main-

tained at finite amplitude (Fitzgerald and Farrell 2018).

Here we carry out an S3T analysis of VSHF emer-

gence in 2D stratified turbulence that complements our

previous work by taking advantage of the differential
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linearized approach to analyzing S3T instabilities first

developed by Srinivasan andYoung (2012) in the context

of the zonostrophic instability. Our previous work pri-

marily addressed the structure and maintenance mecha-

nism of finite amplitude VSHFs (Fitzgerald and Farrell

2018) and used the traditional matrix implementation of

S3T appropriate for this purpose (Farrell and Ioannou

2003). The present analysis expands on that of our pre-

vious work in several ways. First, use of the differential

approach enables characterization of the VSHF-forming

instability in terms of a closed-form dispersion relation

for the instability growth rate inwhich the dependence on

parameters such as the stratification strength is explicit

and which is amenable to asymptotic analysis. This ap-

proach also enables the application of techniques de-

veloped by Bakas and Ioannou (2013b) and Bakas et al.

(2015), in the context of the zonostrophic instability, to

analyze the wave–mean flow feedback mechanism of

the VSHF-forming instability in detail. Here we apply

these analytical tools to study the VSHF-forming in-

stabilitymechanism and its relation to the structure of the

underlying turbulence, and to determine the roles of

various physical processes, such as gravity wave dynamics

and shear straining of the vorticity field, in the instabil-

ity mechanism. S3T, and the differential linear approach

in particular, allows these determinations to be made

straightforwardly and with greater clarity than would be

possible through interpretation of nonlinear simulations.

The rest of the paper is structured as follows. In sec-

tion 2 we introduce the fully nonlinear equations of

motion (NL) for the 2D stochastically maintained

Boussinesq system and its QL counterpart and show the

results of example simulations illustrating the phenom-

enon of VSHF emergence and the degree to which the

QL and S3T systems accurately capture the VSHF be-

havior. In section 3 we formulate the S3T equations. In

section 4 we apply the differential linearized S3T ap-

proach to analyze the linear stability of homogeneous

stratified turbulence and derive a dispersion relation for

the growth rate of the VSHF-forming instability. We also

derive a dispersion relation for a related S3T instability

governing the emergence of horizontal mean buoyancy

layers, which we refer to as the buoyancy layering in-

stability. In section 5 we apply these dispersion relations

to analyze how theVSHF-forming and buoyancy layering

instabilities depend on the parameters and on the struc-

ture of the underlying turbulence. In section 6 we analyze

the stability boundary, or neutral curve, of the VSHF-

forming instability and compare the predictions of S3T to

the results of NL simulations. In sections 7 and 8 we an-

alyze the wave–mean flow feedback mechanisms of the

VSHF-forming and buoyancy layering instabilities in

detail. We provide a summary and discussion in section 9.

2. Emergence of horizontal mean structure in 2D
stratified turbulence

a. NL system

We study VSHF formation in 2D stably stratified

Boussinesq turbulence maintained by homogeneous

stochastic excitation. For our theoretical analysis we

use a domain that is unbounded in both directions, and

for our numerical simulations we use a doubly periodic

domain of unit aspect ratio. The equations of motion of

the NL system are

›
t
z52J(c, z)1 ›

x
b1

ffiffiffi
«
p

jz 2 rz02 r
m
z1 nDz , (1)

›
t
b52J(c,b)2 (›

x
c)N2

0 1
ffiffiffi
«
p

jb 2 rb02 r
m
b1 nDb ,

(2)

in which x and z are the horizontal and vertical coordi-

nates,D5 ›2xx 1 ›2zz is theLaplacian, J(f , g)5 (›xf )(›zg)2
(›zf )(›xg) is the Jacobian, c is the streamfunction satisfy-

ing (2›zc, ›xc)5 (u, w) where u andw are the horizontal

and vertical velocity components, z is the vorticity de-

fined as z5 ›xw2 ›zu5Dc, and b is the buoyancy. We

denote the horizontal mean operator by an overbar and

perturbations from the mean by a prime. The stochastic

excitations of the vorticity and buoyancy fields are de-

noted by jz and jb.

The parameters of the system are the strength of the

stochastic excitation «, the constant background buoy-

ancy frequencyN2
0 , theRayleigh drag coefficients for the

perturbations r and for the mean fields rm, and the vis-

cosity n. Although fundamental studies of stratified

turbulence typically do not include large-scale dissipa-

tion such as Rayleigh drag, we do so here both to con-

nect our analysis more closely to the well-studied

b-plane turbulence system, as well as to model the ef-

fects of turbulent dissipation by processes that are un-

resolved in our 2D system. Turbulent dissipation is

conventionally parameterized as diffusive and therefore

damps the large scales less strongly. As a simplified

model of such scale-dependent dissipation we use dif-

ferent Rayleigh drag coefficients for the mean and per-

turbation fields, with the mean coefficient being the

smaller of the two. We set the values of the dissipation

parameters r, rm, and n so that the buoyancy and velocity/

vorticity fields are damped with equal strength, following

standard practice in previous studies of VSHFs. Viscosity

is chosen to be small and is included to ensure numerical

convergence.

Our choice to set different Rayleigh damping co-

efficients for the mean and perturbation fields warrants a

few additional remarks.We set rm , r as a simplemodel of

scale-dependent turbulent dissipation, but the particular
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numerical value of rm/r is chosen for computational

convenience and to make contact with our previous work

(Fitzgerald and Farrell 2018). Here we focus on the case

rm/r5 1/10, so that perturbations are damped 10 times

more strongly than the mean fields. The sensitivity of

VSHF formation to the ratio rm/r was examined in

Fitzgerald and Farrell (2018), where it was demonstrated

that VSHFs form similarly when rm/r5 1/2. VSHF for-

mation was also shown to occur similarly when Rayleigh

drag is removed from the system entirely so that all

dissipation is diffusive (Fitzgerald and Farrell 2018).

In the case of barotropic b-plane turbulence with equal

Rayleigh drag on the mean and perturbation fields, the

formation of nonzonal coherent structures may precede

the formation of jets as the excitation strength is in-

creased and these nonzonal structures may modify the

properties of jet formation (Bakas and Ioannou 2013a).

However, once jets form they typically dominate the

nonzonal structures (Constantinou et al. 2014). Nonzonal

coherent structures have not been previously noted in the

context of VSHF formation in stratified turbulence. In

barotropic b-plane turbulence, setting the mean and

perturbation damping coefficients to be unequal, so that

perturbations are dampedmore strongly, has been shown

to favor the formation of jets over nonzonal structures

(Constantinou et al. 2014). Our choice to analyze the

case of unequal mean and perturbation damping avoids

the potential complications associated with nonzonal

coherent structures and facilitates focusing on the

established but incompletely understood phenome-

non of VSHF emergence. The possibility of nonzonal

structure emergence in stratified turbulence warrants

future investigation.

Anticipating the formation of horizontal mean struc-

ture we write (1) and (2) in Reynolds-decomposed form

in which the averaging operator is the horizontal mean.

For convenience we denote the horizontal mean velocity

and buoyancy by capital letters so that u[U and b[B.

The Reynolds decomposed equations are

›
t
z052U›

x
z01 ›2zzU›

x
c01 ›

x
b01

ffiffiffi
«
p

jz

2 rz01 nDz01EENLz , (3)

›
t
b052U›

x
b02 (N2

0 1 ›
z
B)›

x
c01

ffiffiffi
«
p

jb

2 rb01 nDb01EENLb , (4)

›
t
U52›

z
u0w02 r

m
U1 n›2zzU , (5)

›
t
B52›

z
w0b02 r

m
B1 n›2zzB , (6)

where EENLz and EENLb denote the eddy–eddy non-

linear terms in the perturbation vorticity and buoyancy

equations that are produced by the advection of per-

turbations by perturbations and that are given by the

expressions

EENLz [2[J(c0,Dc0)2 J(c0,Dc0)] , (7)

EENLb [2[J(c0, b0)2 J(c0, b0)] . (8)

Stochastic excitation appears in the perturbation equa-

tions in (3) and (4) and not in the mean equations in (5)

and (6) because we choose the excitation to have zero

horizontal mean.

To complete the formulation of the nonlinear system,

it remains to specify the stochastic excitation. We ana-

lyze the conventionally studied case of turbulence

maintained by statistically stationary excitation, which is

white in time and has a prescribed covariance structure

in space. The two-point, two-time covariance function of

the vorticity excitation jz is thus given by

hjz1(ti)jz2(tj)i[ d(t
i
2 t

j
)J(x

1
, x

2
) , (9)

where we have introduced the notation jz1,2(t)5
jz(x1,2, t). Similarly, we have

hjb1(ti)jb2(tj)i[ d(t
i
2 t

j
)Q(x

1
, x

2
) , (10)

hjz1(ti)jb2(tj)i[ d(t
i
2 t

j
)Gz(x

1
, x

2
) , (11)

hjb1(ti)jz2(tj)i[ d(t
i
2 t

j
)Gb(x

1
, x

2
) , (12)

for the covariance of jb and the covariances between jz

and jb. The structure of the excitation in space is de-

termined by the choice of the functionsJ,Q,Gz, andGb

(see appendix B for a concrete example). In this workwe

use two excitation distributions: isotropic ring excitation

(IRE), in which the excitation injects energy into a

narrow ring in wavenumber space, and monochromatic

excitation (MCE), in which the excitation injects energy

into a single horizontal wavenumber component with a

Gaussian covariance structure in the vertical direction.

Mathematical descriptions of IRE and MCE are pro-

vided in section 5 and examples of snapshot realizations

in physical space are shown in Fig. 1. In all cases we

choose the excitation to be statistically homogeneous so

that J, Q, Gz, and Gb depend on x1 and x2 only in the

combination x1 2 x2. We also note that, because the

point labels x1 and x2 are arbitrary, the covariance

functions obey the symmetry relations

J(x
1
2 x

2
)5J(x

2
2 x

1
) , (13)

Q(x
1
2 x

2
)5Q(x

2
2 x

1
) , (14)
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Gz(x
1
2 x

2
)5Gb(x

2
2 x

1
) . (15)

Figure 2 shows an example simulation of the NL sys-

tem in which a VSHF forms. Equations (3)–(6) were

solved in a doubly periodic domain of unit aspect ratio

using a finite-difference version of the fluid solver

DIABLO (Taylor 2008) with a resolution of 512 grid points

in the x and z directions. In dimensional units the do-

main size is L 51m and the parameters used are

r5 1s21, rm 5 0:1 s21,N2
0 5 103 s22, n5 2:43 1025 m2 s21,

and «5 0:14m2 s23. Turbulence is maintained with IRE

centered on the ring of wavenumbers with ke/(2p)5
4
ffiffiffi
2
p

m21. Figure 2a shows a snapshot of the vorticity

field after 60 s of spinup, illustrating the emergent ver-

tical banding. The bands coincide with the shear regions

of an energetic VSHF, U, the time evolution of which is

shown in Fig. 2b. The instantaneous buoyancy field,

shown in Fig. 2c, does not show obvious vertical band-

ing. However, time evolution of the horizontal mean

buoyancyB reveals mean layered structures that are too

weak to be visible in the instantaneous snapshots but are

persistent over several mean damping times (Fig. 2d).

We refer to such layered buoyancy structures as hori-

zontal mean buoyancy layers.

Figure 3a shows the time evolution of the kinetic en-

ergy of the VSHF and the total energy of the pertur-

bations (the darkest curves show the behavior of the NL

system). The perturbation kinetic, potential, and total

energies are defined as

K05 [u02 1w02]/2 , V 05 [b02]/2N2
0 , E05K01V 0 ,

(16)

where square brackets indicate the domain average. The

kinetic energy of the VSHF, the potential energy of the

buoyancy layers, and the total energy of the horizontal

mean state are defined as

K5 [U2]/2 , V5 [B2]/2N2
0 , E5K1V . (17)

In the absence of excitation and dissipation the total en-

ergy, E5E1E0, is conserved. The VSHF energy grows

approximately exponentially in time before approaching a

FIG. 1. Physical space realizations of the excitation structures

(a) IRE and (b),(c)MCE. The domain is square and doubly periodic

with linear dimension L5 1, and a quarter of the domain is shown.

In this example, IRE excites perturbations in a narrow ring of

wavenumbers centered at ke/(2pL)5 4 and MCE excites the hori-

zontal wavenumber component k0/(2pL)5 4 with a Gaussian co-

variance structure in the vertical direction. The autocorrelation

length scales for the MCE buoyancy excitation are k0‘c 5 2 in

(b) and k0‘c 5 0:5 in (c). Colors (contours) show the buoyancy

 
(vorticity) excitation. The excitation is shown in normalized form

so that max(jz)5 1 but the relative amplitudes of jz and jb are

preserved. The relative amplitudes of jz and jb are set to satisfy

the condition of equal kinetic and potential energy injection

for N2
0 5 100 (see section 4). Solid (dashed) contours indicate

positive (negative) vorticity excitation, and the contour levels

are 6f0:2, 0:4, 0:6, 0:8g.
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quasi-steady state in which the VSHF is energetically

dominant, weakly fluctuating, and slowly varying in

association with the slow variations in the structure of

U in Fig. 2b. Figure 3b shows how the VSHF and per-

turbation energies depend on the nondimensional ex-

citation strength, «k2
e /r

3, illustrated using the index of

zonal mean flow (zmf) defined as

zmf[K/E , (18)

which gives the fraction of the total energy that is con-

tained in the VSHF. The zmf is small for «& 50, with

nearly all the energy being contained in the perturbation

field. As « is increased beyond this threshold value, the

zmf increases sharply. This transition in behavior co-

incides with the emergence of a coherent VSHF.

The abrupt emergence of the VSHF as the excitation

strength is increased results from a bifurcation associ-

ated with the growth rate of the VSHF-forming in-

stability crossing zero toward positive values at a critical

excitation strength (Fitzgerald and Farrell 2018). This

bifurcation is predicted by SSD and is reflected in the

NL system as shown in Fig. 3b.

b. QL system

Before developing the S3T implementation of SSD

that we apply in this work it is useful to first develop the

QL system. The QL system is an approximation to the

NL system in which the EENL terms are discarded from

the perturbation dynamics (3) and (4) so that non-

linearity is confined to wave–mean flow interactions.

The QL perturbation dynamics are

›
t
z052U›

x
z01 ›2zzU›

x
c01 ›

x
b01

ffiffiffi
«
p

jz 2 rz01 nDz0 ,

(19)

›
t
b052U›

x
b02 (N2

0 1 ›
z
B)›

x
c01

ffiffiffi
«
p

jb 2 rb01 nDb0 .

(20)

These perturbation equations [(19) and (20)] are then

coupled to the mean equations [(5) and (6)] to produce

the closed QL system.

FIG. 2. Emergence of a VSHF in the NL system in which turbulence is maintained with IRE. Shown are (a) the

final state of the vorticity field, (b) the time evolution of the horizontal mean velocity, (c) the final state of the

buoyancy field, and (d) the time evolution of the horizontal mean buoyancy. The NL system spontaneously de-

velops vertical banding in the vorticity field associated with the development of a strong VSHF. The buoyancy is

also organized into more unsteady layered structures that are not apparent in snapshots but are revealed by hor-

izontal averaging. For comparison with the results of section 5, the nondimensional parameters used are «5 177,

N2
0 5 103, rm 5 0:1, and n5 0:03, and the nondimensional wavenumber of the emergent VSHF is m5 1/

ffiffiffi
2
p

. Di-

mensional parameters and simulation details can be found in the text.
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TheQL system incorporates a hypothesis about which

aspects of the dynamics are essential to determining the

statistical mean equilibrium state of the turbulence, in-

cluding the large-scale structure, and which are in-

essential. In particular, to the extent that wave–mean

flow interactions that are spectrally nonlocal are the

primary drivers of VSHF formation, the QL system

should capture the behavior of the NL system in the

VSHF-forming regime. Conversely, if arrest of an up-

scale turbulent cascade at the VSHF scale were mech-

anistically responsible for the formation of VSHFs then

there would be no agreement between NL simulations

and QL simulations because the nonlinear interaction

among perturbations has been eliminated in QL. The

dark gray curves in Fig. 3 compare the behavior of the

QL system to that of the NL system for the chosen ex-

ample case. The QL system shows good agreement with

the NL system, indicating that the dynamical approxi-

mations underlying theQL system retain themechanism

responsible for VSHF emergence. That VSHF forma-

tion does not result from a traditional spectrally local

inverse cascade has previously been noted by Smith and

Waleffe (2002).

We emphasize that the QL system and the S3T system

developed in section 3 are based on the dynamical hy-

pothesis that EENL interactions are inessential to the

phenomena of interest, rather than on an asymptotic

assumption that perturbations always remain small rel-

ative to mean quantities. This dynamical hypothesis is

motivated by previous demonstrations that EENL in-

teractions are inessential in many similar systems

(Farrell and Ioannou 2018) and also by previous results

on stochastic turbulence modeling. In stochastic turbu-

lence modeling, EENL interactions are parameterized

by a combination of stochastic excitation and additional

dissipation. This approach has previously been shown to

be effective for estimating perturbation fluxes in baro-

clinic turbulence (Farrell and Ioannou 1993; DelSole

and Farrell 1996). In this work we apply the simplest

form of such a parameterization, which is to set EENL

interactions to zero.

c. S3T system

The S3T system is a turbulence closure at second order

and so necessarily has underlying dynamics that are QL

(Herring 1963). The analytical simplicity of S3T results

from making the ergodic assumption that the horizontal

average, which is the appropriate choice of mean for the

purpose of analyzing VSHF dynamics, is equivalent to the

ensemble average over realizations of the stochastic exci-

tation. This ergodic assumption allows the dynamics of the

second cumulant to be expressed in the analytical form of a

time-dependent Lyapunov equation. The ergodic assump-

tion is justified when the domain has sufficient horizontal

extent to permit many approximately independent pertur-

bation structures, such as in the case of Fig. 2a in which

several perturbation features are visible at each height.

A derivation of the S3T system in differential form is

provided in section 3 following Srinivasan and Young

(2012). This approach is complementary to the con-

ventional matrix approach of Farrell and Ioannou

(2003). The continuous approach is useful for carrying

out linear stability analysis and for deriving closed-form

dispersion relations for instability growth rates that are

amenable to asymptotic analysis. Thematrix approach is

required when performing S3T analysis of the finite-

amplitude structure and equilibration dynamics of the

VSHF following its initial emergence. A derivation of

the S3T system following the matrix approach can be

found in Fitzgerald and Farrell (2018).

FIG. 3. Comparison of VSHF emergence diagnostics in simula-

tions of the NL, QL, and S3T systems. Parameters and numerical

details are as in Fig. 2 unless otherwise specified. (a) The di-

mensional total energy of the perturbation field (dashed) and the

dimensional kinetic energy of theVSHF (solid) as functions of time

for nondimensional excitation strength «5 177. (b) The fraction of

the total energy contained in the VSHF after a spinup period as

a function of «. The S3T system captures the behavior of the NL

and QL systems. In each system, the VSHF energy grows ap-

proximately exponentially in time prior to the establishment of

equilibrium in (a) and the equilibrium VSHF energy increases

abruptly as « is increased beyond a critical threshold value in (b).
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The light gray curves in Fig. 3 show the behavior of the

matrix S3T system. In S3T, the perturbation fields and

the stochastic excitation are described by their co-

variance matrices. The S3T integrations shown in Fig. 3

use an excitation covariancematrix corresponding to the

ring excitation used in the NL and QL simulations. The

S3T system was integrated numerically to equilibrium

using a fourth-order Runge–Kutta method with resolu-

tion of 128 grid points in the vertical direction and 8

Fourier components in the horizontal direction. To al-

low for comparison to be made between the time evo-

lution of the S3T system and the NL andQL systems the

S3T integration shown in Fig. 3a was initialized using the

mean fields and instantaneous perturbation covariance

matrix diagnosed from the QL simulation at t5 5. In the

S3T integrations shown in Fig. 3b the perturbation co-

variance matrix was instead initialized to correspond to

the homogeneous turbulence fixed point given by (45)

and the mean fields were initialized as small random

perturbations.

The VSHF emergence diagnostics in S3T are in

good general agreement with those of the NL and QL

systems. However, we note that S3T exhibits an exact

bifurcation structure in which the zmf is exactly zero

below the critical excitation strength and sharply in-

creases beyond it, whereas the NL and QL zmfs have

small but nonzero values for excitations less than the

critical excitation that corresponds to the bifurcation

point (Fig. 3b). The nonzero values of the zmf in NL

and QL for excitations less than that of the bi-

furcation point result from the excitation of weakly

damped VSHFmodes by the stochastic fluctuations in

those systems (Constantinou et al. 2014). The vertical

dashed line in Fig. 3b shows the VSHF bifurcation

point predicted by the S3T dispersion relation de-

rived in section 5. This prediction is in good agree-

ment with the results of the NL and QL systems

and corresponds exactly with the behavior of the

matrix S3T system. We also note that, although

the underlying dynamics of the S3T system are QL,

the time average of the QL system in statistical

equilibrium does not exactly equal the fixed-point

equilibrium state of the S3T system. Although these

states are often similar, the QL system formally

converges to the S3T system in the limit that the

perturbation covariances are calculated from an in-

finite ensemble of realizations of (19) and (20), rather

than in the limit of an infinite time average (Farrell

and Ioannou 2003).

3. S3T equations of motion

We now develop the S3T equations of motion fol-

lowing the differential approach of Srinivasan and

Young (2012). The dynamical variables characterizing

the perturbation field in S3T are the two-point equal-

time ensemble-mean perturbation covariance functions.

For example, the vorticity covariance is defined as

Z(x
1
, x

2
, t)[ hz01(t)z02(t)i , (21)

and the other required covariances are

C[ hc01c02i , T[ hb01b02i , (22)

Gz [ hz01b02i , Gb [ hb01z02i , (23)

Sz [ hc01b02i , Sb [ hb01c02i . (24)

The covariances Gz,b and Sz,b are related through

Gz 5D1S
z and Gb 5D2S

b, where Di [ ›2/›x2i 1 ›2/›z2i . We

define them separately for convenience. Similar to (15)

for the excitation cross-covariances Gz and Gb, the

perturbation cross-covariances Gz,b and Sz,b obey the

symmetry relations

Gz(x
1
, x

2
)5Gb(x

2
, x

1
) , Sz(x

1
, x

2
)5 Sb(x

2
, x

1
) . (25)

Equations of motion for Z, T, and Gz can be derived

straightforwardly from the QL system using the ergodic

approximation. We express the dynamics using the col-

lective coordinates

x5 x
1
2 x

2
, z5 z

1
2 z

2
, (26)

x5 (x
1
1 x

2
)/2 , z5 (z

1
1 z

2
)/2. (27)

Assuming that the turbulence is statistically homoge-

neous in the horizontal direction, as suggested by

Fig. 2a, we take all covariances to be independent of x.

Covariances may, however, depend on z because the

emergent vertical banding breaks the homogeneity of

the turbulence in the vertical direction. Under the

assumption of horizontal homogeneity the operators

›z,i and Di can be written as

›
z,i
5 (21)11i

›
z
1
1

2
›
z
, D

i
5D2 (21)i›2zz 1

1

4
›2zz , (28)

in which D is the Laplacian in the difference variables,

D5 ›2xx 1 ›2zz.

The covariance dynamics are

›
t
Z1 (U

1
2U

2
)›

x
Z1 (U 001 1U 002 )›

3
xzzC2 (U 001 2U 002 )

�
D1

1

4
›2zz

�
›
x
C522rZ1 ›

x
(Gb 2Gz)1 «J , (29)

DECEMBER 2018 F I T ZGERALD AND FARRELL 4209



›
t
T1 (U

1
2U

2
)›

x
T1N2

0›x(S
z 2 Sb)1B01›xS

z 2B02›xS
b 522rT1 «Q , (30)

›
t
Gz 1 (U

1
2U

2
)›

x
Gz 2U 001›xS

z 2 (N2
0 1B02)

�
D1 ›2zz 1

1

4
›2zz

�
›
x
C522rGz 1 ›

x
T1 «Gz , (31)

whereU 00i denotes the curvature ofU at zi. The equation

of motion for Gb can be obtained from (31) using (25).

Viscous terms included to ensure numerical conver-

gence in NL and QL simulations are excluded from the

present development for simplicity but can be straight-

forwardly included.

To obtain a closed dynamics, the equations of motion

for U and B must also be expressed in terms of the per-

turbation covariances. The turbulent momentum and

buoyancy fluxes can be written as

hu0w0i5 ›2xzCjx5z50
, hw0b0i5 1

2
›
x
(Sz 2 Sb)j

x5z50
. (32)

The dynamics of U and B then become

›
t
U52r

m
U2 ›3xzzCjx5z50

, (33)

›
t
B52r

m
B2

1

2
›2xz(S

z 2 Sb)j
x5z50

. (34)

Equations (29)–(31) together with (33) and (34) consti-

tute the closed S3T system. Technical details useful for

the derivation of (29)–(34) can be found in Srinivasan

and Young (2012).

Before proceeding to the analysis of S3T it is useful to

express aspects of the energetics in terms of covariances.

The ensemble-mean values of K0 and V 0 are given by

hK0i52
1

2

��
D2

1

4
›2zz

�
C

�
x5z50

, hV 0i5 1

2
N22

0 [T]
x5z50

,

(35)

where square brackets indicate the average over z. From

(29) and (30), the rates at which kinetic and potential

energy are injected into the perturbation field by the

stochastic excitation are

«
K
52

«

2
D21Jj

x5z50
, «

V
5

«

2N2
0

Qj
x5z50

. (36)

The excitation strength control parameter, «, and the

excitation structure functions J and Q collectively de-

termine the overall amplitude of the excitation, its spa-

tial structure, and how the injected energy is partitioned

between kinetic and potential forms. We choose the

convention that the functions J and Q set the spatial

structure of the excitation and the ratio «K/«V , while the

control parameter « scales the total energy injection

rate, «K 1 «V . We further choose to normalize the

functions J and Q such that the total energy injection

rate is equal to the value of the parameter «, so that

«K 1 «V 5 «.

It is useful to express «K and «V in terms of the Fourier

transforms of the excitation covariances. Using the

Fourier conventions

f (x)5

ðð
dp dq

(2p)2
~f (p)eip�x , ~f (p)5

ðð
dx dzf (x)e2ip�x ,

(37)

with p5 (p, q) and h2 5 p2 1 q2, we have

«
K
5 «

ðð
dp dq

(2p)2

~J

2h2
[ «

ðð
dp dq

(2p)2
~K(p,q) , (38)

«
V
5 «

ðð
dp dq

(2p)2

~Q

2N2
0

[ «

ðð
dp dq

(2p)2
~V(p,q) , (39)

«5 «
K
1 «

V
[ «

ðð
dp dq

(2p)2
~E(p, q) , (40)

where we have defined the functions ~K5 ~J/(2h2), ~V5
~Q/(2N2

0), and
~E5 ~K1 ~V, which characterize the spectral

structures of the kinetic, potential, and total energy

injection rates, respectively. In our normalization the

integral in (40) is equal to 1, as ~E controls the spectral

distribution of the excitation but not its total energy

injection rate.

4. S3T stability of homogeneous stratified
turbulence

We next apply S3T to analyze the possibility of emer-

gent vertical banding such as that observed in Fig. 2. We

begin by considering the alternate possibility that no co-

herent structures exist and that the turbulence is statisti-

cally steady and homogeneous. S3T admits a fixed-point

solution corresponding to such a homogeneous state. We

analyze the linear stability of this solution to determine

the rates of growth or decay of perturbations to homo-

geneous turbulence associated with VSHFs and hori-

zontal mean buoyancy layers. If perturbations with

positive growth rates exist, the underlying homogeneous

turbulence is unstable to the development of vertical
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banding, which provides an explanation for the initial

emergence of structure as observed in simulations.

Statistically steady homogeneous turbulence is charac-

terized by U5B5 ›t 5 ›z 5 0. Homogeneous S3T equi-

libria, whose covariance functions are indicated by a

subscript H, obey the linear equations

0522rZ
H
1 ›

x
(Gb

H 2Gz
H)1 «J , (41)

052N2
0›x(S

z
H 2 Sb

H)2 2rT
H
1 «Q , (42)

05N2
0›xDCH

2 2rGz
H 1 ›

x
T
H
1 «Gz . (43)

Equations (41)–(43) can be solved for generalJ,Q, and

Gz. However, a great simplification occurs when the

excitation is chosen such that the potential and kinetic

energy injection rates are equal at each wavenumber

and also such that the excitations of the vorticity and

buoyancy fields are uncorrelated. These conditions

correspond to the relations

~K5 ~V5
1

2
~E , Gz 5Gb 5 0 : (44)

The excitation structures shown in Fig. 1 have these

fairly natural properties. When (44) holds, the solution

of (41)–(43) is given by

Z
H
5

«J

2r
, T

H
5
«Q

2r
, Gz,b

H 5 Sz,b
H 5 0 : (45)

We note that the fixed-point solution in (45) does not

depend on N2
0 . An analogous result has been obtained

for b-plane turbulence, in which the homogeneous tur-

bulent state does not depend on b (Srinivasan and

Young 2012).

We now outline the linear stability analysis of the

fixed-point (45). Details are provided in appendixA.We

begin by expanding the perturbation covariances to first

order about the fixed point as Z(x, z, z, t)5ZH(x, z)1
dZ(x, z, z, t) and similarly for T, Gz, and Gb. Horizontal

mean structures are expanded about zero as U(z, t)5
dU(z, t) and B(z, t)5 dB(z, t). Substitution into (29)–

(34) then yields a set of linearized equations such as

›
t
dZ1 (dU

1
2 dU

2
)›

x
Z

H
2 (dU 001 2 dU 002 )D›xCH

2 ›
x
(dGb 2 dGz)522rdZ , (46)

which governs the perturbation to the vorticity co-

variance. It is then useful to write the perturbation

variables in the Fourier ansatz

dC(x, z, z, t)5 esteimzĈ(x, z)
m,s

, (47)

dU(z, t)5 esteimzÛ
m,s

, (48)

dB(z, t)5 esteimzB̂
m,s

, (49)

plus complex conjugate terms, where C is a place-

holder for Z, T, Gz, and Gb. The perturbation co-

variance coefficients Ĉ(x, z) are further decomposed

using their Fourier transforms as in (37). Expressing

the perturbation equations using these Fourier rep-

resentations for the statistical variables, we obtain

after some manipulation an eigenproblem for the ei-

genvalue s, whose real part is equal to the growth rate

of banded perturbations with vertical wavenumber m

in homogeneous turbulence.

The eigenproblem simplifies dramatically when the

excitation structure is chosen to have the reflection

symmetry ~E(p, q)5 ~E(2p, q), which corresponds to

equal excitation of gravity waves with positive and

negative phase angles. This property is typical of exci-

tation structures chosen in theoretical studies of strat-

ified turbulence and is possessed by the excitation

structures shown in Fig. 1. For reflection-symmetric

excitation, the eigenproblem for s factors into two

decoupled eigenproblems, each of which determines a

set of modes and their growth rates. The first set of

modes, which we call the VSHF modes, has dB5 0 so

that the horizontal mean structure consists purely of a

VSHF perturbation with no buoyancy layer pertur-

bation. The second set of modes, which we call the

buoyancy layer modes, has dU5 0 so that the hori-

zontal mean structure is a pure buoyancy layer per-

turbation. Each set of modes has its own dispersion

relation. Denoting by sU the eigenvalues correspond-

ing to the VSHF modes and by sB the eigenvalues cor-

responding to the buoyancy layer modes, the dispersion

relations are

s
U

s0U
5 «

ðð
dp dqF

U
(p,q,m,N2

0 , r, sU)
~E(p,q) , (50)

s
B

s0B
5 «

ðð
dp dqF

B
(p,q,m,N2

0 , r, sB)
~E(p, q) , (51)

where sU,B 5 sU,B 1 rm, s
0
U,B 5 sU,B 1 2r, and F U and F B

are functions whose detailed forms are provided in

appendix A. Equations (50) and (51) are resistant to

analytical solution because the eigenvalues sU and sB
appear in the integrands. However, the eigenvalues can

be computed numerically and approximate analytical

solutions can be obtained in a variety of cases. In the

next section we apply (50) and (51) to analyze the sta-

bility of homogeneous turbulence maintained by the

IRE and MCE structures discussed in section 2.
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5. Application of the dispersion relations to the
cases of IRE and MCE

a. Isotropic ring excitation

We first analyze the VSHF-forming and buoyancy

layering instabilities in stratified turbulence maintained

by isotropic ring excitation. Nondimensionalizing length

by the excitation scale 1/ke and time by the perturbation

damping time 1/r and recalling the definition h2 5
p2 1 q2, the energy injection spectrum is given by

~E
IRE

(p,q)5 2pd(h2 1). (52)

Figure 1a shows a realization in physical space of an

excitation approximating (52). The IRE dispersion re-

lations are obtained by evaluating (50) and (51) for
~E5 ~EIRE (see appendix B). Figure 4a shows how sU and

sB vary withm, the vertical wavenumber of the emergent

banding, for several representative N2
0 values.2 The pa-

rameters used are «5 75, chosen so that sU . 0 over

some band of m for each selected value of N2
0 , and

rm 5 0:1, chosen to make contact with the simulations

shown in Figs. 2 and 3 and with our previous work

(Fitzgerald and Farrell 2018).

The properties of the VSHF-forming instability

depend on the stratification. Setting the notation

s+U 5maxm[sU(m)]5 sU(m
+), under weak stratification

(Fig. 4a, light solid curve) the fastest-growing VSHF

corresponds to m+ ’ 1, and s+U is only weakly positive.

VSHFs with 0,m& 1 have negative growth rates but

decay more slowly than the explicit VSHF damping

rate (i.e., 2rm , sU , 0). This indicates that relatively

large-scale VSHFs are reinforced by IRE turbulence.

VSHFs with m* 1 have sU ,2rm, indicating that

relatively small-scale VSHFs are dissipated by IRE

turbulence.

For small N2
0 , the VSHF-forming instability can be

understood by perturbing about the case of unstratified

IRE turbulence (see appendix B). For N2
0 5 0, the in-

duced momentum flux hu0w0i vanishes when the VSHF

scale is larger than the excitation scale, so that sU 52rm
for 0#m# 1. For perturbatively weak stratification, sU
is modified to

s
U
’2r

m
1

«m2N2
0

8(22 r
m
)3

, (53)

FIG. 4. Growth rates of the VSHF-forming (solid) and buoy-

ancy layering (dashed) instabilities as functions of the vertical

wavenumber m of the horizontal mean structure for turbulence

excitation structures (a) IRE, (b) MCE2, and (c) MCE1/2. Three

representative N2
0 values are shown: N2

0 5 1021 (weak stratifica-

tion, light curves), N2
0 5 101 (intermediate stratification, medium

curves), and N2
0 5 103 (strong stratification, darkest curves). The

parameters used are «5 75, rm 5 0:1, and n5 0.

2We note that for the parameters considered in Fig. 4, sU and sB
are real. Although the eigenvalues can be complex under some

circumstances, we have found through experimentation that these

cases do not typically correspond to the most unstable modes and

as such we treat the case of real eigenvalues throughout this paper.
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which is valid for 0,m, 1. The estimate in (53) is

compared to the result from (50), and to the N2
0 5 0 so-

lution, in Fig. 5. Quadratic enhancement of sU as a

function of m leads to m+ 5 1 for weak stratification.

Figure 4a shows that m+ ’ 1 also corresponds to the

fastest-growing VSHF at the intermediate stratification

N2
0 5 10. For m. 1 (53) is replaced by a more complex

expression but the details are inessential due to the

strong dissipation of these VSHFs by the zeroth-order

unstratified turbulence.

The quadratic increase of sU with m in (53) suggests

that the VSHF-forming instability results from negative

eddy viscosity. Indeed, for m� 1, (50) gives

s
U
’2r

m
2 n

eddy
m2 , (54)

n
eddy

52«g(N2
0 , rm) , (55)

where g is a positive-definite function (see appendix B) so

that neddy , 0 for allN2
0 . We analyze the dynamics leading

to neddy , 0 in sections 7 and 8. In IRE b-plane turbu-

lence, large-scale jets instead initially form due to nega-

tive eddy hyperviscosity (Srinivasan and Young 2012).

Both s+U and m+ are significantly modified as N2
0 is

increased. The value of s+U increases to a maximum near

N2
0 5 10 (Fig. 4a). As the stratification becomes strong,

(50) gives (see appendix B)

s
U
’2r

m
1 («/N2

0)(12 r
m
/2)(32m2) , (56)

which is compared to the unapproximated result in

Fig. 6 (light gray curve) forN2
0 5 105. The behavior of sU

is captured by (56) when m is not small. When m is

small, the behavior of sU is instead captured by (54).

As N2
0 increases, (56) indicates that the growth rate

weakens (s+U /2rm) and the VSHF emerges at larger

and larger scale (m+ / 0). Similar results are found for

zonostrophic instability, with the jet growth rate weak-

ening and the jet scale increasing as b/‘. This be-

havior is attributed to disruption of wave–mean flow

interaction between traveling waves and stationary jets

by the increase in Rossby wave group velocity (Bakas

et al. 2015). This mechanism likely operates in stratified

turbulence as well, with the increasing group velocity of

gravity waves at largeN2
0 disrupting the wave–mean flow

interaction underlying VSHF formation.

The dashed curves in Fig. 4a show how the growth rate

of the buoyancy layering instability sB varies with m. In

all cases shown, sB ,2rm, indicating that perturbations

to homogeneous turbulence associated with buoyancy

layers are dissipated by downgradient eddy buoyancy

fluxes. Although this result appears to contradict the

results of the NL simulation shown in section 2, which

forms buoyancy layers, our previous work has shown

that these buoyancy layers do not emerge in homoge-

neous turbulence but instead form nonlinearly once a

finite-amplitude VSHF has emerged (Fitzgerald and

Farrell 2018).

b. Monochromatic excitation

VSHF formation occurs in stratified turbulence for a

wide range of parameter choices and excitation struc-

tures, but the properties of the VSHF-forming in-

stability can depend on the properties of the excitation.

To demonstrate this we analyze the VSHF-forming in-

stability in turbulence maintained by MCE, which is a

red-noise structure that differs qualitatively from IRE

FIG. 5. Growth rate of the VSHF-forming instability as a func-

tion of m under zero and weak stratification in the case of IRE.

The light gray curve shows sU(N
2
0 5 0) and the solid black curve

shows how sU is enhanced when weak stratification is introduced.

The thick dashed curve shows the asymptotic approximation, (53).

The parameters used are «5 50, rm 5 0:1, and n5 0.

FIG. 6. Growth rates of the VSHF-forming instability under

strong stratification for the IRE, MCE2, and MCE1/2 cases. Solid

curves show growth rates calculated using the full dispersion re-

lation and dashed curves show asymptotic approximations (see

appendixes B and C). The structure of sU is generic, with the fastest

growing wavenumber approaching m5 0 as N2
0 /‘. The param-

eters used are «5 50, N2
0 5 105, rm 5 0:1, and n5 0.
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while retaining comparable analytical simplicity. MCE

excites a single horizontal wavenumber component k0

with a Gaussian energy injection spectrum in vertical

wavenumber. Nondimensionalizing3 length by the hor-

izontal scale of the excitation 1/k0 and time by the per-

turbation damping time 1/r, the MCE energy injection

spectrum is given by

~E
MCE

(p,q)5p3/2‘
c
exp(2‘2cq

2/4)[d(p1 1)1 d(p2 1)] .

(57)

The parameter ‘c is equal to the correlation length of the

excitation in the vertical direction and sets the width of

the spectrum in the vertical wavenumber, q. We analyze

the cases MCE2, with ‘c 5 2, and MCE1/2, with ‘c 5 1/2,

and compare them to the case of IRE. Physical-space

realizations of MCE2 and MCE1/2 are shown in Figs. 1b

and 1c. MCE2 excites structures with somewhat greater

vertical extent than horizontal extent, whereas MCE1/2

excites structures with comparable or smaller vertical

extent than horizontal extent.

The dispersion relations of the VSHF-forming and

buoyancy-layering instabilities forMCE are obtained by

evaluating (50) and (51)with ~E5 ~EMCE (see appendix C).

The growth rates sU and sB are shown in Figs. 4b and 4c

for MCE2 and MCE1/2 as functions of the vertical

wavenumber m of the emergent banding.

For smallN2
0 (light gray curves in Fig. 4) the properties

of the VSHF-forming instability differ markedly among

the three excitation structures. Although the instability

is weak for IRE as expressed by (53), sU remains positive

as N2
0 / 0 for MCE2 and remains strongly negative as

N2
0 / 0 for MCE1/2. These results are consistent with

previous work on unstratified turbulence by Bakas and

Ioannou (2011) using a slightly modified formulation

of MCE.

As N2
0 is increased, the IRE and MCE2 cases behave

similarly, with s+U increasing to a maximum nearN2
0 5 10

before decaying like 1/N2
0 . The MCE1/2 case behaves

quite differently, with s+U , 0 for weak and intermedi-

ate stratification values and s+U . 0 first occurring for

N2
0 ’ 102. Figure 6 compares sU across the cases for

N2
0 5 105. The asymptotic behavior of sU as N2

0 /‘ is

generic among the cases, but the band of wavenumbers

for which the VSHF is supported by the eddy fluxes, as

well as the maximum VSHF growth rate, differs be-

tween the cases. Surprisingly, the MCE1/2 case exhibits

the largest growth rates among all cases for large N2
0 ,

with the VSHF emerging at the smallest vertical scale.

We analyze the mechanism responsible for these prop-

erties in sections 7 and 8.

The dashed curves in Figs. 4b and 4c show the growth

rate of the buoyancy layering instability sB for MCE. As

was found for IRE, sB , 0 in all cases shown. The failure

of the buoyancy-layering mode to obtain positive growth

rates for either canonical ring or red-noise excitation sug-

gests that the initial formation of buoyancy layers is un-

likely to arise from an instability of the homogeneous

turbulence in the absence of a background flow.

6. Stability boundaries

a. IRE

The dependence of the VSHF-forming instability on

the control parameters and excitation structure can be

concisely displayed using the stability boundary or

neutral curve. The stability boundary is defined as the

critical value of «, denoted «c, at which sU first becomes

positive as « is increased. When the emergent VSHF is

stationary so that sU is real, the stability boundary co-

incides with the simultaneous conditions sU 5 0 and

›msU 5 0. Alternatively, we may obtain the critical ex-

citation strength for each VSHF wavenumber by setting

sU 5 0 in (50), which gives

«
c
(m)5

r
m

2r

�ðð
dp dqF

U

��
sU50

~E

�21

. (58)

The stability boundary is then given by

«
c
5min

m
[«

c
(m)]5 «

c
(m+) . (59)

Figure 7 (darkest curves) shows «c (Fig. 7a) and the

emergent VSHF wavenumberm+ (Fig. 7b), for the case

of IRE. Dashed lines provide asymptotic approxima-

tions (see appendix B). The stability boundary reflects

the properties of sU discussed in section 5a. When the

stratification is weak, «c grows like 1/N2
0 and m+ ap-

proaches 1. This behavior reflects the small-N2
0 struc-

ture of sU described by (53) and shown in Fig. 5.

Because the VSHF-forming instability develops per-

turbatively with increasing stratification, very weak

stratification requires very strong excitation to pro-

duce an instability. As N2
0 increases, «c decreases to a

minimum near N2
0 5 10, reflecting the peak in s+U near

that value of N2
0 visible in Fig. 4a. For very strong

stratification, «c again becomes large, growing like N2
0

for large N2
0 , with m+ / 0. This behavior reflects the

large-N2
0 structure of sU described by (56) and shown

in Fig. 6.

3 Although our nondimensionalizations for the IRE and MCE

cases differ slightly, results in the various cases can be directly

compared for the same parameters when the ring wavenumber ke

is set equal to the MCE wavenumber k0.
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We compare the S3T prediction of «c to the behavior

of the NL system in Fig. 8. Because the NL system

fluctuates stochastically, a precise NL stability boundary

does not exist so we instead identify the onset of VSHF

formation with an abrupt increase of zmf, previously

shown in Fig. 3b. We carried out an NL simulation for

each («, N2
0) pair on the grid defined byN

2
0 5 10i, «5 10j,

with i5 1, 1:5, . . . , 4 and j5 0, 0:25, . . . 3. The simula-

tions were spun up for 450 time units at low resolution

before simulating 20 time units at N 5 512 resolution

over which themean zmf value was calculated. The thick

dark curve in Fig. 8 shows «c as predicted
4 by S3T and

the shaded contours show the time-average zmf values

from the NL simulations.

For intermediate and strong stratification, «c provides a

good prediction of the onset ofVSHF formation inNL. In

particular, theNL system verifies the S3Tpredictions that

VSHF formation occurs most readily at intermediate

stratification and that the excitation strength at

which VSHFs form grows like N2
0 as the stratification

becomes strong.

Another feature visible in Fig. 8, and also in Fig. 3b,

which is a ‘‘slice’’ through Fig. 8 at N2
0 5 103, is that the

NL zmf reaches a maximum and subsequently decreases

as « is increased. This finite-amplitude effect is outside the

scope of the present work, which analyzes the VSHF-

forming instability from a linear perspective. However,

inspection of the individual simulations suggests that

the eventual decrease of zmf may be due to the VSHF

maintaining a relatively large vertical wavenumber as « is

increased. This behavior is in contrast to the usual ob-

servation in b-plane turbulence that jets transition to

lower wavenumber as the excitation strength is increased

(Farrell and Ioannou 2007). Our previous analysis of

VSHF formation with matrix S3T is consistent with this

interpretation, and also suggests that additional turbulent

equilibria consisting of lower-wavenumber, more ener-

getic VSHFs may be simultaneously stable with the

equilibria shown in Fig. 8 (Fitzgerald and Farrell 2018).

Under weak stratification (N2
0 & 10), the VSHF does

not obtain significant energy in our NL simulations, con-

sistent with previous studies (Smith 2001; Kumar et al.

2017). An energetic VSHF creates strong shear, which for

weak stratification is associated with hydrodynamic in-

stability via the Miles–Howard (MH) criterion. Although

FIG. 8. Time-average zmf value in NL simulations (shaded

contours) compared with the stability boundary of the VSHF-

forming instability predicted by S3T (solid curve). Turbulence is

maintained with IRE and the time-average zmf is calculated fol-

lowing a spinup period. For intermediate and strong stratification

the S3T stability boundary captures the abrupt emergence of the

VSHF as « is increased, including the increase of the critical exci-

tation strength asN2
0 is increased. The parameters used are rm 5 0:1

and n5 0:03.

FIG. 7. (a) Stability boundary and (b) emergent VSHF wave-

number for the IRE, MCE2, and MCE1/2 cases. Solid curves in

(a) show the value of «c calculated using full dispersion relation and

dashed lines show asymptotic approximations (see appendixes B

and C). The parameters used are rm 5 0:1 and n5 0.

4 To calculate the value of «c appropriate for comparison to

simulations we apply (59) with m restricted to only the values

permitted by the doubly periodic domain.
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theMH criterion is formally valid only for a static parallel

flow in the absence of excitation and dissipation, it pro-

vides a useful guide for intuition and suggests that main-

taining strong VSHFs at weak stratification is unlikely, as

instability of the emergent jet is likely to prevent its ob-

taining significant amplitude.

b. MCE

The lighter curves in Fig. 7a show the stability

boundaries in the MCE cases. As in the case of IRE, the

stability boundaries reflect the properties of sU discussed

in section 5b. Striking differences are evident between

the MCE2 and MCE1/2 cases. As N2
0 / 0, sU remains

positive forMCE2 and remains negative forMCE1/2 (see

Figs. 4b,c). As a result, for small N2
0 , «c tends to a con-

stant value for MCE2 while «c does not exist for MCE1/2

as the VSHF-forming instability does not occur for any

excitation strength until the stratification becomes strong.

The stability boundaries also reflect the surprising result,

previously shown in Fig. 6, that strongly stratified

homogeneous turbulence maintained with MCE1/2 is

more unstable to the VSHF-forming instability than

that maintained with MCE2 or IRE, even though the

instability does not occur at all for MCE1/2 when the

stratification is weak.

The emergent VSHF wavenumber m+ also differs

markedly between the MCE cases (Fig. 7b, lighter

curves). For small N2
0 , MCE2 has m+ ’ 0:6 so that the

vertical scale of the emergent VSHF is comparable to

the horizontal scale of the excitation 1/k0. When the

VSHF-forming instability first occurs for MCE1/2 near

N2
0 5 102, the VSHF instead has m+ ’ 1:6, so that the

vertical scale of the VSHF is smaller than 1/k0 and is

associated with the correlation length of the excitation

in the vertical ‘c. For large N2
0 the MCE and IRE cases

all behave similarly, withm+ / 0 in all cases, consistent

with the results shown in Fig. 6.

In the remaining sections, we revisit these observa-

tions and analyze their dynamical origins from the per-

spective of wave–mean flow interaction.

7. Feedback factors

Because the properties of the VSHF-forming instabil-

ity can depend on the excitation structure, it is useful to

analyze the instability from a perspective independent of

the particular excitation. The feedback factor, first de-

veloped by Bakas et al. (2015) in the context of the zo-

nostrophic instability, provides a tool for analyzingVSHF

formation in this way. In the feedback factor approach,

the strength and sign of the feedback resulting from the

interaction between the VSHF and each wavenumber

component of the turbulence spectrum are analyzed

independently. Each spectral component either sup-

ports or opposes VSHF development, and the total

wave–mean flow feedback for a particular excitation is

given by the sum of the feedbacks arising from each

component. This perspective facilitates understanding

the properties of the VSHF-forming instability demon-

strated in section 5.

We focus on the case of a stationary wavenumber m

VSHF of perturbative amplitude at its stability bound-

ary, so that U5 dU, ›t 5 sU 5 0, and «5 «c(m). From

(5), the Reynolds stress andVSHF structures are related

as rmdU52›zhu0w0i. Combining this with (58) we obtain

2
›

›z
hu0w0i5 dU«

c
(m)

ðð
dp dq

�
2rF

U

��
sU50

	
~E . (60)

The induced Reynolds stress in (60) scales linearly with

dU, which follows from linearization, and also with «,

which follows from the quasi-linearity of the dynamics

underlying S3T. The remaining factor in (60), which

determines the sign of the induced stress, is the integral

over the excitation spectrum ~E weighted by the feed-

back factor for each spectral component 2rF U evalu-

ated at sU 5 0.We hereafter refer to F U as the feedback

factor for simplicity, as the 2r factor scales the amplitude

but does not modify the structure, and suppress the

notation indicating that F U is evaluated at sU 5 0.

The feedback factor depends on the four arguments

(p, q, N2
0 , m) and characterizes the wave–mean flow

feedback occurring between waves excited with wave-

number (p, q) and a weakVSHFwith wavenumberm. If

the net feedback is positive when integrated over the

excited spectrum in (60), the induced Reynolds stress

divergence is proportional to dU and reinforces the

VSHF so that VSHFs at wavenumber m grow for suffi-

ciently large «. If the net feedback is negative, the

Reynolds stress divergence opposes the VSHF and

VSHFs at wavenumber m decay faster than rm. The

feedback factor thus underlies VSHF formation and

understanding the structure of F U is central for un-

derstanding the VSHF-forming instability.

The complete structure of F U cannot be visualized at

once due to its many arguments. However, when the

excitation structure is particularly simple, such as IRE

and MCE, which excite 1D subspaces of the available

2D spectrum, the relevant F U structure can be visual-

ized easily. Figure 9 shows the F U structure relevant to

IRE in polar coordinates, with the radial coordinate

indicating m and the polar angle indicating the angle of

the excited wave, u, where (p, q)5 (cosu, sinu). As IRE

is doubly mirror-symmetric, with ~E(p, q)5 ~E(2p, q)5
~E(p, 2q)5 ~E(2p, 2q), we sum the contributions to

F U from each of these related Fourier components and
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plot the resulting F U values over the first quadrant,

0# u#p/2. Red regions in Fig. 9 correspond to F U . 0

and produce Reynolds stresses that reinforce the VSHF,

while blue regions correspond to the opposite case,

F U , 0. The net wave–mean flow interaction between

the IRE spectrum and a VSHF with wavenumber m0 is

determined by comparing the size and strength of the

F U . 0 and F U , 0 regions over the contour m5m0.

We showed in Fig. 5 that unstratified IRE turbulence

has no net influence on VSHFs with 0,m, 1, so that

sU 52rm, and that turbulence opposes VSHFs with

m. 1, so that sU ,2rm. Figure 9a provides an explana-

tion for this behavior. VSHFs with 0,m, 1 are sup-

ported by waves with small u and opposed by waves with

larger u. These competing effects cancel exactly, result-

ing in zero net feedback. For m. 1 the range of u for

whichF U , 0 widens, resulting in negative net feedback.

We also showed in Fig. 5 that for weak but nonzero

stratification, sU is enhanced for 0,m, 1 relative to the

N2
0 5 0 case, with the strongest enhancement at m5 1.

The changes in F U as N2
0 is increased from zero, shown

in Fig. 9b, explain this observation. The symmetry be-

tween the F U . 0 and F U , 0 regions for 0,m, 1 is

broken when N2
0 . 0, favoring F U . 0 for most (m, u)

pairs but especially near m’ 1 for small u. S3T thus

predicts that an m5 1 VSHF emerges in weakly strati-

fied IRE turbulence near the stability boundary.

Figure 7 showed that the VSHF-forming instability

occurs for MCE2 when N2
0 5 0 but does not occur for

MCE1/2 until the stratification is strong. Figure 10 shows

the F U structure that underlies this behavior, now using

Cartesian coordinates appropriate forMCE inwhich the

horizontal axis indicates the VSHF wavenumberm, and

the vertical axis indicates the vertical wavenumber of

the excited wave q. As in the case of IRE, we sum the

contributions to F U from Fourier components that are

related by the double mirror symmetry of MCE and plot

the result over q. 0. [For reference, Fig. 12a shows the

1D energy injection spectra ~E(q) forMCE2 andMCE1/2.]

MCE2 primarily excites q& 1 while MCE1/2 injects sig-

nificant energy over q& 4. The F U(N
2
0 5 0) structure in

Fig. 10a shows that the q, 1 region excited by MCE2

predominantly has F U . 0 for m, 1, explaining the

occurrence of the VSHF-forming instability for un-

stratified MCE2 with m+ ’ 0:6. Although MCE1/2 ex-

cites the same q, 1 waves, it also excites a broad band of

q. 1 waves with F U , 0, resulting in sU , 0 for N2
0 5 0.

In section 6 we discussed the surprising result that,

under strong stratification, the VSHF-forming in-

stability occurs at lower « for MCE1/2 than for MCE2

(Fig. 7a). The structure of F U for large N2
0 , shown in

Fig. 10b, explains this phenomenon. For large N2
0 , a

broad band of F U . 0 waves exists for q. 1. This band

is excited by MCE1/2, leading to relatively large VSHF

growth rates for large N2
0 . The q, 1 band excited by

MCE2 exhibits a dipole structure in which waves that

strongly reinforce the VSHF compete with others that

strongly oppose it, weakening the net feedback and the

instability growth rate for MCE2.

Feedback factor analysis can also be applied to the

buoyancy layering instability. Following the approach

FIG. 9. Wave–mean flow feedback factor F U for the VSHF-

forming instability for the cases of zero and weak stratification,

shown in polar coordinates appropriate for analyzing IRE. The

radial coordinate indicates the VSHF wavenumber m, and the

polar angle indicates the angle of the excited wave according with

the convention (p, q)5 (cosu, sinu). Shown are (a) F U for N2
0 5 0

and (b) how F U is modified by the introduction of weak stratifi-

cation. The parameters used are rm 5 0:1 and n5 0.
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for the VSHF-forming instability, the feedback factor

F B(p, q, N
2
0 , m) characterizes the feedback between

waves excited at wavenumber (p, q) and weak buoyancy

layers with wavenumber m. The structure of F B is

shown in Fig. 11, revealing that the feedback is usually

negative, with a narrow band of positive interactions

emerging at strong stratification. As a result, the buoy-

ancy layering instability fails to occur for either IRE or

MCE, which do not preferentially excite the F B . 0

band available at strong stratification.

The existence of an F B . 0 band in Fig. 11b raises the

intriguing possibility that preferential excitation of this

band might produce turbulence in which the buoyancy

layering instability occurs. In Fig. 12 we demonstrate

that this instability indeed occurs with a faster growth

rate than the VSHF-forming instability when the exci-

tation is carefully chosen. Figure 12a shows the chosen

excitation, which is highly localized near q5 1. Waves

excited with q’ 1 engage in a strong positive feedback

with m’ 2 buoyancy layers. Although these waves also

FIG. 11. Feedback factor F B for the buoyancy layering in-

stability in Cartesian coordinates as in Fig. 10: (a) F B under in-

termediate stratification (N2
0 5 102) and (b) F B under strong

stratification (N2
0 5 104). This figure shows that the feedback is

usually negative, consistent with the observation that the buoyancy

layering instability does not occur for IRE or MCE. However,

(b) shows that a band of positive feedback exists in the strongly

stratified case. The parameters used are rm 5 0:1 and n5 0.

FIG. 10. Feedback factor F U for the VSHF-forming instability

in Cartesian coordinates appropriate for analyzing MCE. The

horizontal axis indicates the VSHF wavenumber m, and the

vertical axis indicates the vertical wavenumber of the excited

wave q. Shown are F U (a) in the unstratified case (N2
0 5 0)

(b) under strong stratification (N2
0 5 104). The parameters used

are rm 5 0:1 and n5 0.
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engage in a positive feedback withm& 1 VSHFs, the net

buoyancy layering feedback is stronger than the net

VSHF-forming feedback. Figure 12b shows sU and sB as

functions ofm for the localized excitation. As anticipated

from feedback factor analysis, the fastest growing co-

herent structures are buoyancy layers with m’ 1:8, and

sU , 0 for all m. It is thus possible for buoyancy layers

to spontaneously form in homogeneous turbulence via

quasilinear interactions between the emergent layers and

the wave field. However, because the turbulent spectrum

required for this scenario is highly contrived, this mech-

anism is unlikely to be found in nature or in numerical

simulations using more natural excitation.

8. Processes contributing to wave–mean
flow feedback

The quasilinear wave–mean flow feedback mecha-

nism characterized by F U operates via several physical

processes. One such process, sometimes referred to as the

Orrmechanism, is shear straining of vorticity perturbations

by theVSHF to produce upgradientmomentumfluxes.We

now briefly analyze the contributions of individual pro-

cesses to the VSHF-forming instability. This analysis re-

veals that different processes can act as the dominant driver

of VSHF formation for different choices of excitation.

The Reynolds stresses that reinforce the VSHF during

its exponential growth phase are associated, through (32),

with perturbations to the vorticity covariance dZ. Three

quasilinear processes, represented by terms in (46), pro-

duce structure in dZ that yields Reynolds stresses. The first

process, represented by the term (dU1 2 dU2)›xZH , is the

previously described Orr mechanism. The second process,

represented by the term 2(dU 001 2 dU 002 )D›xCH , is the ad-

vection of the VSHF vorticity by the perturbations. The

third process, represented by the term 2›x(dG
b 2 dGz),

is the production of vorticity perturbations by buoyancy

perturbations. The third process is the most complex as

it subsumes a variety of processes involving vorticity–

buoyancy coupling such as gravity wave dynamics. The

feedback factor F U can be decomposed into contributions

from each of these processes as

F
U
5F Orr

U 1F cu
U 1F wave

U , (61)

where the superscripts identify the component feedbacks

resulting from the Orr mechanism (Orr), from advection

ofVSHFvorticity by perturbations (cu, for curvature), and

from vorticity–buoyancy coupling including gravity wave

dynamics (wave). Mathematical details are provided in

appendix D. We note that only F wave
U depends on the

stratification N2
0 , as the Orr and curvature feedbacks do

not involve vorticity–buoyancy coupling.

To illustrate this technique we apply (61) to VSHF

formation in the case of MCE. Figure 13 shows the con-

tribution of each process to F U forN2
0 5 104. In section 6

we showed thatMCE2, which primarily excites waves with

q, 1, forms a VSHF with m’ 0:5 for these parameter

values, while MCE1/2, which excites waves with q& 4,

forms a VSHF with m’ 1:5. Inspection of the region

m’ 0:5, 0, q, 1 in Fig. 13 indicates that VSHF forma-

tion for MCE2 is driven by the Orr mechanism, and that

the curvature and wave feedbacks oppose VSHF forma-

tion. In contrast, the region m’ 1:5, q& 4 in Fig. 13 in-

dicates that VSHF formation for MCE1/2 is driven by the

wave feedback. The net feedbacks fromOrr and curvature

dynamics result from a competition between negative and

positive feedbacks from different parts of the spectrum,

anddetailed integration reveals that both processes oppose

VSHF formation. The quasilinear feedback mechanism

thus produces VSHF formation for bothMCE2 andMCE1/2

but exploits distinct physical processes in each case.

FIG. 12. Example demonstrating that the buoyancy layering in-

stability can occur for appropriately chosen excitation. (a) The

energy injection spectrum for the localized excitation chosen to

induce buoyancy layering alongside theMCE2 andMCE1/2 spectra

which are provided for reference. (b) The growth rates of the

VSHF-forming and buoyancy layering instabilities as functions

of m for the localized excitation with parameters «5 400 and

N2
0 5 104. The most unstable structure corresponds to buoyancy

layers with m’ 1:8, which emerge from homogeneous turbulence

as an S3T instability. The parameters used are rm 5 0:1 and n5 0.
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9. Discussion

In this workwe applied S3T to analyzeVSHF formation

in 2D stratified turbulence. We focused on the initial

VSHFemergence in homogeneous turbulencemaintained

by stochastic excitation. VSHF emergence occurs through

an S3T instability of homogeneous turbulence, which we

refer to as the VSHF-forming instability. Some properties

of the VSHF-forming instability, such as the shape of the

stability boundary, the scale of the emergent VSHF, and

the detailed physical mechanism of the instability, depend

on the structure of the stochastic excitation. We explained

these properties in terms of the statistical wave–mean flow

feedback mechanism that drives VSHF formation and the

basic physical processes that underlie the feedback. Our

analysis complements recent work in which we applied

S3T to analyze VSHFs at finite amplitude (Fitzgerald and

Farrell 2018).

Our analysis extended to the VSHF-forming instability

several S3T concepts and techniques developed in the

context of the zonostrophic instability in b-plane turbu-

lence. In particular, a primary contribution of this work

was to extend to the VSHF-forming instability the differ-

ential linearized formulation of S3T due to Srinivasan and

Young (2012). The differential approach to S3T is in-

valuable for understanding the initial emergence of

coherent structure in turbulence because it allows the

parameter dependence and asymptotic behavior to be

analyzed using closed-form expressions. We emphasize,

however, that this approach is formally equivalent to the

conventional matrix implementation of S3T. St-Onge

and Krommes (2017) recently extended the differential

S3T approach to the turbulence of stochastically excited

interchange modes in plasmas. This turbulence is

equivalent to stochastically excited Rayleigh–Bénard
convection for subcritical Rayleigh number, which is a

weakly unstably stratified turbulence closely related to

the stably stratified turbulence that we analyze.

The VSHF-forming instability is revealed by our

analysis to be similar to the zonostrophic instability in

several respects. Comparison of the VSHF-forming and

zonostrophic instabilities reveals that the role played by

the stratification N2
0 in the VSHF-forming instability is

instead played by the planetary vorticity gradient b in

zonostrophic instability. For example, for IRE turbu-

lence the zonostrophic instability growth rate decays

FIG. 13. Decomposition of the feedback factor F U for the

VSHF-forming instability into its contributions from the (a) Orr,

(b) curvature, and (c) wave feedbacks as in (61). Axes are as in

Fig. 10. The Orr and curvature feedbacks are independent of N2
0

and the wave feedback is shown under strong stratification (N2
0 5 104).

 
This decomposition shows that the m’ 0:5 VSHF emerging for

MCE2, which primarily excites q& 1, is primarily driven by the Orr

mechanism, while the m’ 1:5 VSHF emerging for MCE1/2, which

excites q& 4, is primarily driven by vorticity–buoyancy coupling.

The parameters used are rm 5 0:1 and n5 0.
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like 1/b2 as b/‘ and increases from zero like b2 for

small b in the absence of explicit jet damping. Bakas

et al. (2015) also showed that the properties of the

zonostrophic instability depend on the structure of the

stochastic excitation. In particular, structures that pri-

marily excite Rossby waves with nearly horizontal

wavevectors produce positive zonostrophic instability

growth rates as b/ 0, whereas the zonostrophic in-

stability does not occur at all for weak b for structures

that primarily excite waves with nearly vertical wave-

vectors. These properties mirror the properties of the

VSHF-forming instability analyzed in this paper. From

the S3T perspective, zonal jet emergence in geostrophic

turbulence and VSHF emergence in nonrotating strati-

fied turbulence can be usefully conceptualized as two

instances of the more generic phenomenon of S3T in-

stability of homogeneous turbulence.
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APPENDIX A

Dispersion Relations

In this appendix we provide additional details re-

garding the derivation of (50) and (51) for the growth

rates of the VSHF-forming and buoyancy-layering

instabilities.

Linearizing (29)–(31) about the fixed point corre-

sponding to homogeneous turbulence given by (45), we

obtain

›
t
dZ1 (dU

1
2 dU

2
)›

x
Z

H
2 (dU 001 2 dU 002 )D›xCH

522

�
r2 n

�
D1

1

4
›2zz

��
dZ1 ›

x
dGdiff , (A1)

›
t
dT1 (dU

1
2 dU

2
)›

x
T

H
2N2

0›xdS
diff

522

�
r2 n

�
D1

1

4
›2zz

��
dT , (A2)

›
t
dGsum 2 2N2

0›
3
xzz dC1 (dB01 2 dB02)D›xCH

522

�
r2 n

�
D1

1

4
›2zz

��
dGsum , (A3)

›
t
dGdiff 1 2N2

0

�
D1

1

4
›2zz

�
›
x
dC1 (dB01 1 dB02)D›xCH

522

�
r2 n

�
D1

1

4
›2zz

��
dGdiff 2 2›

x
dT , (A4)

›
t
dU5 (2r

m
1 n›2zz)dU2 ›3xzz dCjx5z50

, (A5)

›
t
dB5 (2r

m
1 n›2zz)dB1

1

2
›2xz dS

diffj
x5z50

. (A6)

In these equations we have included the viscosity terms

that were omitted for clarity in the main text and, for

convenience, have expressed the dynamics in terms of

the quantities

Gsum [Gb 1Gz , Gdiff [Gb 2Gz , (A7)

Ssum [ Sb 1 Sz , Sdiff [ Sb 2Sz , (A8)

which are related through the expressions

Gsum 5

�
D1

1

4
›2zz

�
Ssum 2 ›2zzS

diff , (A9)

Gdiff 5

�
D1

1

4
›2zz

�
Sdiff 2 ›2zzS

sum . (A10)

We analyze the linearized system (A1)–(A6) in

Fourier space, using the ansatz (47)–(49) and further

writing Ĉm,s(x, z), the homogeneous structure of the

perturbation to the covariance function, using its Four-

ier transform

Ĉ
m,s

(x, z)5

ðð
dp dq

(2p)2
ei(px1qz) ~C(p,q)

m,s
. (A11)

Using the relations

dU
1
2 dU

2
5 2i sin(mz/2)eimzestÛ

m,s
, (A12)

dU 001 2 dU 002 522im2 sin(mz/2)eimzestÛ
m,s

, (A13)

dB01 2 dB02 522m sin(mz/2)eimzestB̂
m,s

, (A14)

dB01 1 dB02 5 2im cos(mz/2)eimzestB̂
m,s

, (A15)

we obtain the linearized dynamics in Fourier space as

05 s0 ~Z2 ipÛ(~F1
H 2 ~F2

H)2 ip~Gdiff , (A16)

05 s0 ~T2 ipÛ( ~T1
H 2 ~T2

H)2 ipN2
0
~Sdiff , (A17)

05 s0~Gsum 1 2impqN2
0
~C1mpB̂( ~X1

H 2 ~X2
H) , (A18)
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05 s0~Gdiff 2 2ipN2
0

�
h2 1

m2

4

�
~C2mpB̂( ~X2

H 1 ~X1
H)

1 2ip ~T , (A19)

sÛ5 im

ðð
dp dq

(2p)2
pq ~C , (A20)

sB̂52
m

2

ðð
dp dq

(2p)2
p~Sdiff , (A21)

where we have suppressed the m and s subscripts,

defined the quantities s05 s1 2[r1 n(h2 1m2/4)], s5
s1 rm 1 nm2, FH 5 (D2 1m2D)CH , andXH 5DCH , and

introduced the notation ~f6 5 ~f (p, q6m/2).

We now manipulate (A16)–(A21) to obtain the

dispersion relations. The dispersion relations for the

VSHF-forming and buoyancy layering instabilities can

be obtained separately because the eigenproblem de-

fined by (A16)–(A21) factors into two decoupled ei-

genproblems, one for VSHFs and one for buoyancy

layers, under the assumptions that the excitation satisfies

the equal energy and noncorrelation condition (44) and

the reflection symmetry J(p, q)5J(2p, q). This fac-

torization property can be verified after obtaining the

dispersion relations by confirming that the perturbations

to the covariancematrix associatedwithVSHF formation

produce no eddy buoyancy flux divergences, and vice

versa for those associated with buoyancy layering.

The dispersion relation for the VSHF-forming in-

stability is obtained by setting B̂5 0 in (A16)–(A21) so

that the horizontal mean structure corresponds to a

VSHF with no mean buoyancy perturbation. Equations

(A16)–(A19) can then be solved for ~C to obtain

~C5 ips0UÛ
(~F1

H 2 ~F2
H)F0

1 ( ~T1
H 2 ~T2

H)(2p
2h2

2h
2
1)

F2
0 2 4p4N4

0h
2
2h

2
1

,

(A22)

where F0 5 s02U h2
2h

2
1 1 2p2N2

0(h
2 1m2/4) and h2

6 5 p2 1
[q6 (1/2)m]2. The assumption that B̂5 0 can be shown to

be consistent by similarly solving (A16)–(A19) for ~Sdiff (not

shown) and substituting the result into (A21). Inspection of

the right-hand side of the resulting equation reveals that the

integral representing the eddy buoyancy flux divergence

vanishesby symmetry if theexcitation is reflection symmetric.

Substituting (A22) into (A20) and simplifying we

obtain the expression

s
U
5 «

ðð
dp dqs00UF U

(p,q,m,N2
0 , r, n, sU)

~E(p, q) , (A23)

in which we have defined s00U,B 5 sU,B 1 2fr1 n[h2 1
m(q1m/2)]g. The feedback factor F U is given by

F
U
5

mp2h2 q1
m

2

� 	
(r1 nh2)(2p)2

12
m2

h2

� �
s002U h2h2

11 1 2p2N2
0 h2 1m q1

m

2

� 	h in o
1 2p2h2

11N
2
0

s002U h2h2
11 1 2p2N2

0 h2 1m q1
m

2

� 	h in o2

2 4p4N4
0h

2h2
11

, (A24)

where h2
11 5 p2 1 (q1m)2. If n5 0 the factor s00U in

(A23) may be brought to the left-hand side and we ob-

tain the dispersion relation in the form (50).

To obtain the dispersion relation for the buoyancy

layering instability we proceed similarly, setting

Û5 0 in (A16)–(A21) so that the horizontal mean

structure corresponds to buoyancy layers with no

mean flow perturbation. Solving (A16)–(A19) for
~Sdiff, substituting into (A21), and simplifying, we

obtain

s
B
5 «

ð
dp dqs00BF B

(p, q,m,N2
0 , r, n, sB)

~E(p, q) . (A25)

The feedback factor F is given by

F 5
h2m2p2h4

11

2(r1 nh2)(2p)2
s002B h2h2

11 1 2p2m(q1m/2)N2
0

m2(q1m/2)2F2
1 2F

2
F
3

,

(A26)

in which the functions F1,2,3 are given by

F
1
5 h2h2

11s
002
B 1 2p2N2

0 [h
2 1m(q1m/2)] , (A27)

F
2
5 h2h2

11[h
2 1m(q1m/2)]s002B 1 2m2p2(q1m/2)2N2

0 ,

(A28)

F
3
5 h2h2

11

h
h2 1m

�
q1

m

2

	i
s002B

1 2p2N2
0

nh
h2 1m

�
q1

m

2

	i2
1h2h2

11

o
. (A29)

As in the VSHF case, the assumption that Û5 0 can be

shown to be consistent by solving (A16)–(A19) for ~C,

substituting the result into (A20), and verifying that the

integral on the right-hand side of the resulting equation,

which represents the eddy momentum flux divergence,

vanishes by symmetry for excitation satisfying reflection

symmetry.
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APPENDIX B

Analysis of the VSHF-Forming Instability in the
Case of Isotropic Ring Excitation

a. Mathematical formulation of IRE

Isotropic ring excitation (IRE) is defined by the ex-

citation spectra

~J(p,q)5 2pk
e
d(h2k

e
) , ~Q(p,q)5 2pN2

0k
21
e d(h2k

e
) ,

(B1)

with ~Gz 5 ~Gb 5 0. The excitation (B1) satisfies the equal-

energy and noncorrelation conditions (44). In physical

space, the excitation covariances are given by

J(x, z)5 k2
eJ0(ke

r) , Q(x, z)5N2
0J0(ke

r) , (B2)

where r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1 z2
p

and J0 is the zeroth-order Bessel

function of the first kind. Hereafter we work in

nondimensional units in which the unit of length is set

by the excitation scale 1/ke, and the unit of time is set

by the perturbation damping time 1/r. In these units

the energy excitation spectrum for IRE is given

by (52).

b. Dispersion relation and feedback factor

To obtain explicit expressions for the dispersion

relation and feedback factor for the VSHF-forming in-

stability we evaluate (A23) and (A24) with the excita-

tion spectrum in (52). We obtain

s
U
5 «

ð2p
0

du(2ps00U)

(
m cos2u(sinu1m/2)

(2p)2(11 n)

3
s002U (12m2)(11 2m sinu1m2)1N2

0 cos
2u[41m2(12m2)2 2m(m2 2 3) sinu]

[s002U (11 2m sinu1m2)1 cos2uN2
0(21 2m sinu1m2)]

2
2 4 cos4uN4

0(11 2m sinu1m2)

)
. (B3)

In this equation the explicit nondimensional forms of

sU and s00U for IRE are given by sU 5 sU 1 rm 1 nm2

and s00U 5 sU 1 2f11 n[11m(sinu1m/2)]g. The factor

in braces in (B3) gives the explicit form of the feedback

factorF U that is relevant to the case of IRE as discussed

in section 7. Note that the factor of 2p outside the braces

originates from (52) and so is not included in F U . Ex-

plicit formulas for the buoyancy layering dispersion re-

lation and feedback factor can be obtained by a similar

procedure in which (A25) and (A26) are evaluated using

the excitation spectrum in (52).

c. Asymptotic analysis

We now provide details of the derivations of various

asymptotic approximations useful for understanding the

properties of the VSHF-forming instability in the case of

IRE. For simplicity we set n5 0 throughout.

To obtain the estimate (53) for the VSHF growth rate

under weak stratification, we first note that in the case

N2
0 5 0 the dispersion relation (B3) simplifies to

s
U
s0U 5 «m(12m2)

ð2p
0

du

2p

cos2u(sinu1m/2)

11 2m sinu1m2
. (B4)

The integral on the right-hand side of (B4) is equal to

zero for 0,m, 1, and the VSHF growth rate is then

given by sU 52rm. To obtain the leading-order correc-

tion to this N2
0 5 0 solution we substitute the expansion

sU 52rm 1 s1N
2
0 1O(N4

0) into (B4) and expand the

integrand in a power series in N2
0 , retaining terms up to

order N2
0 . This procedure gives a number of integrals

similar in form to the integral in (B4), all of which can be

evaluated in closed form. Solving the resulting expres-

sion for s1 gives the result in (53).

To obtain the expressions (54) and (55), which illus-

trate that the VSHF-forming instability is associated with

negative eddy viscosity, we analyze the dispersion relation

(B3) in the limit of very large-scale VSHFs, corresponding

to small m. For m5 0 the VSHF growth rate is given by

the explicit damping rate, sU 52rm, which can be verified

by inspection of (B4). For smallm we write the instability

growth rate as sU 52rm 1 s1m
2 1O(m4), omitting terms

of odd order as sU does not depend on the sign of m.

Substituting this expression into (B3) and retaining terms

in the expansion up to order m2 gives a sum of integrals

that can be evaluated in closed form. Solving the resulting

expression for s1 gives

s
1
5 «g(N2

0 , rm) , (B5)

where g is defined by

g(N2
0 , rm)5

1

16s00

"
12

s020
N2

0

(12 2f )2
s040
2N4

0

(12 f )

#
, (B6)

in which we have used the notation s00 5 22 rm
and defined the function f (rm, N

2
0)5 s00(4N

2
0 1 s020 )

21/2.

Equation (54) identifies the eddy viscosity neddy with
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the negative of the growth rate correction 2s1, which

gives the result in (55). Analysis of g(N2
0 , rm) reveals

that g. 0 for all N2
0 , so that the eddy viscosity is

negative.

To obtain the estimate in (56) of the VSHF growth

rate in the case of strong stratification we analyze the

dispersion relation (B3) in the limit of large N2
0 . As

N2
0 /‘, inspection of (B3) shows that sU /2rm. To

obtain the leading-order correction for large but finite

N2
0 , we write the dispersion relation terms of the small

parameter d[ 1/N2
0 as

s
U
5m«ds00

ð
du

2p
I(d, u) , (B7)

where the integrand is given by

I5
cos4u(sinu1m/2)[41m2(12m2)2 2m(m2 2 3) sinu]1O(d)

m2 cos4u(2 sinu1m)2 1 d[2s020 cos2u(11 2m sinu1m2)(21 2m sinu1m2)]1O(d2)
. (B8)

The factor of d outside the integral in (B7) indicates that

the correction to the growth rate decays at least as fast as

1/N2
0 . To obtain the explicit form of the correction, we

evaluate the integral using the residue theorem. The

integral of I(d, u) is undefined for d5 0 due to the

presence of poles at the solutions of 2 sinu1m5 0 that

exist when 0,m, 2. These poles are shifted into the

complex plane for small but nonzero d by the O(d)

term in the denominator. To apply the residue theo-

remwe use a rectangular contour in the complex plane

that includes the real interval [0, 2p] and is closed in

the upper half plane. To use this contour we must

ensure that the integrand I(d, u) vanishes as u/ 1i‘.
However, I does not vanish in this limit and instead

converges to

lim
u/1i‘

I(d, u)5
32m2

2m
, (B9)

and so the residue theorem cannot be applied directly to

(B7). This issue is resolved by adding and subtracting

this limiting value inside the integral in (B7) to obtain

s
U
5m«ds00

ð
du

2p

�
I(d, u)2

32m2

2m

�
1

1

2
«ds00(32m2) .

(B10)

The integral in (B10) can be evaluated using the residue

theorem. Because of the 2p periodicity of the integrand,

the vertical branches of the contour integral cancel one

another, and detailed calculation of the residues shows

that the contributions from the poles also sum to zero so

that the integral in (B10) equals zero at the lowest order

in d. The growth rate estimate (56) is then obtained by

solving (B10) for sU .

To obtain asymptotic estimates for the stability

boundary «c(m) in the limits of weak and strong strati-

fication, we follow identical procedures for expanding

and evaluating the integral in (58) as were used to obtain

the asymptotic growth rate estimates in those limits,

except that we set sU 5 0 rather than expanding about

sU 52rm. In the limit of weak stratification we obtain

«
c
(m)’

64r
m

m2N2
0

, (B11)

which is valid form, 1. The first VSHF wavenumber to

become unstable is then m+ 5 1, and so the stability

boundary is given by «c ’ 64rm/N
2
0 . In the limit of strong

stratification we obtain

«
c
(m)’

r
m
N2

0

32m2
, (B12)

which is valid for m,
ffiffiffi
3
p

, as « must be positive. In this

case the first VSHF wavenumber to become unstable

tends to m+ 5 0 as N2
0 /‘, and so the stability bound-

ary is given by «c ’ rmN
2
0 /3. These estimates are shown in

Fig. 7a.

APPENDIX C

Analysis of the VSHF-Forming Instability in the
Case of Monochromatic Excitation

a. Dispersion relation

Monochromatic excitation (MCE) is defined by the

energy injection spectrum, (57), which corresponds to

the vorticity and buoyancy excitation spectra

~J5p3/2‘
c
(11 q2) exp(2‘2cq

2/4)[d(p1 1)1 d(p2 1)] ,

(C1)

~Q5N2
0p

3/2‘
c
exp(2‘2cq

2/4)[d(p1 1)1 d(p2 1)] . (C2)

As in the case of IRE, we obtain the dispersion relation

for the VSHF-forming instability in the case of MCE by

evaluating (A23) and (A24) with the excitation spec-

trum, (57). We obtain
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s
U
5 «

ð‘
2‘

dqs00U(2p
3/2‘

c
e2‘2cq

2/4)

 
m(q1m/2)(11 q2)

(2p)2[11 n(11 q2)]

3

12
m2

11 q2

� �
fs002U (11 q2)[11 (q1m)2]1 2N2

0 [11 q2 1m(q1m/2)]g1 2N2
0 [11 (q1m)2]

[s002U (11 q2)[11 (q1m)2]1 2N2
0 [11 q2 1m(q1m/2)]]

2
2 4N4

0(11q2)[11 (q1m)2]

1
A, (C3)

in which sU 5 sU 1 rm 1 nm2 and s00U 5 sU 1 2f11
n[11 q2 1m(q1m/2)]g. The factor in large parentheses
in (C3) gives the explicit form of the feedback factor

F U that is relevant to the case of MCE. Explicit

formulas for the buoyancy layering dispersion re-

lation and feedback factor in the case of MCE can be

obtained by evaluating (A25) and (A26) using the

excitation spectrum (57).

b. Asymptotic analysis

To obtain a closed form estimate of the growth rate of

the VSHF-forming instability in the case of MCE under

strong stratification, we expand (C3) in the small pa-

rameter d5 1/N2
0 to obtain

s
U
5 d

«‘
c
s00

2m
ffiffiffiffi
p
p

ð‘
2‘

dqe2‘2cq
2/4 J(q)

(m1 2q)1O(d)
, (C4)

where we have set n5 0 for simplicity and defined

s00 5 22 rm and J(q)5 [11(q1m)2](11 q2)1 [11 q2 1
m(q1m/2)](11 q2 2m2). As in the case of IRE, the

factor of d outside the integral indicates that sU decays at

least as fast as 1/N2
0 as the stratification is increased. The

integral in (C4) is undefined for d5 0 due to the pole at

q52m/2. However, the value of the integral converges

to a well-defined limit as d/ 0, which can be evaluated

as follows. To regularize the d5 0 integral at q52m/2,

we rewrite (C4) as

s
U
5 d

«‘
c
s00

2m
ffiffiffiffi
p
p

"ð‘
2‘

dqe2‘2cq
2/4 J(q)2 J(2m/2)

(m1 2q)1O(d)

1 J(2m/2)

ð‘
2‘

dq
e2‘2cq

2/4

(m1 2q)1O(d)

#
. (C5)

The first integral in (C5) is no longer singular at q5
2m/2 for d5 0 and can be evaluated in closed form. The

second integral remains singular at d5 0. However, it

can be assigned a finite Cauchy principal value as d/ 0,

and in fact can be recognized, after minor manipula-

tions, as the Hilbert transform of a Gaussian function.

We then obtain

s
U
’2r

m
1 (12 r

m
/2)

‘
c
«

N2
0

S(m) , (C6)

where the function S is given by

S(m)5
41 ‘2c
‘3c

2
3

4‘
c

m2 1

�
2

m
2

m3

8

�
F

�
‘
c
m

4

�
, (C7)

in whichF is theDawson function. This approximation is

shown in Fig. 6.

An asymptotic estimate for the stability boundary «c
can be obtained by applying similar methods to ap-

proximate the integral in (58). In the limit of strong

stratification we obtain

«
c
(m)’

r
m
N2

0

‘
c
S(m)

. (C8)

In this limit the minimum of «c(m) occurs at m+ 5 0, so

that the stability boundary is given by

«
c
’

2r
m
‘2c

‘4c 1 2‘2c 1 8
N2

0 . (C9)

This estimate is shown in Fig. 7a.

APPENDIX D

Decomposition of the Feedback Factor into
Contributions from Individual Processes

In this appendix we provide mathematical details

relevant to section 8 in which the feedback factor for the

VSHF-forming instability F U is decomposed into the

feedback contributions from individual processes. For

simplicity we set n5 0.

When solving (A16)–(A19) for ~C as described in ap-

pendix A, the solution can be decomposed as

~C5 ~COrr 1 ~Ccu 1 ~Cwave , (D1)

where the individual contributions are defined by the

term in (46) fromwhich they each originate, as described

in section 8. The contributions are given by

~COrr 52ipÛ
h4
2
~C2
H 2 h4

1
~C1
H

s0Uh2
2h

2
1

, (D2)
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~Ccu 5 im2pÛ
h2
2
~C2
H 2 h2

1
~C1
H

s0Uh2
2h

2
1

. (D3)

The contribution from wave dynamics ~Cwave can be ob-

tained most simply as a residual using (D1) and (A22).

Combining the decomposition (D1) with (A20) and (A23)

yields the decomposition (61).
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