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ABSTRACT

Perturbation growth in uncertain systems is examined and related to previous work in which linear stability
concepts were generalized from a perspective based on the nonnormality of the underlying linear operator. In
this previous work the linear operator, subject to an initial perturbation or a stochastic forcing distributed in
time, was either fixed or time varying, but in either case the operator was certain. However, in forecast and
climate studies, complete knowledge of the dynamical system being perturbed is generally lacking; nevertheless,
it is often the case that statistical properties characterizing the variability of the dynamical system are known.
In the present work generalized stability theory is extended to such uncertain systems. The limits in which
fluctuations about the mean of the operator are correlated over time intervals, short and long, compared to the
timescale of the mean operator are examined and compared with the physically important transitional case of
operator fluctuation on timescales comparable to the timescales of the mean operator. Exact and asymptotically
valid equations for transient ensemble mean and moment growth in uncertain systems are derived and solved.
In addition, exact and asymptotically valid equations for the ensemble mean response of a stable uncertain
system to deterministic forcing are derived and solved. The ensemble mean response of the forced stable uncertain
system obtained from this analysis is interpreted under the ergodic assumption as equal to the time mean of the
state of the uncertain system as recorded by an averaging instrument. Optimal perturbations are obtained for
the ensemble mean of an uncertain system in the case of harmonic forcing. Finally, it is shown that the remarkable
systematic increase in asymptotic growth rate with moment in uncertain systems occurs only in the context of
the ensemble.

1. Introduction

Linear stability theory for fluid systems has been ex-
tensively studied because of its role in advancing un-
derstanding of physical phenomena, including structure
and growth of perturbations, growth of errors in forecast
models, transition from laminar to turbulent flow, and
maintenance of the turbulent state. Historically, linear
stability theory has addressed problems of deterministic
growth using the method of modes (Rayleigh 1880;
Charney 1947; Eady 1949). However, the method of
modes is incomplete for understanding perturbation
growth even for autonomous systems because the non-
normality of the linear operator in physical problems
often produces transient development of a subset of per-
turbations that dominates the physically relevant growth
processes (Kelvin 1887; Farrell 1982, hereafter F82).
Recognition of the role of nonnormality in linear sta-
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bility led to the development of generalized stability
theory (GST; F82; Farrell 1988; Farrell and Ioannou
1996a, hereafter FI96a). Compared to the methods of
modes, the methods of GST, which are based on the
nonnormality of the linear operator, allow a far wider
class of stability problems to be addressed, including
perturbation growth associated with aperiodic time-de-
pendent certain operators to which the method of modes
does not apply (Farrell and Ioannou 1996b, hereafter
FI96b; Farrell and Ioannou 1999, hereafter FI99). An
example of such an aperiodic time-dependent stability
problem is the forecast error growth problem in which
the nonnormality of a certain but time-dependent linear
system, the tangent linear operator of the forecast, pro-
duces asymptotic Lyapunov instability (FI99). In ad-
dition to addressing problems of deterministic growth
of sure initial perturbations, GST also addresses prob-
lems of the growth of statistical distributions of pertur-
bations to certain operators allowing prediction of sta-
tistical quantities including variance, fluxes, and struc-
tures in turbulent flow (Farrell and Ioannou 1993a,b),
which has led to a new mechanistic model of geophys-
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ical and laboratory turbulence (Farrell and Ioannou
1994, 1995, 1998).

There remains a class of linear stability problems still
to be addressed by the methods of GST, which is the
stability of uncertain systems. The problems described
above involve growth of perturbations in a system with
no time dependence or a system with known time de-
pendence: the perturbations to this system may be sure
or stochastically distributed and may be imposed at the
initial time, or distributed continuously in time, but the
operator to which the forcing is applied is considered
to be certain. However, it may happen that we do not
have complete knowledge of the system that is being
perturbed. For instance, the parameterizations of damp-
ing and radiation in the tangent linear forecast equations
may not be certain but may rather include realistic sta-
tistical variability about their mean values. Another ex-
ample is departures from the climatological mean of
realizations of the planetary-scale Northern Hemisphere
flow. These realizations are drawn from an ensemble of
statistically similar flows but, as is well known, there
are significant temporal variations of the planetary
waves about the mean. In these examples the system
governing the growth and structure of perturbations de-
pends not only on the mean state but also on uncertain
but statistically known variations of the state about its
mean. Three regimes in the statistical analysis of un-
certain system are distinguished: systems in which the
time dependence of the statistical fluctuations of the
operator are temporally correlated for short intervals
compared to the damping and oscillation timescales of
the associated mean operator, systems in which the sta-
tistical fluctuations of the mean operator are correlated
for long time intervals compared to the timescales of
the mean operator, and the physically important tran-
sitional case of operator fluctuation on timescales com-
parable to those of the mean operator.

Describing the stability of uncertain systems requires
introducing the distinct concepts of sample stability, mo-
ment stability, and ensemble mean stability (Arnold
1984; Arnold and Kliemann 1987). Remarkably, un-
certain systems that are sample (Lyapunov) stable may
be higher-order moment (e.g., variance) unstable and
uncertain systems that are sample and moment unstable
may be ensemble mean stable. We show that a single
realization of a time-dependent system exhibits only the
sample (Lyapunov) asymptotic exponential growth for
all its moments.

Compared to growth of ensemble mean quantities
themselves, growth of ensemble mean second-moment
quantities corresponds more closely to notions of sta-
bility and transient growth as generally understood. The
sample (Lyapunov) growth rate is attained asymptoti-
cally by any single realization of the second moment,
yet ensemble second-moment quantities can be unstable
even for sample stable systems. We interpret these re-
sults physically using analysis based on the ensemble
probability density function.

Ensemble mean and moment quantities are physically
interpretable as applying to single realizations when the
associated operator is stable and forced so that the er-
godic assumption linking the ensemble and time mean
can be made, in which case the ensemble mean and
moment quantities apply to observations made using a
time-averaging instrument. In Part I of this paper we
show that in the ensemble mean of an uncertain system
there is an optimal structure producing the greatest re-
sponse to harmonic forcing and so the ensemble mean
frequency response as well as the structure of the op-
timal forcing and response in the ensemble mean at each
frequency apply to time averages of a sufficiently long
time series from a single realization, if the ergodic as-
sumption is valid.

In Farrell and Ioannou (2002, hereafter Part II) growth
and stability of second-moment quantities are examined
in more detail and the optimal perturbation problem for
initial and stochastic forcing is cast and solved in the
context of the second moment. We illustrate methods
for analyzing ensemble mean growth in uncertain sys-
tems using simple examples including barotropic and
baroclinic flow models with fluctuating winds and fluc-
tuating damping parameters.

2. Moment stability in uncertain flows

The familiar concept of sample (Lyapunov) instability
generalizes to aperiodic certain systems the asymptotic
exponential modal instability of autonomous systems
and the asymptotic Floquet instability of periodic sys-
tems. The Lyapunov exponent of an ensemble of state
vector solutions c(t) produced by realizations of an un-
certain system is defined as

ln|c(t)|
l 5 lim , (1)0 7 8tt→`

in which the angle bracket refers to an average over a
sufficiently large ensemble of members, c(t), produced
by statistically similar realizations of a dynamical sys-
tem. It is also useful (cf. Arnold 1984; Arnold and Klie-
mann 1987) to consider the asymptotic ensemble mean
exponent of the first moment of the state vector,

ln^|c(t)|&
l 5 lim ; (2)1 tt→`

the asymptotic ensemble mean exponent of the second
moment,

21 ln^|c(t)| &
l 5 lim ; (3)2 2 tt→`

and, in general,

p1 ln^|c(t)| &
l 5 lim . (4)p p tt→`

These stability measures are not generally distinguished



15 SEPTEMBER 2002 2631F A R R E L L A N D I O A N N O U

because the Lyapunov and moment exponents are the
same for certain systems. Moreover, these stability mea-
sures are accompanied by characteristic structures that
are also identical for certain systems. However, in the
case of uncertain systems, although every individual
realization is more and more likely with increasing time
to approach the Lyapunov growth and structure for all
moments, the ensemble mean exponents are asymptot-
ically unequal and ordered as

l # l # l # . . . # l0 1 2 n (5)

and associated with each of the exponents is a distinct
structure.

For example, consider a system in which growth, g,
takes the value of 2 or ½, with equal probability over
unit time intervals. The Lyapunov exponent is

ln(2) 1 ln(1/2)
l 5 ^lng& 5 5 0, (6)0 2

while the first- and second-moment exponents are

2 1 1/2 5
l 5 ln^g& 5 ln 5 ln 5 0.22, (7)1 1 2 1 22 4

1
2l 5 ln^g &2 2

2 21 2 1 (1/2) 1 17
5 ln 5 ln 5 0.38, (8)1 2[ ]2 2 2 8

and in general the p-moment exponent, as defined, is
given by

p p1 1 2 1 (1/2)
pl 5 ln^g & 5 ln , (9)p [ ]p p 2

with limit1

lim l 5 ln2 5 0.69. (10)p
p→`

We can use probability density functions of the en-
semble member growth rates to examine moment
growth more closely. If the growth rate of a perturbation
is calculated after n units of time there are n 1 1 possible
growth rates distributed on the interval [log(1/2), log(2)]
5 [20.69, 0.69] according to the binomial distribution
(Fig. 1). As n increases the distribution of growth rates
approaches a d function about the Lyapunov exponent,
l0 5 0. However, despite the concentration of the dis-
tribution around l 5 0, for every n the growth rates
remain distributed over the interval [20.69, 0.69], and
despite the vanishing probability as n → ` of any given
realization achieving a growth rate significantly differ-
ent from l0, the higher-moment exponents remain suf-
ficiently influenced by the finite extent of this binomial

1 That the limit of p → 0 is the Lyapunov exponent l0 has been
shown in Arnold (1984) and Arnold and Kliemann (1987).

distribution to give for all n the nonzero growth rates
obtained in (9) (right panel of Fig. 1).

The above example illustrates that a deeper under-
standing of moment instability can be obtained from the
probability density function (pdf) of the growth rates of
the uncertain system as a function of time, assuming
that all perturbations start from a sure initial condition.
Consider that the pdf, Pt(l), of growth rates over an
interval t,

ln(|c |)
l(t) 5 , (11)

t

has been determined. The Lyapunov exponent over this
interval is the mean of this distribution,

`

l (t) 5 lP (l) dl, (12)0 E t

2`

while the first p moment exponents are

`1
ptll (t) 5 ln e P (l) dl . (13)p E t[ ]pt

2`

That a growth rate pdf of finite width results in the
ordering of the higher-moment exponents l0 # l1 # l2

# · · · # lN is clear from (13). In contrast to the finite
higher-moment exponents of the binomial pdf (Fig. 1),
Gaussian pdf’s inevitably lead to instability of suffi-
ciently high moments because the Gaussian can produce
ensemble members, however rare, with unbounded
growth rates that dominate the higher-moment exponent
obtained in (13) (Arnold and Kliemann 1987). The pdf’s
of physical quantities are often approximately Gaussian
near their mean but with vanishing probability of ex-
treme values so that a distribution similar to the binomial
may be more appropriate than the Gaussian in predicting
higher-moment growth for physical systems. Moreover,
for practical purposes the distinction between the Lya-
punov exponent and moment exponents fades as the
integration interval increases because it becomes in-
creasingly unlikely that any realization deviates from
the Lyapunov exponent and structure.

The fact that as time increases the width of the dis-
tribution of growth rates narrows and that in the limit
t → ` the pdf becomes an infinitely narrow distribution
about the Lyapunov exponent is known as the multi-
plicative ergodic theorem of Oseledec (Arnold 1998);
this allows calculation of the Lyapunov exponent of an
uncertain system from a single sufficiently long inte-
gration of the perturbation equations. On the other hand,
as we have seen, the growth rate of higher-order mo-
ments depends on the finite extent of the growth rate
pdf even as this pdf becomes increasingly centered about
the Lyapunov exponent. If, for example, the distribution
of growth rates Pt(l) is a Gaussian of width d(t) 5
{^l2(t)&}1/2, then according to (13) the Lyapunov ex-
ponent of the p moment over the time interval t is
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FIG. 1. (left) Binomial probability distribution function, Pn(l), of the growth rate l after n unit time steps for the process in which at each
time step the perturbation either grows by 2 or decays by 1/2. The distributions are centered about the Lyapunov exponent, which is equal
to l0 5 0. Shown are the pdf’s for n 5 20, 50, 100. The distributions become increasingly narrow, assuming a Gaussian form. A large
number of trials is needed in order to obtain growth rates at the wings of the distribution. These rare events determine the exponents of
higher-order moments. (right) Moment exponents as a function of moment order. The p 5 0 moment exponent is the Lyapunov exponent.
The higher-order moment exponents asymptote to 0.69, unlike in cases of exactly Gaussian statistics for which the higher-moment exponent
increases linearly with moment order. The moment exponent curve for the binomial distribution is independent of n.

1
pltl (t) 5 ln(^e &). (14)p pt

A closed form for the expected value of the growth
factor eplt in (14) is obtained by a cumulant expansion
using the fact that the higher-order cumulants of a
Gaussian distribution vanish (Van Kampen 1992):

pt
ptl 2^e & 5 exp pt ^l(t)& 1 d (t) . (15)5 6[ ]2

The p-moment exponent is then given exactly by

pt
2l (t) 5 ^l(t)& 1 d (t), (16)p 2

from which the t → ` asymptotic dependence of lp(`)
on the width of the pdf, d(t), is clear. If we assume that
d2(t) 5 O(1/t), as when the growth rate distribution is
Gaussian, then asymptotically the p-moment Lyapunov
exponent increases linearly in the moment p, confirming
that regardless of the value of the Lyapunov exponent,
l0 5 limt→` ^l(t)&, sufficiently high-order moments will
be unstable.

In order to illustrate these ideas consider the example

of the modified Eady problem in which the zonal flow
varies about a constant mean shear. The model is Bous-
sinesq with constant stratification on an f plane and has
periodic boundary conditions in the zonal, x, direction;
solid walls in the meridional, y, direction; and a solid
lid at height z 5 H. The zonal flow U(z, t, v) is gen-
eralized to be time dependent and uncertain, a realiza-
tion of which, v, is taken from a probability space V.
Horizontal scales are nondimensionalized by L 5 1200
km, vertical scales by H 5 fL /N 5 10 km, velocity by
U0 5 50 m s21, and time by T 5 L /U0, so that a time
unit is approximately 6.7 h. The Brunt–Väisälä fre-
quency is N 5 1022 s21, and the Coriolis parameter is
f 5 1024 s21.

The nondimensional linearized equation that governs
evolution of streamfunction perturbations c for each
realization v is

2]D c
25 2ikU(z, t, v)D c

]t
2d U(z, t, v)

21 ik c 2 rD c, (17)
2dz

in which the perturbation is assumed to be of form c(z,
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FIG. 2. Realizations of the time-dependent velocity U(z, t) 5 z 1
u(z, t). The bold line is the mean wind, U(z) 5 z.

t, v) eikx1ily, where k is the zonal and l is the meridional
wavenumber: the perturbation potential vorticity is D2c,
with D2 [ ]2/]z2 2 k2 2 l2 and the perturbation potential
vorticity damping rate is r.

Conservation of potential temperature at the ground,
z 5 0, and tropopause, z 5 1, provides the boundary
conditions

2] c ]c
5 2ikU(0, t, v) 1 ikU9(0, t, v)c

]t]z ]z

]c
2 22 r 1 G (k 1 l )c at z 5 0, (18)g]z

2] f ]c ]c
5 2ikU(1, t, v) 1 ikU9(1, t, v)c 2 r

]t]z ]z ]z

at z 5 1, (19)

where U9(0, t, v) and U9(1, t, v) denote the velocity
shear at z 5 0 and z 5 1, respectively. The coefficient
of Ekman damping Gg [ N/U0(n /2f )1/2 has value Gg 5
0.0632, corresponding to a vertical eddy momentum dif-
fusion coefficient n 5 20 m2 s21 in the boundary layer.

The zonal wind U(z, t, v) 5 z 1 u(z, t, v) is composed
of an ensemble mean component, z, and uncertain de-
viations, u(z, t, v). The linear perturbation dynamics is

dc
5 [A 1 A (t, v)]c, (20)1dt

where A is the sure Eady operator,
2 21 2 2A 5 (D ) (2ikzD 2 rD ), (21)

and A1(t, v) is the uncertain operator associated with
the wind fluctuations,

A (t, v)1

2d u(z, t, v)
2 21 25 (D ) 2iku(z, t, v)D 1 ik . (22)

2[ ]dz

In both operators, D2 has been rendered invertible by
incorporating the boundary conditions.

Assume further that the uncertain zonal flow has form
u(z, t, v) 5 e Si ji(t, v)ui(z), in which the wind fluc-
tuations result from modulation of a set of wind profiles,
ui(z), weighted by the identically distributed random
variable, ji(t, v), and e is an amplitude factor. In terms
of the time-independent operators Bi the uncertain op-
erator has the form

A (t, v) 5 e j (t, v)B , (23)O1 i i
i

where each Bi is the certain operator,

2d u (z)i2 21 2B 5 (D ) 2iku (z)D 1 ik . (24)i i 2[ ]dz

For the examples the uncertain wind is formed by the
superposition of four wind profiles:

1 pz 1
u (z) 5 1 2 cos , u (z) 5 [1 2 cos(2pz)],1 21 2[ ]2 2 2

pz
2u (z) 5 sin , and u (z) 5 z ; (25)3 41 22

and the random functions hi(t, v) are generated by the
stochastic differential equation,

dh 5 2nh dt 1 dW,i i (26)

with W a Wiener process. In (26) the symbol h has been
used in place of j as an indication that the random
variable is Gaussian. The standard deviation of hi is
(2n)21/2 and the autocorrelation time is 1/n. The wind
profiles were chosen to give variance increasing with
height, and also to almost always produce westerly
winds. Typical realizations of the resulting mean flow
with (^ &)1/2 5 0.3 and autocorrelation time tc 5 1 are2j i

shown in Fig. 2.
Consider growth rates over the relatively short inter-

val 8.5 days with meridional wavenumber l 5 2, noise
autocorrelation time 7 h, and an rms fluctuation ampli-
tude e 5 0.3. Moment growth rates as a function of
wavenumber are shown in Fig. 3. The middle curve is
the ensemble mean 8.5-day growth rate as a function
of wavenumber with the bars indicating the standard
deviation from the ensemble mean. Individual realiza-
tions result in widely different growth rates over this
time interval. The top curve shows the exponent of the
second moment, l2, and demonstrates the ordering l0

# l2. For reference the optimal growth rate for the mean
flow over the same interval is also shown. Because of
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FIG. 3. Growth rates over 8.5 days as a function of wavenumber in the Eady model with uncertain
fluctuating winds. The middle curve is the 8.5-day ensemble mean growth rate and the bars indicate
one std dev from the ensemble mean value. The top curve shows the exponent of the second
moment, which is by necessity larger than the mean growth rate. For reference the growth rate
attained by the 8.5-day optimal perturbation on the mean flow is also shown. The time dependence
of the flow leads to an increase of growth rate at almost all wavenumbers. The meridional wave-
number is l 5 2, the coefficient of Ekman damping corresponds to a vertical diffusion coefficient
of n 5 20 m2 s21, the autocorrelation time of the noise is 7 h, and the rms of the fluctuating
components is 0.3.

the time dependence of the flow, the ensemble mean
growth rate has increased for almost all wavenumbers.

The pdf of the growth rate obtained from 105 simu-
lations over t 5 80 days is shown in Fig. 4. This time
interval was chosen to be long enough so that initial
conditions do not influence the result, and the mean of
the pdf is a good approximation of the asymptotic Lya-
punov exponent. In this example the Lyapunov exponent
is negative but the second and higher moments are un-
stable, as shown in Fig. 5. The large p growth rates
shown are not the asymptotic values because the limited
number of simulations in this Monte Carlo calculation
do not explore the unlikely events responsible for pro-
ducing the higher-moment growth rates. If the number
of simulations is increased, the higher-order moments
asymptote to higher values, and in the limit of an infinite
number of simulations the moment exponents grow lin-
early with p, as required by (16) given Gaussian wind

fluctuations. However, as previously mentioned, the
Gaussian pdf overestimates the probability of rare
events in many physical problems so this asymptote is
not likely to be observed.

Consider an ensemble of flows that are Lyapunov
(sample) stable while at the same time being second-
moment unstable. Such an ensemble would have di-
vergent energy and variance although the ensemble
mean magnitude of the perturbations decays to zero.
This is because relatively rare high growth trajectories
dominate the second moment (e.g., positive growth
rates in the pdf shown in Fig. 4). Associated with
these high growth rate realizations are structures that
differ from the structures associated with the sample
mean, which grows at the rate of the top Lyapunov
exponent and has the structure of the first Lyapunov
vector. The most unstable second-moment structure
is the top EOF, which is calculated from the covari-
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FIG. 4. Pdf of the growth rate of perturbations over 80 days in the
Eady model with fluctuating winds. The autocorrelation time of the
fluctuations is tc 5 2 and their rms amplitude is e 5 0.6. The Lyapunov
exponent is ^l& 5 20.055; nevertheless, this flow is second-moment
unstable with second-moment exponent ^l2& 5 0.05.

FIG. 5. Exponents of higher moments, lp, as a function of moment
order, p. These exponents were obtained using the pdf shown in
Fig. 4.

ance matrix; EOFs for uncertain systems are examined
in Part II of this paper.

3. Dynamics of the ensemble mean field

Consider a statistical description of perturbation
growth in which the perturbation dynamics is governed
by an uncertain linear operator with realizations A(t, v),
where v is taken from a probability space V. We con-
centrate on uncertain operators A(t, v) of the form A(t,
v) 5 A 1 eh(t, v)B, with h(t, v) a Gaussian process2

with zero mean, unit variance, and specified autocor-
relation time tc.

We have seen that the stability properties of an un-
certain system can be understood from the pdf of the
growth rate. For example, because the width of the
growth rate pdf becomes vanishingly small with time
the Lyapunov exponent and related structure can be ob-
tained almost surely from analysis of a single long in-
tegration of the perturbation equations. Therefore, anal-
ysis of the structure of the first Lyapunov vector does
not require consideration of ensembles (cf. FI99). We
turn now to the problem of analyzing ensemble average
growth and growth of higher-order moments. If we start
with a sure initial condition in an (additively) unforced
but multiplicatively uncertain system, a difference
among the higher-order moment growth rates and the
Lyapunov growth rate exists only in an ensemble of
flow realizations and it seems at first that our study

2 The v will henceforth be omitted for brevity.

requires Monte Carlo simulation. However, this com-
putationally expensive task can in many cases be avoid-
ed, because deterministic equations exist governing the
evolution of higher-order moments in uncertain systems
under appropriate restrictions.

An equation for the evolution of the ensemble average
field, ^c(t)&, and the second moment, ^ci(t) (t)&, canc*j
be readily obtained if the temporal variability of the
fluctuations is taken to be white in time (Arnold 1992).
Although it is a great advantage for analysis to take the
temporal randomness in the uncertain operators to be
white, this assumption is often hard to justify because
white noise processes in common with Gaussian pro-
cesses have unbounded fluctuations, for example, im-
plying infinite wind speeds or negative damping rates.
We wish to obtain equations that are not restricted in
validity to the white noise limit, at least in part to assess
the validity of the white noise limit.
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We begin with derivation of an equation for the en-
semble mean. While ensemble mean stability is not di-
rectly related to moment stability, it has a distinct and
interesting interpretation that we will discuss, and it
underpins the development of equations for the second
moment. Uncertain second-moment dynamics, which is
the subject of Part II of this paper, is of particular interest
because it is associated with perturbation energy and
the EOFs of the stochastically forced uncertain system,
and its stability properties correspond more clearly to
usual notions of perturbation growth.

We first derive the ensemble mean equation valid for
the case in which the time mean operator A commutes
with the perturbation operator B, so that the commutator
[A, B] 5 AB 2 BA vanishes. We then deal with the
case in which the commutator [A, B] is nonzero.

Dynamics of the ensemble mean field for commuting
mean and fluctuation operators

Consider the model linear system

dc
5 Ac 1 eh(t)Bc (27)

dt

in which the uncertain operator is assumed to take the
special form A(t) 5 A 1 eh(t)B, and in which the op-
erators A and B are assumed to commute. Because they
commute, the operators A and B can be simultaneously
diagonalized by a change of coordinates and the evo-
lution of the perturbations can be followed in these nor-
mal coordinates.3 The behavior of this n-dimensional
system in normal coordinates is that of n uncoupled one-
dimensional uncertain systems. The exact equation for
the mean can be obtained if h(t) is a Gaussian process
with zero mean and unit variance that decorrelates with
time at rate n, that is, ^h(t1)h(t2)& 5 exp(2n | t1 2 t2 | ).
For such a process the autocorrelation time, tc, is tc 5
1/n. Because [A, B] 5 0, the propagator from t to s is

t

P(t, s) 5 exp A(t 2 s) 1 eB h(s) ds , (28)E[ ]
s

and the statistical properties of the propagator are deter-
mined by u(t, s) [ h(s) ds. If the pdf of u, p[u(t, s)],t#s

is known then the mean of the propagators is

`

(t2s) e u(t, s)A B^P(t, s)& 5 e du p[u(t, s)]e . (29)E
2`

The pdf, p[u(t, s)], can be obtained for all times because
the central limit theorem guarantees that the integral,
u(t, s), of the zero mean Gaussian processes, h(t), will
also be distributed Gaussian with pdf:

3 This use of the term normal refers to the orthogonality of the
modes of A in these coordinates and is unrelated to Gaussian normal
distributions.

21 u
p [u(t, s) 5 exp 2 , (30)

2 21 2!2p^u (t, s)& 2^u (t, s)&

In the present case the variance is
t t

2^u (t, s)& 5 ^h(s )h(s )& ds dsE E 1 2 1 2

s s

2n (t2s)t 2 s 1 2 e
5 2 2 2 , (31)

2n n

so from (29) the mean of the propagators becomes

1
(t2s)A^P(t, s)& 5 e

2!2p^u (t, s)&

` 2u
3 du exp 2 I 1 eBuE 21 22^u (t, s)&

2`

2^u (t, s)&
2 25 exp A(t 2 s) 1 e B1 22

2 2n (t2s)e 1 2 e
25 exp A(t 2 s) 1 B t 2 s 2 ,1 2[ ]n n

(32)

where I is the identity. It can be easily verified using (32)
that the mean of the propagators, ^P(t, s)&, does not satisfy
the semigroup property ^P(t, 0)& 5 ^P(t, s)&^P(s, 0)&,
implying that the mean field at time t resulting from a
sure initial condition at time s, ^c(t)& 5 ^P(t, s)&c(s),
satisfies a differential equation depending explicitly on
the initial time s. In the particular case of evolution from
t 5 0 the mean field ^c& [ ^c(t, 0)& satisfies

2d^c& e
2n t 25 A 1 (1 2 e )B ^c&. (33)[ ]dt n

It is important to bear in mind this restriction to evo-
lution from t 5 0 on this useful equation, which is exact
in commuting case with Gaussian noise.

In the limit of very small autocorrelation times
(n → `) for all t k 1/n we obtain asymptotically the
ensemble mean equation

2d^c& e
25 A 1 B ^c&, (34)1 2dt n

which is without explicit dependence on the initial time.
The associated mean propagator is

2e
2^P(t)& 5 exp A 1 B t. (35)1 2n

Equation (34) is familiar as it governs the ensemble
mean of (27) in the white noise limit for arbitrary A
and B (Arnold 1992; Sardeshmukh et al. 2001).

From (33) it is clear that for all autocorrelation times
and all noise levels the asymptotic mean behavior of
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the uncertain system follows (34). Because this is the
same ensemble mean behavior that would be obtained
if the noise were white with variance 2e2/n, the operator
on the rhs of (34) will be referred to as the equivalent
white noise operator. Equation (34) shows that asymp-
totically the effect of the fluctuations on the ensemble
mean field is to modify the mean propagator by a term
proportional to B2, which for imaginary eigenvalues of
B contributes an additional damping to that of the mean
operator, A. This extra damping results from phase av-
eraging over the realizations of the ensemble. In con-
trast, real eigenvalues of B increase the growth over that
produced by the mean operator. This increased asymp-
totic growth results from the convexity of the exponen-
tial function in a manner analyzed in the context of time-
dependent stability by FI99.

While (33) is exact for Gaussian distributed u(t), the
restriction on validity of (33) to Gaussian pdf’s limits
its utility for fluctuations with long autocorrelation
times, tc 5 1/n. We interpret this restriction as follows:
each realization of the propagator (28) (with s 5 0)
contains a factor eeu (t)B in which u(t) [ h(s) ds fort#0

h(t) Gaussian with standard deviation 1. Consider re-
placing the Gaussian distribution h by a restricted dis-
tribution of fluctuations j(t) that is distributed Gaussian
up to fluctuation magnitude J0, with zero probability
of obtaining values | j(t) | . J0. Then for each such
realization the term in the exponent, eu(t), will be at
most eJ0t; and when the averaging is performed the
mean exponent must be smaller than eJ0t so that if
restricted pdf’s are to be modeled as Gaussian distri-
butions it must be required according to (32) that eJ0t
. e2t/n for t k tc, which in turn requires J0 . e/n 5
etc 5 K. The nondimensional number K 5 etc is called
the Kubo number. We conclude that (33) is accurate for
j(t) with restricted pdf only for Kubo numbers that do
not exceed the maximum magnitude of the fluctuation,
here taken to be J0. The Kubo number can be interpreted
heuristically as the range in standard deviations over
which rms fluctuations need to be distributed Gaussian
for (33) to hold. Physical quantities such as wind or
damping fluctuations seldom retain Gaussian statistics
much beyond two standard deviations, so K 5 2 is a
practical upper bound for application of (33) to physical
problems.

For fluctuations with autocorrelation times sufficient-
ly long that the associated Kubo number exceeds that
for which physical fluctuations can be accurately mod-
eled as Gaussian the ensemble mean equation (33) ceas-
es to be valid. For such cases an approximate solution
can be obtained by restricting the fluctuations to two
states: a plus state for which the propagator is A 1 eB
and a minus state for which the propagator is A 2 eB.
If the probability of residence in each state decays ex-
ponentially with time as e , then an exact expression2t/tc

can be obtained for the evolution of the ensemble mean
propagator that is valid even for noncommuting A and
B. In appendix A it is shown that the ensemble means,

^c(t)&6, which denote the ensemble mean on the con-
dition that at time t the fluctuation is in the 6 state,
obey the equations

d^c& n n1 5 (A 1 eB)^c& 1 ^c& 2 ^c& , (36a)1 2 1dt 2 2

d^c& n n2 5 (A 2 eB)^c& 1 ^c& 2 ^c& , (36b)2 1 2dt 2 2

from which the total ensemble mean field ^c(t)& 5
^c(t)&1 1 ^c(t)&2 is obtained. It is clear from (36a) and
(36b) that in the limit of long correlation times, that is,
for n 5 1/tc → 0, the propagator of the ensemble mean
becomes the average propagator of the two states with-
out dependence on the correlation time. This prediction
is in stark disagreement with the Gaussian ensemble
mean propagator (35), which contains the mean fluc-
tuation parameter e2/n that dominates the dynamics even
for arbitrarily small e if fluctuations correlate for a suf-
ficiently long interval (i.e., n → 0). We see that this
behavior occurs because of the generally unphysical un-
bounded fluctuations permitted by a Gaussian pdf.

4. Ensemble mean dynamics for quasi-static
fluctuations

Assume that as the autocorrelation time tc 5 1/n →
` the rms amplitude of the operator fluctuation, e, tends
to a finite nonzero value. In such cases the propagator
can be approximated by its quasi-static limit in which
the time dependence of the operator A 1 ej(t)B is ne-
glected but not its randomness. The ensemble mean
propagator in the quasi-static approximation is conse-
quently the propagator averaged over the fluctuation
realizations

[( 1ej )t]&A B^P(t)& 5 ^e
`

[( 1ej )t]A B5 dj P(j)e , (37)E
2`

where the average is over the probability distribution
of the fluctuations, P(j ). The quasi-static approxi-
mation is formally valid for t K tc. However, its va-
lidity extends for all times if all realizations of A 1
ej (t) B lead to perturbation decay, with decay times
shorter than tc. Note that (37) is also valid whether
or not A and B commute and is not limited to Gaussian
fluctuations.

For fluctuations, h, which are Gaussian with zero
mean and unit variance we replace j by h in (37) to
obtain the mean propagator

`1 2( 1eh )t 2h /2A B^P(t)& 5 e e dh. (38)EÏ2p 2`

Alternatively, in the frequency domain, as the resol-
vent of each realization is
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`

ivt ( t1ej t)A BR(v) 5 e e dtE
0

215 (2ivI 2 A 2 ejB) , (39)

the resolvent corresponding to the quasi-static response
is the mean resolvent over the probability distribution,
P(j ):

`

21R (v) 5 djP(j)(2ivI 2 A 2 ejB) , (40)s E
2`

assuming that all realizations of the operator A 2 ejB
are stable.

5. A barotropic channel example in which the
mean and fluctuation operator commute

Consider meridionally independent zonal flow fluc-
tuations about a constant zero shear zonal channel flow
(cf. Sardeshmukh et al. 2001). Streamfunction pertur-
bations c(t)eikx, where x is the coordinate in the zonal
direction, are governed by the barotropic vorticity equa-
tion

dc
5 2ik[U 1 eh(t)]c 2 rc, (41)0dt

where U0 is the mean flow, r is the damping rate, e
is the amplitude of the wind fluctuations, and the flow
fluctuations h(t) are assumed to be Gaussian with au-
tocorrelation time tc 5 1/n. In this case the mean
operator A 5 2ikU0 2 r and the fluctuation operator
B 5 2ik commute and the ensemble mean equation
(33) is

2d^c& e
2 2n t5 2ikU 2 r 2 k (1 2 e ) ^c&, (42)0[ ]dt n

with associated propagator

2 2n te 1 2 e
2^P(t)& 5 exp 2ikU t 2 rt 2 k t 2 . (43)0 1 2[ ]n n

For times t K tc, (43) predicts Gaussian decay,

2e
2 2^P(t)& 5 exp 2ikU t 2 rt 2 k t , (44)0 01 22

while for t k tc, (43) reduces to the white noise ap-
proximation,

2e
2^P(t)& 5 exp 2ikU t 2 rt 2 k t . (45)01 2n

Although each realization of c decays at the damping
rate r independent of wavenumber, (45) predicts that the
ensemble mean, ^c&, obtained by averaging over all re-
alizations has an additional rate of decay that is as-
ymptotically proportional to the square of the wave-
number, as if the ensemble were subject to a diffusion

with coefficient e2/n. This effective diffusion results
from cancellation among the realizations and is not a
property of any single realization. This effective dif-
fusion is a general feature of vacillating advection be-
cause the fluctuation operator B is of the form u · =,
where u is the fluctuating wind, and consequently the
B2 operator in (34) has the form of an anisotropic dif-
fusion u · =(u · =) (cf. Knobloch 1978).

Consider a mean flow with U0 5 5, r 5 0, and per-
turbations with wavenumber k 5 1/5. The mean of 2000
realizations of (41) with these parameters is shown in
Fig. 6. The solution found using the exact propagator
(43) is indistinguishable from this mean. Remarkably,
even for autocorrelation time tc 5 3 and fluctuation
amplitude e 5 0.3 (K 5 0.9) the asymptotic ensemble
mean propagator (45) accurately captures the decay of
the ensemble mean for all times (top panel). An example
of the evolution of a sure initial condition for a larger
Kubo number (K 5 2) is shown in Fig. 6 (bottom panel);
in this case the equivalent white noise prediction (45)
overestimates the decay.

The Kubo number appropriate for wind fluctuations
in this model is estimated from the expression K 5 ku9tc,
where u9 is the amplitude of the wind fluctuations, and
k the perturbation wavenumber. A 30–m s21 mean flow
speed and a 1000-km perturbation spatial scale result
in an advective timescale of 0.4 days. Flow fluctuations
with 4-day autocorrelation and rms speed 1/10 that of
the mean flow correspond to nondimensional autocor-
relation time tc 5 10 and nondimensional fluctuation
amplitude e 5 1/10, which gives Kubo number K 5 1.
Because we expect an approximate Gaussian pdf for
wind fluctuations up to one standard deviation with K
5 1, the Gaussian approximations is valid.

Consider now the effect of fluctuation of the damping
coefficient. In forecast and climate models damping pa-
rameters are uncertain and it has been argued that sto-
chastic variation of damping parameters may have a
beneficial effect on simulations (Palmer 2001; Sardesh-
mukh et al. 2001). Variation of damping does not change
the oscillation period and phase cancellation does not
lead to decay of the ensemble average in this case. Fluc-
tuations of damping do modify the decay rate of each
realization and with the fluctuation operator B 5 1 the
exact propagator obtained from (32) is

2 2n te 1 2 e
^P(t)& 5 exp 2ikU t 2 rt 1 t 2 , (46)0 1 2[ ]n n

the limit of which for t K tc is

2e
2^P(t)& 5 exp 2ikU t 2 rt 1 t , (47)0 01 22

while for t k tc the limit is

2e
^P(t)& 5 exp 2ikU t 2 rt 1 t . (48)` 01 2n
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Variation of damping results in a mean perturbation ex-
ceeding the perturbation obtained using the mean op-
erator. For sufficiently large fluctuations the ensemble
is destabilized because for some realizations the damp-
ing is negative, giving rise to growth rather than decay.
Negative damping is unrealistic, and the implied insta-
bility of the ensemble mean is unphysical.

6. Ergodic interpretation of the ensemble mean

The ensemble mean can be straightforwardly inter-
preted as the result of averaging over a large number
of realizations as in taking the mean of an ensemble of
forecasts. Alternatively, although the ensemble mean is
not defined for a single realization, it is of theoretical
and practical interest to determine under what circum-

stances the ensemble mean can be interpreted as apply-
ing to a single realization.

We make the ergodic assumption that if the system
reaches a stationary state then its time mean is the same
as its ensemble mean. This assumption has been verified
using Monte Carlo simulations for uncertain systems
excited by both additive deterministic and stochastic
forcing. Note that identifying the ensemble mean with
the time mean requires that the system be forced so that
a nontrivial stationary state is obtained.

Consider the harmonically forced uncertain system

dc
2ivt5 [A 1 eh(t)B]c 1 Fe . (49)

dt

Under the ergodic assumption the time mean of
c(t)e2ivt, , which can be obtained by an averagingivtc(t)e
instrument, is

t

ivt ivt iv (t2s)c(t)e 5 lim ^c(t)e & 5 lim ^P(t, s)&Fe dsE
t→` t→` 0

t 2 2n(t2s)e 1 2 e
iv(t2s)25 lim exp A(t 2 s) 1 B t 2 s 2 Fe dsE 1 2[ ]n nt→` 0

` 2 2n te 1 2 e
ivt25 exp At + B t 2 Fe dtE 1 2[ ]n n0

`2 2 22 2e B e e B
2nt25 exp 2 exp At 1 B t 1 ivIt exp e F dtE2 21 2 1 2 1 2n n n0

` `2 2 2n2e B e e
2nnt2 2n5 exp 2 dt exp At 1 B t 1 ivIt B e FOE2 2n1 2 1 2n n n n!n500

21`2 2n 22e B e e
2n 25 exp 2 B 2 A 2 nn I 1 B 2 ivI F [ R(v)F. (50)O2 2n1 2 1 2[ ]n n n! nn50

where I is the identity. To arrive at the above expression
we used (32) and assumed that the integrals exist, which
requires that the operator A 1 e2/nB2 be asymptotically
stable. The ensemble average resolvent R(v) that maps
the sinusoidal forcing at frequency v to the ensemble
average response at this frequency is then identified as

`2 2n2e B e
2nR(v) 5 exp 2 BO2 2n1 2n n n!n50

21
2e

23 2 A 2 nn I 1 B 2 ivI . (51)1 2[ ]n

In this way the ensemble mean resolvent can be obtained
from a time average over a single realization. In par-
ticular, the response to stationary forcing in a fluctuating

environment is given by the value of the resolvent at v
5 0. The above results require that A and B commute.

Consider the example with commuting A and B in
the fluctuating barotropic flow (41) forced sinusoidally
at frequency v. If station measurements are made and
Fourier analyzed to obtain the frequency response, then
with fluctuations a weakening of the response and a
broadening of the spectrum occurs, in accord with the
theory presented above, with the observed resolvent in
the case of a fluctuating wind being

`2 2 2ne k (ek)
nR(v) 5 exp (21)O2 2n1 2n n n!n50

1
3 , (52a)

2e
22iv 1 ikU 1 r 1 nn 1 k0 n
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FIG. 6. The real part of ^c& obtained from a 2000-member ensemble of simulations of (41). Also plotted is the
curve identical to that predicted from the exact propagator for the commuting case (43). The amplitude | ^c& | according
to (43) and the amplitude according to the equivalent white noise approximation (45) are indicated with the dotted
line: (top) with autocorrelation time tc 5 3 and fluctuation amplitude e 5 0.3 (K 5 0.9); the evolution follows closely
the predictions of the white noise approximation; (bottom) with autocorrelation time tc 5 10 and fluctuation amplitude
e 5 0.2 (K 5 2); the equivalent white noise predictions (dot curve) overestimates the decay rate. The mean operator
is A 5 2i (the damping is r 5 0) and the fluctuation operator is B 5 2i/5.

1
R(v) 5 , (52b)

2e
22iv 1 ikU 1 r 1 k0 n

with (52a) valid for general fluctuations, and (52b) valid
in the short autocorrelation limit. These expressions
should be compared with the resolvent

1
R(v) 5 , (53)

2iv 1 ikU 1 r0

which is obtained in the absence of fluctuations.
The frequency response (52) is shown in Fig. 7 for

fluctuation magnitude e 5 1/3 and two autocorrelation
times, (left panel) tc 5 1/3 (K 5 1/9) and (right panel)
tc 5 6 (K 5 2). For reference the response with no
fluctuations (53), and the quasi-static response (40) are
also shown. For short autocorrelation times the response
is close to the mean response, while for tc 5 6 (K 5 2)
the response is almost identical to the quasi static. The
exact frequency response in (52) has been derived on

the assumption that the fluctuations are Gaussian, and
it is not expected to describe in practice fluctuations
which for large autocorrelation times have large cor-
responding Kubo numbers. As the Kubo number in-
creases with increasing autocorrelation times the valid-
ity of (52) requires that the fluctuations retain their
Gaussianity over a range of standard deviations equal
to the Kubo number, K, something that is not expected
in practice. For such cases the ensemble average fre-
quency response is better approximated by the quasi-
static approximation or by modeling the fluctuations by
a telegraph Markov process as in appendix A.

In multidimensional systems the resolvent matrix
contains information about the system’s response to the
spatial structure of the forcing. If the forcing structure
is F, as in (49), then under the ergodic assumption the
response at frequency, v, as obtained by an averaging
instrument, is R(v)F, where R(v) is the resolvent of
the ensemble mean equation. The resolvent matrix con-
tains full information about the response of the system
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FIG. 7. Magnitude of the resolvent of the ensemble mean field as a function of frequency v, in the barotropic flow
example with fluctuating wind with rms amplitude e 5 1/3. Also shown are the quasi-static response (40) that gives
the response for autocorrelation times that are very large, the response in the absence of fluctuations (53), and the
exact response (52): (left) for autocorrelation time tc 5 1; (right) for autocorrelation time tc 5 6 in which case the
exact response is very close to the quasi-static response. The mean wind is U0 5 5, the wavenumber is k 5 1/5, and
the coefficient of Ekman damping is r 5 0.1. The fluctuation operator is B 5 2i/5.

to any forcing structure and at any frequency but this
may be more information than we need and the maxi-
mum singular value of the resolvent and its associated
right singular vector may be sufficient information. The
right singular vector of R(v) is the optimal forcing struc-
ture leading to the maximum response at frequency v
as recorded by an averaging instrument.

It should be noted that in uncertain systems the fre-
quency response recorded by an averaging instrument
is not the rms frequency response. The rms response,
the square of which is the energy spectrum, is obtained
from the resolvent of the second moment.

7. Ensemble mean dynamics for fluctuation
operators that do not commute with the mean
operator

Consider the case of noncommuting A and B in the
model system

dc
5 Ac 1 eh(t)Bc, (54)

dt

with h(t) a Gaussian process with zero mean and unit
variance that decorrelates exponentially in time at rate n.

The analysis is simplified by defining the interaction
perturbation f(t) by c(t) [ eAtf(t). The interaction per-
turbation obeys the equation

df
2 t tA A5 eh(t)e Be f [ eh(t)H(t)f. (55)

dt

For sure initial perturbation f(0) 5 c(0), the interaction
perturbation at time t is

f(t) 5 G(t)c(0), (56)

where the propagator G(t) is the time-ordered expo-
nential

t

G(t) 5 exp e h(s)H(s) ds , (57)o E[ ]
0
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in which the subscript o denotes time ordering; that is,
in the series expansion of the exponential the terms are
grouped in ascending time order. Because

t

tAc(t) 5 e exp e h(s)H(s) ds c(0), (58)o E[ ]
0

the ensemble mean evolution is obtained by evaluating
t

^G(t)& 5 exp e h(s)H(s) ds . (59)o E7 8[ ]
0

It was proven by Kubo (1962) that for Gaussian h(t)
this averaged propagator is exactly

t s1

2^G(t)& 5 exp e ds H(s ) ds H(s )^h(s )h(s )&o E 1 1 E 2 2 1 2[ ]
0 0

t s1

2 2n (s 2s1 25 exp e ds H(s ) ds H(s )e ) . (60)o E 1 1 E 2 2[ ]
0 0

Consequently, the ensemble average of the interaction
perturbation obeys the equation

td^f&
2 2n (t2s)5 e H(t) dsH(s)e ^f&, (61)E[ ]dt 0

from which we obtain

d^c& d^f&
tA5 A^c& 1 e

dt dt
t

2 t 2n (t2s) 2 tA A5 A^c& 1 e e H(t) dsH(s)e e ^c&, (62)E
0

giving the equation for evolution of the ensemble av-
erage perturbation starting at t 5 0 that is valid for all
Kubo numbers:

td^c&
2 s 2 s 2nsA A5 A 1 e B e Be e ds ^c&. (63)E1 2dt 0

This equation is exact if the noise is Gaussian. If A and
B commute, we recover (33). The asymptotic stability
of (63) is discussed in appendix B.

With sufficiently short autocorrelation times for the op-
erator fluctuations, specifically for autocorrelation times tc

K td, where td 5 \A\21 is the decay time of the most
persistent mode of the mean operator, we obtain from (63)
the ensemble equation valid for general A and B:

2d^c& e
25 A 1 B ^c&. (64)1 2dt n

The ensemble mean equation (64) is also obtained in
the limit of small Kubo number by perturbation tech-
niques for non-Gaussian noise (Bourret 1962; Keller
1962; Papanicolaou and Keller 1971; Brissaud and
Frisch 1974; Van Kampen 1974; see also Frisch 1968;
Van Kampen 1992).

The white noise limit of (64) is obtained if the ratio
e2/n approaches a constant D, as e → ` and n → `. The
rms of the white noise process is then ew 5 (2D)1/2 and
the augmented operator governing evolution of the en-
semble mean is A 1 /2B2, which recovers the Stra-2ew

tonovich correction for white noise–induced drift in the
Fokker–Planck equation (Arnold 1992).

Although computationally convenient, the white
noise limit is not physically realistic, because it implies
unbounded fluctuations. It is remarkable that the equiv-
alent white noise approximation (64), with a different
interpretation of D 5 e2/n, is also valid for non–white
noise processes with sufficiently short autocorrelation
times. In examples even operators with a 2-day auto-
correlation time are described well by (64).

If there is more than one independent structure so that
an instantaneous realization of the total operator is A 1
Si eji(t)Bi, with independent random ji(t) having zero
mean and unit variance, then the augmented determin-
istic operator that governs the evolution of the ensemble
mean in (64) becomes A 1 Si /n .2 2e Bii

Examples of ensemble mean dynamics for fluctuation
operators that do not commute with the mean
operator

We have seen an example in which barotropic wind
fluctuations lead to an effective diffusion of the ensem-
ble mean. Diffusion is not the only result of operator
fluctuation in physical systems, and an especially in-
teresting example of a different effect is provided by
the harmonic oscillator with a fluctuating spring con-
stant. Let the harmonic oscillator’s position x and ve-
locity y be governed by the equation

d x 0 1 0 0 x
5 1 eh(t) , (65)1 2 1 2 1 2 1 2[ ]dt y 21 0 1 0 y

in which the mean operator A and deviation operator B
are easily identified. Note that because B2 5 0, in the
short autocorrelation time limit the mean position
evolves as if there were no fluctuation in the spring
constant [cf. (64)] and the ensemble mean equations are

d ^x& 0 1 ^x&
5 . (66)1 2 1 21 2dt ^y& 21 0 ^y&

This result is remarkable given that it is well known
that the randomly modulated harmonic oscillator has a
positive mean Lyapunov exponent despite the fact that
at each time instant the linearized operator is neutrally
stable (FI96b).

This property of the dynamics of the harmonic os-
cillator may be better appreciated by examining Fig. 8,
where it can be seen that the ensemble average of 500
realizations follows quite accurately the ensemble mean
equation (66). This result is obtained only for short au-
tocorrelation times for the spring constant fluctuations
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FIG. 8. Ensemble mean displacement as a function of time for the harmonic oscillator with
fluctuating spring constant. The initial condition is sure [x(0) 5 1]. The ensemble mean dis-
placement (thick line) oscillates as in the absence of fluctuations in the spring constant while
individual realizations reveal the positive Lyapunov exponent resulting from the fluctuations.
Two realizations are shown in the graph (thin lines). The noise is red with autocorrelation time
tc 5 0.1 and rms amplitude e 5 0.6 giving Kubo number K 5 tce 5 0.06.

compared to the period of the oscillation. For such short
autocorrelation times the position and the fluctuations
are effectively uncorrelated, that is, ^x(t)j(t)& 5 0 as the
modulation of the spring constant directly affects the
acceleration, which only through integration affects the
position of the oscillator. The effect of finite autocor-
relation time is shown in Fig. 9. While for short auto-
correlation times the ensemble mean displacement fol-
lows the ensemble mean equation (66), for finite au-
tocorrelation times the ensemble mean fields decay as
can be seen in the middle and bottom panel. It is clear
that the stability of the ensemble mean fields is indic-
ative neither of the stability of any single realization
nor of the stability of higher moments, all of which are
unstable in this example.

8. Conclusions

Developing methods for analyzing perturbation dy-
namics in uncertain flows is important for advancing
understanding of both observations and forecast. Un-

certainty may arise due to ensembling of actual reali-
zations as in observations of Northern Hemisphere win-
ter planetary waves or from a statistical description of
a quantity as in a friction parameterization in a forecast
model that accounts for variations about the mean dis-
sipation value. In the first example interpreting an ob-
servation requires understanding ensemble statistics; in
the second interpreting the effect of a statistically de-
scribed parameter requires related methods.

The concept of moment stability is central to the anal-
ysis of uncertain systems and we have used the pdf of
growth rates to interpret the relationship among sample
and moment growths. Understanding the range of va-
lidity of analysis methods is also important and in this
work we have identified the Kubo number as a practical
measure for the required extent of Gaussianity in mod-
eling uncertain dynamics.

A central concept in GST for uncertain systems is
identifying the ensemble and time means through the
ergodic assumption. This identification allows appli-
cation of the powerful methods for ensemble analysis
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FIG. 9. Ensemble mean displacement as a function of time for the harmonic oscillator with fluctuating spring constant.
The rms amplitude of the fluctuation is e 5 1/7, and the natural frequency of the oscillator is v 5 1. (top) The ensemble
mean displacement for tc 5 0.1; in this case there is negligible phase averaging and the solution is as predicted by the
short autocorrelation time evolution equation (64), with the ensemble mean oscillating as if there were no fluctuations
while the amplitude of individual realizations of the oscillator exponentially diverge. (middle) Intermediate autocor-
relation time tc 5 1; the effects of correlation between displacement and velocity give a decay of the ensemble mean.
(bottom) Long autocorrelation time tc 5 10 showing a large effect of phase averaging at this tc.

to time means of a single realization. Using this as-
sumption a wide class of stationary statistics of a forced
uncertain system can be obtained including the fre-
quency response of the ensemble mean as recorded by
an averaging instrument.

Optimal excitation plays a central role in GST and
in Part I of this paper optimal forcing structures and
related optimal response structures have been ob-
tained as a function of forcing frequency for the en-
semble mean response as recorded by an averaging
instrument.

Acknowledgments. The authors thank Ludwig Arnold,
Prashant Sardeshmukh, and Cécile Penland for helpful

discussions. This work was supported by NSF ATM-
0123389 and by ONR N00014-99-1-0018.

APPENDIX A

Ensemble Mean Equation for Telegraph
Fluctuations

Consider the model system

dc
5 Ac 1 ej(t)Bc (A1)

dt

in which the uncertain operator is assumed to have the
form A(t, v) 5 A 1 j(t, v)B, with j(t, v) taking only
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the values 61 and that the jump from one value to the
other follows a stationary Markov process known as a
telegraph process (Van Kampen 1992), in which the
conditional probability that j has value j2 at time t 1
Dt given it had the value j1 at time t depends only on
the time interval Dt. It is physically reasonable to as-
sume that this conditional probability, T(j1 | j2; Dt), for
sufficiently small Dt is

T(j | j ; Dt) 5 d 1 w(j , j )Dt,1 2 j ,j 1 21 2
(A2)

and since

T(j | j ; Dt) 5 1, (A3)O 1 2
j 5612

transition probability per unit time w(j1, j2) from one
state to the other is

n
w(1 | 2) 5 w(2 | 1) 5 , (A4)

2

and the probability of state persistence is

n
w(1 | 1) 5 w(2 | 2) 5 2 . (A5)

2

The resulting two state telegraph process has time-
lagged correlation

^j(t 1 r)j(t)& 5 exp(2nt), (A6)

with an autocorrelation time tc 5 1/n.
The ensemble average of the state for a given initial

condition c(0) is determined from the ensemble average
of the propagator P(t) by

^c(t)& 5 ^P(t)& c(0). (A7)

The propagator P(t) for a given realization of j(t) is
( 1ej )dtA BiP(t) 5 lim e , (A8)P

n→` i51,n

where ti 5 idt, and tn 5 t 5 ndt. The average propagator
is the sum of all realizations of the propagator weighted
by the probability p that a specific realization (j1, . . . ,
jn) of j(t) occurs, that is,

n

1ejA Bi^P(t)& 5 lim p(j , t ; . . . ; j , t ) e . (A9)O P1 1 n n
n→` (j ,...,j ) i511 n

However, for a Markov process,

p(j , t , . . . ; j , t )1 1 n n

5 p(j , t )T(j | j ; dt) · · · T(j | j ; dt). (A10)1 1 1 2 n21 n

Denote as the conditional average, ^P(t)&a, the sum of
the terms in (A9) for which jn has the well-defined value
a at time t. Then ^P(t)& 5 ^P(t)&1 1 ^P(t)&2. Because j
is Markov, ^P(t 1 dt)&6 can be expressed in terms of
^P(t)&6 as

( 6e )dtA B^P(t 1 dt)& 5 e [T(1 | 6; dt)^P(t)&6 1

1 T(2 | 6; dt)^P(t)& ], (A11)2

In the limit of very small dt, e(A6e B)dt can be approxi-
mated by I 1 (A 6 eB) dt, and (A2), (A4) and (A5)
used to obtain the differential equation governing the
evolution of the mean propagator. Because the condi-
tional average propagators ^P(t)&6 determine the cor-
responding conditional average of the state ^c&6, we
immediately obtain the evolution equations for the state
averages:

d^c& n n1 5 (A 1 eB)^c& 1 ^c& 2 ^c& , (A12)1 2 1dt 2 2

d^c& v n2 5 (A 2 eB)^c& 1 ^c& 2 ^c& , (A13)2 1 2dt 2 2

from which it follows that the ensemble average of the
state ^c& 5 ^c&1 1 ^c&2 obeys the exact mean equation,

td^c&
2 t 2ntA5 A^c& 1 e B e e B^c(t 2 t)& dt . (A14)Edt 0

This development is valid for noncommuting A and
B. The exact equation for the two state telegraphic pro-
cess, (A14), or variants of it arise also under different
noise assumptions, and (A14) can obtained directly from
(A1) by perturbation techniques in the limit of small
Kubo number, K K 1 (Bourret 1962; Keller 1962; Bris-
saud and Frisch 1974; Van Kampen 1974).

APPENDIX B

Remarks on the Ensemble Mean Evolution
Equation

In the ensemble mean equation (63) the noise induced
correction to the mean operator A is

t

2 s 2 s 2nsA AG(t) 5 e B dse Be e . (B1)E
0

The importance of the noncommutation of A and B in
shaping this correction is revealed by expanding the
integrand in (B1) in a series:

s 2 s 2ns 2nsA Ae Be e 5 e B 1 s(A, B)5
2s

1 [A, (A, B)] 1 · · · , (B2)62!

where (A, B) [ AB 2 BA is the commutator. Using
(B2) the equation for the ensemble mean (63) takes the
exact form

d^c&
25 A 1 e B I B 1 I (A, B)0 151dt

I21 [A, (A, B)] 1 · · · ^c&, (B3)622!

where In 5 sne2ns ds. This equation is especially usefult#0
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if the commutator vanishes at some order so that the
series truncates at that order.

It should be noted that for general A and B, G(t) may
exponentially increase with time. This exponential
growth of G(t) is bounded above by the difference be-
tween the decay rates of the most damped and the least
damped mode of A. Because of the time dependence of
G(t) and the fact that in general it does not commute
with A, the exponential growth of G(t) does not nec-
essarily imply the instability of the mean ^c&. For ex-
ample, consider the system

dc
5 [A 1 eh(t)B]c, (B4)

dt

with h a Gaussian noise process with zero mean, unit
variance and autocorrelation time tc 5 1/n, and

21 0
A 5 , (B5)1 20 210

0 1
B 5 . (B6)1 21 0

In this case G(t) grows asymptotically as e(92n)t, but for
e2/n 5 1.33 and n 5 1 Monte Carlo simulation confirms
the prediction of (63) that ^c(t)& decays as e20.86t. Note
that the white noise limit in this case gives unstable
growth at rate 0.33. Examples such as this in which G
diverges require exponentially small steps for accurate
calculation of the propagator governing the ensemble
mean evolution.
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