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The mean streak spacing of approximately 100 wall units that is observed in wall-bounded 
turbulent shear flow is shown to be consistent with near-wall streamwise vortices 
optimally configured to gain the most energy over an appropriate turbulent eddy turnover 
time. The streak spacing arising from the optimal perturbation increases with distance 
from the wall and is nearly independent of Reynolds number, in agreement with experiment. 

A well-established characteristic of wall-bounded tur- 
bulent shear flow is the presence near the wall of regions of 
high- and low-speed fluid that are elongated in the stream- 
wise direction and alternate in the spanwise direction. 
These streaky structures are observed to play an important 
role in the maintenance of turbulence through the “burst- 
ing” process, which is responsible for most of the turbulent 
kinetic energy production in the boundary layer.‘?’ 

The observed mean spanwise spacing between low- 
speed streaks is consistently found to be AZ,: 100 wall 
units. The superscript + indicates quantities scaled by wall 
variables, according to which distance and time are nondi- 
mensionalized as y ’ =-vu/v and t+ = tuyv, where v is the 
kinematic viscosity and u7= [v(dU/dy) 1 w]ln is the friction 
velocity, the subscript w denoting a value at the wall. The 
distribution of streak spacings is broad, with the coefficient 
of variation &=az/;l+ Z ~~0.30-0.40, where of is the stan- 
dard deviation.3 The mean streak spacing is observed to 
increase with distance from the wa11,3V4 and is essentially 
independent of Reynolds number.3 

It is generally accepted that the streak formation 
mechanism is linear and arises from the redistribution of 
mean momentum by streamwise rolls. This is evident, for 
example, in the comparison by Lee et al.’ of turbulent 
fields resulting from direct numerical simulation (DNS) to 
those developed using the linearized equations of rapid dis- 
tortion theory (RDT) from the same initially isotropic 
turbulent field. It is reasonable, therefore, to ask whether 
the scale selection responsible for the observed streak spac- 
ing also arises from linear theory. An attempt by Waleffe 
and Kim6 to obtain the characteristic scale using the linear 
theories of selective amplification’ and direct resonance* 
was unsuccessful, leading them to propose that the selec- 
tion mechanism must be nonlinear and self-sustaining. In 
&is work, we use optimal perturbation theory to show that 
the lOO+ streak spacing is consistent with linear growth 
limited by turbulent disruption. 

Optimal perturbation theory seeks the linear perturba- 
tions in a given background flow that grow by the largest 
amount in a chosen norm over a specified period of time. 
Mathematical details are presented in full in a recent 
paper.g In brief, an arbitrary three-dimensional disturbance 
that is periodic in the spanwise z and streamwise x direc- 
tions can be represented as a sum of eigenmodes 

U= Cl/i[Uiexp(aj~)lexP[i(crx+~Z)l 

-Vty exp[i(ax+Pz)l, 
(1) 

where the vertical velocity eigenmodes v’ solve the Orr- 
Sommerfeld equation and the vertical vorticity eigenmodes 
G solve the associated Squire equation driven by U. The 
coefficient rj represents the spectral projection on mode j. 
Because the linearized Navier-Stokes operator is non-self- 
adjoint in the energy norm, certain perturbations may ex- 
perience growth even in the absence of unstable eigen- 
modes. Writing the energy density P as a quadratic form 
on the spectral projection 7, 
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the variational problem for the perturbation with maxi- 
mum energy at time r given unit initial energy results in 
the Euler-Lagrange equation 

ETy+ilEoy=O. (3) 

This is a generalized eigenproblem for which a given eigen- 
value it is interpreted as the ratio of energy at time r to the 
initial energy, and the eigenvector y is interpreted as the 
spectral projection defining the corresponding perturba- 
tion. 

Our first model assumes that the turbulent channel 
flow can be adequately represented as a laminar flow with 
mean velocity profile obeying the law of the wall. The pro- 
file used for this investigation is the Reynolds-Tiederman 
profile chosen by Waleffe and Kim,6 defined by 
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dU RY ----=- 
dy l-i-G(y) ’ 

WY)=; F(1-y2)(1+2y2) (4) 

X [ 1-exp( -(1~)R)]~)“2-~, 

where K=0.525, A=37, and with a Reynolds number of 
R = 180 based on friction velocity and channel half-width. 
The profile is symmetrized about y =O. For this mean flow, 
there are no unstable eigenmodes of the linearized Navier- 
Stokes equations. 

The first optimal perturbation we will consider is the 
global optimal for the flow: the initial disturbance that 
gains the maximum possible energy from the mean flow 
before its eventual decay. A search in (c&r) space for the 
maximum energy growth identifies the global optimal as a 
streamwise vortex with C-Z =0 and p=2.1 (A$ -=540, com- 
pared to the observed a,’ z 100)) with energy increasing by 
a factor of 235 at T+ =2340. This disturbance is similar to 
the Poiseuille flow global optimal,g which occupies the en- 
tire width of the flow forming antisymmetric streaks of 
streamwise velocity roughly centered in the half-channel. 

However, the mean flow does not adequately describe 
the environment felt by a large-scale disturbance develop- 
ing in turbulent flow. A linear perturbation may develop 
undisturbed for an unlimited time period in laminar flow, 
but in turbulent flow the development is disrupted by 
small-scale turbulent motions on a time scale much shorter 
than the viscous time scale. The time scale that character- 
izes this disruption is the eddy turnover time, T,=~~/E: the 
ratio of the square of the characteristic turbulent velocity, 

7------ ’ ’ --I- 

FIG. 1. Eddy turnover time versus distance from wall (--) for turbulent 
channel flow, estimated from a plot of the shear rate parameter 
s”=Sqa/ea where l/S is the time scale of mean deformation.’ Also plot- 
ted ( x ) is optimal growth time% versus location of maximum streamwise 
velocity, y: at t=T, for the optimal perturbation over time T. 

- 
q2 = uiui, to the dissipation rate, E=~z+~u~,~‘~ Conse- 
quently, we restrict the optimal disturbance development 
to a tune interval consistent with the eddy turnover time 
near the wall. 

In Fig. 1, r, is plotted as a function of distance from 
the wall. Clearly, this plot shows that 7, near the wall is 
much shorter than the growth time r+ =2340 of the global 
optimal. Consequently, we determine the disturbance of 
maximum energy growth over a tune period r+ = 80, rep- 
resentative of the eddy turnover time near the wall. The 
optimal perturbation over this time period is a streamwise 
vortex (a=O) producing the streaks of Fig. 2, with span- 
wise wavelength I:,= 110 nearly equal to the observed 
spacing and with peak streak velocity at y+ E: 19. 

We now determine the selection rule for this perturba- 
tion. The optimal perturbation energy growth as a function 
of spanwise wavelength for optimization times r f = 40, 80, 
and 120 is plotted in Fig. 3. The energy growth of the 
maximally growing perturbation increases with the optimi- 
zation time, as does its spanwise wavelength. The contours 
of u are similar to those shown in Fig. 2, with maximum 
streak velocities for tf =r+ =40 and 120 located at 
y: = 14 and 23, respectively. 

The optimization time can be determined by compar- 
ing T as a function of peak streak velocity location yz to 
eddy turnover time as a function of y’, as shown in Fig. 1. 
Consider the optimal perturbation for r+ =200. Figure 1 
shows that the location of peak streak velocity for this 
optimal is y,’ =29. But the eddy turnover time at y+ = 29 is 
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FIG. 2. Development in time of the streamwise velocity u for the pertur- 
bation that gains the most energy over the time interval T+ = 80. Stream- 
wise and spanwise wave numbers are a=0 and /3= 10.3, respectively, for 
a spanwise wavelength of kz = 110. 
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FIG. 3. Optimal energy growth versus wavelength for optimization times 
representative of the eddy turnover time near the wall. 

re + =: 80. So turbulent disruption will not allow the pertur- 
bation to reach its full growth. On the other hand, the 
optimal for r+ =40 has peak streak velocity at y,’ = 14, 
where the eddy turnover time is r,’ ~75. This perturbation 
is not highly disrupted over its growth time, although its 
growth is not as great as that of optimal perturbations with 
larger 7. The best choice of r occurs near the intersection of 
these curves for r+ ~80. This choice produces the ob- 
served spanwise spacing dz z 100. 

Concentration of energetic perturbations in the near- 
wall region of high shear is consistent with the previous 
tinding for Blasius flow’ in which the optimal perturbations 
were also found to be streamwise rolls with diameters on 
the order of the shear-layer thickness. 

(h)  Y 

FIG. 4. Optimal perturbation with (C&T+) = (1.885, *9.5, 80) at time 
t+ -80. (a) u in x-y plane, (b) u in x-y plane, (c) u in x-z plane at yf = 15 
for symmetrized optimal obtained from a linear combination of (oL,~,T) 
and (a, -/3,r) optimals with equal amplitudes, and (d) u in x-z plane at 
yf = 15 for asymmetric optimal, with the (a$,~) optimal combined with 
the (a,-8,~) optimal at one-half amplitude. 

Both the location of peak streamwise velocity v,’ and 
the maximum spanwise wave number A,’ increase with r. 
This is consistent with the experimental evidence that 
streak spacing increases with distance from the wall. A 
further calculation of optimal spanwise wave numbers for 
the Reynolds-Tiederman profile with R = 360 confirmed 
the insensitivity of the optimal perturbation to changes in 
Reynolds number. 

Streamwise vortices in turbulent flows are observed to 
extend over streamwise distances of a few hundred wall 
units. The optimal perturbation with 7+ =80 and 
dz = 600, for which ,I$ = 120, reproduces the shear-layer 
structures described in Johansson et al. (their Fig. 5) .I1 
This perturbation, shown in Fig. 4 at t+ ~80, grows by 
about 80% of the energy gained by the unconstrained (in 
X> optimal with ri =80. The contours of u in the x-y 
plane, initially of small amplitude, rapidly develop a shear- 
layer structure consistent with the observations. Peak am- 
plitude is above 80% of that at tf = 80 over the time period 
t+ =40-120, which can be compared to an observed mean 
survival time for such shear-layer structures of about 
tf =50. The structure propagates at a velocity of 1 lu, 
measured at yf = 15, compared to the observed mean ve- 
locity of 10.6u, As shown in Figs. 4(c) and 4(d), contours 
of u in the x-z plane similar to symmetric and asymmetric 
conditional averages in Johansson et al. (their Figs. 6 and 
13) arise from linear combinations of the energetically 
equivalent (a,&+> and (a, --8,~) optimals. 

Finally, we note that spatial constraints could also be 
accommodated by the variational method for fmding opti- 
mals, and that the resulting optimals may also be relevant 
to understanding coherent structures in boundary layer 
flows. 

In conclusion, we have shown that the 1: z 100 tur- 
bulent streak spacing observed in wall-bounded shear flow 
is consistent with optimal perturbations constrained to 
grow maximally over an eddy turnover time. 
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