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ABSTRACT

The authors explore the hypothesis that nonlinear eddy interactions in quasigeostrophic turbulence can
be parameterized as a stochastic excitation plus an augmented dissipation in a statistically stationary equi-
librium. The focus is primarily on models sufficiently simple to be solved analytically. In particular, closed
form solutions are obtained for the linear response to stochastic excitation of horizontally uniform baro-
tropic and two-layer baroclinic flow. The response of the barotropic model is very simple to understand
because the governing equations are mathematically normal. In contrast, the two-layer model is non-normal
in the presence of vertical shear and/or vertically asymmetric dissipation and yields rather complicated
results. The space—time spectra of the streamfunction and the heat fluxes derived from the two layer model
are in qualitative agreement with the corresponding observed quantities at 50°N. The velocity variance
predicted from the parameterization is a weaker function of the temperature gradient than indicated by
observations. For strong thermal forcing, the parameterized fluxes vary inversely with the difference be-
tween a critical temperature gradient and the ambient gradient. This parameterization yields behavior sug-
gestive of baroclinic adjustment but operates by mechanisms fundamentally different from those conven-

tionally associated with instability theory.

1. Introduction

That a flow need not support exponentially unstable
normal modes for either transition to or maintenance
of turbulence is demonstrated by the existence of tur-
bulence in stable fluid flows (see Lee and Held 1991;
Orszag 1971; Davies and White 1928 for examples in
two-layer baroclinic flow, Poiseuille flow, and Couette
flow, respectively). Nevertheless, particular eddy sta-
tistics are frequently consistent with the modal struc-
tures derived from the time mean flow; an explanation
is needed for why normal mode theory sometimes
yields useful results despite clear countercases to its
application. We suggest in this work a theoretical
framework for understanding the role of linear dynam-
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ics in a turbulent, statistically stationary equilibrium by
making use of an analysis based on stochastically ex-
cited systems.

Suppose the nonlinear equations of motion are writ-
ten in the form

O
"a%= Wi(d1, 62, ¢35, -, ) = Wi(e), (1)

where ¢; is the ith component of an N-dimensional
state vector. We decompose the equations into a time-
mean component, denoted by a bar, and a deviation
therefrom, denoted by a prime quantity. We assume
that a statistically stationary state exists. The nonlinear
operator can be expanded

od;
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where W{” denotes the third- and higher-order non-
linear terms in perturbation quantities. This last
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term vanishes for the Navier—Stokes equations and
for the inviscid primitive equations (in Cartesian co-
ordinates) because the advection terms are at most
quadratically nonlinear. The two component equa-
tions for linear external forcing and dissipation be-
come

- 1{ W, —
MEAN 0= W,(¢) + 3 (ai 6¢k> didi (3)
J é
9Bl _ (O o,
EDDY o (34’; )$¢j
1 azwi tpt T AT
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Linear forcing and linear dissipation are assumed for
convenience and are not necessary assumptions. In at-
mospheric systems, the term W;(¢) includes the ra-
diative driving and frictional dissipation acting on the
mean flow as well as the Coriolis and mean-flow non-
linear advection components; the other term in (3) in-
cludes the forcing due to Reynolds stresses and heat
fluxes. The two equations are not independent since
the eddy dynamics governed by (4) must yield eddy
correlations that balance the mean flow governed
by (3).

In this work we are interested in understanding the
turbulent regime, which is statistically steady. One ap-
proach to solving (4), which cannot yet be rigorously
justified, is to introduce a stochastic process to model
the second-order nonlinear terms. Such a stochastic
model by itself does not yield a closed set of equations
since the statistics of the stochastic process depend on
the basic state in an unknown way. Nevertheless, this
dependence can be approximately inferred from obser-
vations in sufficient detail to derive the general char-
acteristics of the statistics of the equilibrated flow. In
this sense, the stochastic approach relates the linear dy-
namics to the climate statistics and therefore offers a
theoretical connection between the linear system and
the turbulent flow.

The idea of parameterizing the nonlinear fluctua-
tions as a stochastic process has been examined in
some detail for the case of homogeneous turbulence
(Kraichnan 1959; Leith 1971; Kraichnan 1976).
These studies focus on understanding the cascade of
energy to different scales but, owing to a lack of am-
bient shear, cannot explain the maintenance of eddy
energy itself. Moreover, these models involve only
normal damping operators and therefore lack the
richer behavior associated with non-normal systems.
These studies do demonstrate, however, that the last
term in (4 ) cannot be replaced by a stochastic process
alone. In general, adding a stochastic process to a
linear system injects energy into the system. In many
systems the last term in (4) acts to redistribute en-
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ergy among waves and cannot alter the net pertur-
bation energy. This problem can be overcome by
adding a dissipative term along with the stochastic
excitation to systematically correct the energy
budget. Such a refinement is not at all unphysical:
nonlinear wave—wave interactions are expected to
inject energy into selected waves and to suppress the
growth of waves. Accordingly, we assume that in
strongly sheared flows a parameterization capturing
the essential properties of the nonlinear wave—wave
interactions takes the form

l (92W,- YTy E y b !

(&)

where €(¢) is a stochastic process, Z(¢) is the operator
embodying the effective linear dissipation, and the
symbol = is used to stress the fact that strict equality
does not apply and that the right-hand side is used for
modeling purposes. Thus, the eddy equation (4) is re-
placed by the parameterized equation

811 (%

o ) +Zij(¢)}¢;+ le(d)}. (6)

od; /5

In general, both the parameterized excitation and diz-
sipation depend on the basic state in a way that car.-
not yet be determined within the theory itself. We
justify the parameterization by demonstrating that its
behavior is fairly successful, in the context of simple
models, in reproducing the behavior of the observed
atmosphere.

It should be noted that even if the basic state is baro-
clinically unstable, the dynamical system (6) is always
stabilized by including the effective dissipation. That
this is so follows from two undisputed facts: transient
eddies are equilibrated in the present climate and the
time-lagged correlations asymptotically decreases with
time lag. In physical terms, requiring the mean state to
be stable in the stochastic model ensures that the tur-
bulent flow reaches a statistically stationary state. If an
unstable dynamical operator is used in the stochastic
model, the correlations of meteorological fields would
increase with time lag and the system would never
achieve steady state.

Farrell and Ioannou (1993a,b, 1994) have recently
applied this parameterization to laboratory and geo-
physical flows and found encouraging results. We ex-
tend their work by focusing on analytically solvable
models so that the dependence on parameters can be
more easily understood. We deal primarily with the
quasigeostrophic barotropic and two-layer baroclinic
model with horizontally uniform basic states. The ex-
citation is chosen to be of the form

5(1?_5, X, t)eH((7)7 X,, t,) = Q(S(X - X’)6(t - t’)’ (7)
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where 6 is the Dirac delta function and superscript
denotes the conjugate transpose. If the excitation has
some specified correlation pattern, the associated re-
sponse is found by convolving the excitation with the
response due to delta correlated excitation. This al-
lows us to include, for example, the organizing and
scale selecting influence of stationary waves by
choosing an appropriate excitation. The assumption
of white noise is not too restrictive because the wave
response is negligible outside a preferred band of fre-
quencies. For lack of justification to do otherwise,
we assume the effective dissipation is simple Ray-
leigh damping.

The effective dissipation can be crudely estimated
from observational data using the following general
property: time-lagged covariances derived from sto-
chastically excited, linear systems decay with a time-
scale comparable to the least damped mode. Using
essentially this fact in a different stochastic param-
eterization, Stone et al. (1982) estimated this decor-
relation time to be around 2 days from NMC data for
three Januarys. The unfiltered, time-lagged correla-
tions of the 300-mb meridional velocity derived from
seven winters of ECMWF analyses compiled by
Chang (1993) also suggests that this decorrelation is
about 2-5 days at 40°N. A similar analysis by Lim
and Wallace using high-pass filtered geopotential
height (retaining periods less than 7 days) revealed
a similar decay timescale for all heights. It should be
noted that decorrelation times estimated from low-
pass-filtered data are inappropriate for use in the sto-
chastic parameterization because the nonlinear fluc-
tuations are expected to have significant high-fre-
quency components. In this work, we simply assume
that the decorrelation time is between 2 and 5 days
throughout the extratropical tropopause. This dissi-
pation time represents the combined effect of all
damping processes acting on the eddies.

From a spectral perspective, the parameterized ex-
citation can be identified with nonlinear wave—wave
interactions. Note that the excitation does not include
the energy conversion from mean to eddy since this
is captured by the linear operator. Observational
analyses by Kung and Tanaka (1983) and Boer and
Shepherd (1983) show that the first 10 zonal wave-
numbers have individual net transfer rates in the
range 0.01-0.1 W m™2. The stochastic excitation
also includes eddy forcing by nongeostrophic pro-
cesses and by external processes such as radiative
and latent heating. Peixoto and Oort (1992) esti-
mated from numerical results and residuals based on
observational data that radiative and latent heating
injects 0.7 W m™? into eddy energy, but nearly all of
this forcing is due to latent heating that occurs on
scales much smaller than the Rossby radius. Geo-
strophic adjustment studies imply that only a small
fraction of this forcing will couple to the large-scale
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quasigeostrophic flow, but the efficiency of this cou-
pling is uncertain. Nevertheless, given that the net
conversion from mean to all eddies is 1-2 W m™2, a
nonlinear exchange rate of 1 W m™2 is not unreason-
able.

In the next section, we briefly review the analysis
of stochastically excited differential equations; the
reader familiar with this standard material may skip
it. In section 3 we analytically solve the particularly
simple case of the barotropic model and find that the
ensemble average variance is proportional to the ratio
of driving to damping (for fixed wavenumber).
Closed form solutions for the two-layer model are
obtained in section 4 and examined in detail. We end
by summarizing our results.

2. An introduction to the analysis of stochasticaily
forced systems

Techniques for solving differential equations con-
taining a randomly fluctuating term can be found in the
texts by Papoulis (1965), Gardiner (1990), and Risken
(1989). We briefly review these techniques in this sec-
tion. Assume that the perturbation equations with the
parameterized nonlinear term can be written approxi-
mately as a finite matrix equation

b _ A + (1),

dt 8

where A is the sum of the linearized dynamical operator
and the effective dissipation operator, as in (6), and
€(t) is a vector of stochastic processes with

«(r) =0
e()e (') = 2mQ8(t — t').

€))
(10)

The superscript H denotes the conjugate transpose,
and Q is the forcing covariance matrix. It is a stan-
dard result that if A in (8) has at least one eigenvalue
with positive real part, the system is unstable and the
response diverges (Noble 1969). Consistency with
observation therefore requires assuming that the
system is stable when the effective dissipation is
included.
With the choice of the transform pair

o= [ pwreran

flw) = f_ f(t)e ™ dr, (11)

the linear equations (8) have the solution

Y(r) = ‘l—f = (il + A) 'e(w)e “dw. (12)
27 J_w
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Our notation is that a function of time is written ex-
plicitly as a function of time and its Fourier transform
is written explicitly as a function of w. Using (9) and
(10), we find that the statistical equilibrium response
can be written as

¥ =0 (13)
C(7) = (7 + DYF(1)
= % _: Cé(w)e ™ dw, (14)
where
Cu(w) = (iwl + A)'Q*(—iwl + A)™'  (15)

and w is evaluated along the real w axis. The subscripts
k and [ refer to the zonal and meridional wavenumbers,
respectively, and the superscripts a and b represent the
matrix element on the ath row, bth column; the super-
scripts will be used only when necessary. The only sin-
gularities of C,;,(w) in the complex plane are the ei-
genfrequencies of A, which satisfy

Det[iwl + A] = 0. (16)
When A is diagonalized by the transformation
A =S\S$7', (17)

where columnns of S are the eigenvectors of A and \ is
the associated diagonal eigenvalue matrix, the integral
(14) can be evaluated using residue calculus:

2(T) = YT + DY, (1)

_—l —1y % *
- _ Sajsjk 3km-:s)\* ),,,,.S,,,, e)\ﬂ_’ (18)
. j a

where repeated indices imply a summation with respect
to that index and 7 > 0 is assumed. This can also be
written as

Cii(7) = exp(AT)Cy (t = 0). (19)

If A has eigenvalues with positive real part, the cor-
relation will increase without bound for large time
lags 7. However, the correlations obtained from
atmospheric observations decrease asymptotically
with the time lag, indicating that the effective dy-
namical operator A must have only negative eigen-
values. This observational fact is the basis for assum-
ing that the effective dissipation operator must sta-
bilize the system.

Note that (18) provides a connection between the
covariance matrix and the eigenmodes of the linear-
ized equation. From this covariance matrix it is pos-
sible to calculate all eddy fluxes appearing in the
mean equations (3). In the following, we examine
this covariance matrix in two simple atmospheric
models.
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3. Response of a barotropic fluid to stochastic
forcing

As a first example, we consider the linear response
to stochastic excitation of a barotropic zonal flow on a
doubly periodic beta plane. The perturbation vorticity
equation is

9 u9\vey 4+ g _
<6t+U6x)V¢/1+ﬁax—- rVy

Ms
M s

+ e () e* - (20)

x~
1]

T

where U is the constant barotropic velocity, 8 is the
meridional gradient of the Coriolis parameter, r is the
frictional damping rate, and only the real part is phys-
ical. If the temporal Fourier transform is taken as in
(11), and the discrete spatial Fourier transform is taken
to be

©

1 = . .
g(x) = Y ge™ gk=fwg(x)e""‘dx (21)

k=—o0 -

h(y)=2iﬂ 2 he® hz=f h(y)e™™dy, (22)

l=—co

then the transform of (20) becomes

Yrei(w) = Reg(w), (23)
where
1
R = - ;
i[(k* + ) (w — wg + ir)]
o KB
wn = KU ~ (24)

The function R is referred to as the resolvent associated
with the wavenumbers k and /. The ensemble average
response is

_ qii
) =Ty e s ey
tals
Cos(T) = —ir‘f—’;cfﬁ)— (cos(weT) — i sin(welT])),
(26)
where
g 6(t) = ek.l(t)e;ck,l(t)- 27)

These results can be interpreted in the following
straightforward manner. The barotropic fluid pos-
sesses a Rossby mode with oscillation frequency wg
and damping rate r. When the fiuid is excited. by
white noise excitation, the spectrum of the response
peaks at wg. The magnitude at the peak is controlled
by the dissipation parameter, r, and in particular a
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resonance for which the response diverges exists for

= 0. The factor (k? + I?) "2 in the response arises
because we have chosen to drive the vorticity equa-
tion rather than the momentum equations with white
noise. The energy injected by the excitation is ulti-
mately dissipated by friction and the eddies receive
energy only from the excitation and give up energy
to the dissipation.

Assuming that the excitation is white in space, the
variance is found by summing (26) at 7 = O for all &,
! and assuming ¢, , = 1:

o« =] o =] 1
‘= 28
kgllzzl Ilpkll §§2r(k2+12)2 ( )
The total energy is therefore
o w (K2 +17)
E=YY > [hel?
k=1 =1
. 2
E‘ §‘ 4r(k2 +1?) (29)

It is not difficult to show that (28) converges while
(29) does not for any finite . Observational evidence
indicates that the magnitude of the net wave—wave
conversion rates decay fairly rapidly above zonal wave-
number 10 (Kung and Tanaka 1983). A suitable ap-
proximation to g, is that of a fixed constant for the 10
gravest wavenumbers and vanishing outside this range.
This assumption leads to both a finite energy input rate
and a finite response.

Farrell and Ioannou (1993a,b, 1994) have pointed
out that a key to understanding systems such as (20)
is to recognize that the eigenmodes of the system do
not exchange energy either with each other or with
the background state. This physical property is ex-
pressed mathematically by the fact that the underly-
ing dynamical operator is normal (i.e., commutes
with its adjoint) when the variables are transformed
into generalized velocities that have the property that
the variance expressed in these variables is propor-
tional to.the energy. The total variance can be eval-
uated immediately from (18) in the case of a normal
dynamical operator and orthogonal forcing functions
with variance q:

v __ 4
Trace(Ck, = Z m

where we have used the fact that 8§ = I for normal
systems.

When a non-normal system is forced, however, the
disturbances have the potential to exchange energy
with the background flow. Stochastic excitation of non-
normal systems can lead to extraction of large amounts
of energy from the mean flow, whereas stochastic ex-
citation of a normal system leads to disturbances that
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do not interact with the mean flow and therefore contain
only as much energy as the disturbances accumulate
from the excitation. The barotropic flow considered
above is normal; a barotropic flow generally becomes
non-normal when horizontal shear exists. In the next
section we consider stochastic excitation of a two-layer
model that becomes non-normal in the presence of ver-
tical shear or asymmetric friction (friction applied un-
equally to the two layers).

4. Response of a two-layer model to stochastic
forcing

We assume a zonal mean flow independent of the
meridional direction and bounded by meridional walls
aty = Oand y = L,. The linearized two-layer equations
with stochastic excitation, Rayleigh friction, and ther-
mal damping are (Holton 1992)

9. ;9 \v av4 _ﬂ
<&+Ua) bHH =+

= —r.,,VZ(,[I - rgV20 + €y (30)

A(VH + 2\Hp)

Ox

<;+U )(V20 2\0)+ H

+ ﬂ % = -rll,Vze - rgvzlll + 2)\2rk0 + €y, (31)
where
l’/ — l/,upper ;— l,/Iower 9= d’upper ; lplowcr (32)
Uupper + Ulower Uupper - Ulower
= H= 33
U 2 > (33)
upper T Tlower upper ~ Tlower
m:”wz” 9=”92” . (34)

where 3 is the meridional gradient of the Coriolis
parameter; r, and r, are the symmetric and antisym-
metric damping rates; r is the thermal damping rate;
1/X is the Rossby radius of deformation such that \?
= fi/locAp?], where f, is the Coriolis parameter;
Ap is the pressure interval of a single layer; and o
= —RT,p 'd Inb,/dp, for a basic-state potential
temperature 6, and temperature Ty, and gas constant
R. Taking the spatial transform of (30) and (31) us-
ing definitions (21) and (22) yields the matrix equa-
tion

O
ot

= _1D¢k ,(i) + fkl(t), (35)

where
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B=(< ¢
“\o K+ 2N (36)
3 ( —UkK? + kB + ir,K? —HkK* + ir,K* 3

—Hk(K? — 2\%) + ir,K?  ~Uk(K?* + 2\ + kB + i(ryK* + 2)\2rR)) (7

W, €y,
¢k,,=< ) € = ( “”") (38)

0, €okl
K=k +0D (39)

Using (11) to transform the matrix equations to fre- 1 ("

quency space results in replacing the time derivative by Cu(m=0) = wmd Su(w)dw. (48)

—iw. The normal modes of the system are the homo-
geneous solutions of (35) for which the associated ei-
genfrequencies satisfy

det(wB + D) =0 (40)
The resulting eigenfrequencies are
w. = Uk - E ~iT = F'2, (41)
where
kB[ K*+ \?
E —
<K2)<K2 + 22 (42)
K>+ \? re\?
= +
4 r"'(KZ + 2)@) K P
Fe N4(ir, — iry + kBIK?)?  H*%*(K? — 2\?)
(K* + 2\%)2 K? + 2\*
22 2 2
rgK . K - )\
K + 20 2""Hk(K2 + 2)8) - (49

As usual, stationarity of the statistics is ensured by the
stability of the modes. The spectral response to sto-
chastic excitation is therefore

ba(W)PFi(w') = Su(w)s(w — w')  (45)
with spectrum
S..(w) = (wB + D)7'Q,,(wB” + D)7, (46)
where the excitation is defined by
—_— g.dfork <10
= = . (47
e(w)e(w) = Qy ( 0 fork> 10 (47)

Note that condition (47) implies that both the baro-
clinic and barotropic components of potential vorticity
are independently excited at identical magnitudes; the
influence of more general excited vertical structures
will be examined later. The -ensemble covariance ma-
trix for the eddies can be recovered by integration

We call the trace of C, (7 = 0) the variance and the
trace of S, ,(w) the variance spectrum; these will be
denoted by C and S, ,(w), respectively.

a. Parameter estimates

Evaluation of the covariance expressions (46) and
(48) requires specifying the following 8 parameters: (3,
L., L, \ ry, 1y, rg, gr;. The § parameter and the pe-
riodic zonal length, L,, are determined by the choice of
latitude. We chose S0°N as our reference latitude be-
cause the heat flux maximizes there. Therefore,

2Q

8= >y cos(¢p) L, =2macos(¢), (49)
where (2 is the earth’s rotation rate, a is the radius of
the earth, and ¢ is the latitude. The width of the latitude
belt should be neither too large, otherwise the 5-plane
approximation will be violated, nor too small, other-
wise the quasigeostrophic approximation will be vio-
lated. Lorenz (1979) has noted additional difficulties
arising from choosing too small a domain in the context
of studying flux parameterizations. We choose the lat-
itudinal width to be 30°, so that

L, ~ 3400 km (50)

and consider only the five largest meridional wavenum-
bers that fit inside this dimension; the corresponding
wavelengths are approximately 3400 km, 1700 km,
1133 km, 850 km, and 680 km. Because orthogonal
waves are excited, the total covariance is simply the
sum of the individual covariances.

The parameter r; is identified with radiative damp-
ing, which is generally believed to have a timescale of
10-20 days (Prinn 1977). We fix this parameter at

1
" = 20 days ° b
The Rossby radius is typically
A =~ 1000 km * (52)

for SO°N.
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The parameter g, ; quantifies the stochastic excitation
in each layer, and we argued in the introduction that it
should be chosen to yield a net injection rate less than
1 W m™2 for each of the first 10 zonal wavenumbers.
As discussed in section 4e, the injection rate is a func-
tion of only g, k, [, \. We choose g, to be a constant
of such magnitude as to inject 5 W m™2 into the com-
bined collection of the first 10 zonal wavenumbers and
the first 5 meridional wavenumbers. This choice leads
to less than 1 W m™2 of excitation for individual zonal
wavenumbers as shown in Fig. 1. The influence of the
vertical structure of excitation will be discussed in sec-
tion 4f. The parameters r,, and r, are identified with the
effective dissipation due to nonlinear scrambling and
should be chosen to give an overall decorrelation time
of 2-5 days. Chang (1993) and Lim and Wallace
(1991) present evidence that the decorrelation time is
independent of the tropospheric level, suggesting that
ry is much larger than r,. The ensemble average co-
variance can be estimated from time averaging a typical
realization over a time interval much larger than the
timescale of the dynamics. As we will see in the next
section, the wave timescale is on the order 2—10 days,
so an averaging time as long as a month or a season is
needed. This averaging interval is also sufficient to
avoid the problems noted by Lorenz (1979). Details of
relating covariances derived from the two-layer model
to observations are described in the appendix.
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Fic. 1. Energy injection rate due to stochastic excitation as a func-
tion of zonal wavenumber for a two-layer model centered S0°N with
channel walls separated by 30° lat. Zonal wavenumbers 1-10 and
meridional wavenumbers 1-5 are excited in potential vorticity with
a combined energy injection rate of 5 W m™2 The Rossby radius is
1000 km. The decay with wavenumber refiects the fact that potential
vorticity has been excited white rather than energy.

b. Variance spectrum

Since the matrices are 2 X 2, (46) can be easily
evaluated:

(w — UDHK* + (K2 + 20%)?) + 4kB(w — Uk)(K2 + \2) + &

Sei(w) = quy

where

8 = 2k*B% + 2riK* + 2riK* + 4ri\* + AN’rer K? + HKH(K* + (K* — 20?)?).

The variance spectrum is shown in Fig. 2 for parameters
chosen to highlight the basic features of the spectrum.
The barotropic velocity, U, occurs in (53) only in the
Doppler shift form w — kU. [Note that w. contains the
term Uk in (41).] Thus, the curve shown in Fig. 2 sim-
ply shifts to the left (right) for negative (positive ) baro-
tropic velocities. It further follows that when the spec-
trum is integrated over all frequencies to obtain the vari-
ance C, the result is independent of U. The variance
spectrum (53) contains the square of the product of the
differences between the driving frequency and eigenfre-
quencies in the denominator, so the frequency of greatest
response can plausibly be anticipated to be near the fre-
quency of the least damped mode. The analytic form
(53) reveals that S, ,(w) decays as 1/w? as w — « and
that S, (w) will generally have two local maxima lo-
cated at the real eigenfrequencies of the two modes.
These features are indicated in Fig. 2. The total inte-
grated spectrum, which gives the covariance matrix G, ,,

(KX (K + M) (w = w)(w — w ) w — wi(w — w*)

(33)

(54)

is dominated by the area under the peaks of Sy ;(w),
which are determined to a large degree in this two-layer
problem by the damping rate of the eigenmodes. The
response to excitation frequencies far away from the ei-
genmode frequencies are so strongly attenuated that they
can be neglected. Thus, the assumption of white noise
does not appear to be a serious constraint.

Contours of the variance spectrum as a function of
zonal wavenumber and frequency are shown in Fig. 3
for 50°N. Fraedrich and Bottger (1978) present a fre-
quency spectrum of geopotential height obtained from
observations at SO0°N, which is qualitatively similar to
that shown in Fig. 3 derived from the two-layer model.

¢. Total variance

The area under S, ,(w) (divided by 27) gives the
total variance of the response to stochastic excitation.
From residue calculus, we find this area to be
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;b kH.t¢k,1 = Gk

4K* (K2 + 2N (T? — Im[VF]?)(T? + Re[VF]?)

The total variance is independent of the barotropic ve-
locity U, as pointed out previously. In addition, note
from (41) that the decay rates of the two eigenmodes
are T + Im[‘\/_l': land T — Im[\/;“ ], the product of which
appears in the denominator of (55). The stability of the
system requires that 7" + Im[\/;'] and T — Im[V F] both
be positive and ensures that (55) is a positive, finite
quantity.

A distinctive feature of the variance is most conven-
iently illustrated using the following nondimensional
parameters
B A2 kg
For simplicity, we assume that the dissipation is iden-
tical in the two layers and that explicit thermal damping
is negligible so that r, = rp = 0. Instability in the in-
viscid case (r* = 0) requires

H* =

(56)

H* > K*<2. (57)
The normalized variance is shown in Fig. 4a as a func-
tion of shear and dissipation for the choice K* = 1.4.
As expected, the variance increases with increasing
shear and decreasing dissipation. Moreover, for weak
dissipation, the shear increases sharply at the critical
shear for instability near H* ~ 1/,. The waves near K*
= y2, it should be noted, tend to have the largest growth
rate for fixed H*, r*. For waves K* > 2, all waves are
stable regardless of the shear, and the variance turns
out to be relatively independent of the shear. Remark-
ably, the variance is also relatively independent of the
shear even for waves K* < 2 if the ambient shear is
““far’’ from the corresponding critical shear, as is il-

W = qk’lkzkz

,37‘3('],,[(2 + rR)\.z) + 17

(35)

lustrated in Fig. 4b for the case K* = .3 in which the
critical shear is near H* = 1.5. These results indicate
the general fact that the variance varies most strongly
near the stability boundary. It is remarkable that the
variance is virtually independent of shear for waves
that have no critical shear or critical shears relatively
far from the ambient shear.

The eddy energy is obtained by simply multiplying
the variance by K? and is shown in Fig. 5 for various
choices of effective dissipation. Also plotted are the
observed seasonally averaged transient velocity vari-
ance based on 8 years of European Centre for Medium-
Range Weather Forecasts (ECMWF) analysis com-
piled by Schubert et al. (1990). The comparison re-
veals that the magnitude of the observed variance can
be modeled by the two-layer model but that the sea-
sonal variations probably require adjusting the effective
dissipation (and implicitly the magnitude of excita-
tion). Nevertheless, the observed variations appear to
be within the range of dissipation rates inferred from
observations. The individual response of the first 9
zonal wavenumbers is shown in Fig. 6 as a function of
temperature gradient. The inverse relation of variance
to total wavenumber is clearly indicated at vanishing
temperature gradient. Although wavenumbers 3 and 4
have critical shears at 28 and 30 K, respectively, and
diverge at those values, the variance varies only weakly
with temperature gradient far from these gradients.

d. Heat flux

Since v8 ~ .0 = k Im[*d], the ensemble average
heat transport can be calculated from the off-diagonal
elements of the covariance matrix, which in turn can
be calculated by residue calculus from (46) and (48).
The result is

The heat flux (58) contains a term inversely propor-
tional to the product of decay rates of the modes, just
as does the expression for variance (55). The pertur-
bation variance is maintained at an elevated level pri-
marily by extracting mean available potential energy
through downgradient heat transport. Because of this

2UKHK? + 222 (T? — Im[VF1*)(T? + Re[VF]?)
u = H(PKA(K? + N2) — r2\2(K2 — N2) + r2K3(K? + \?) — rer, [ K* — 2N2K? — 20°]).

(58)

(59)

relation, contour plots of heat flux are similar to plots
of variance. In the absence of asymmetric friction (7
= 0), the direction of the heat flux inferred from (58)
has the same sign as the shear H, so the heat flux is
downgradient in this case. In the case of vanishing
shear (H = 0), (58) indicates that the heat flux is pro-
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FiG. 2. Frequency spectrum of the variance of the two-layer model
response to white noise excitation of a single wavenumber. The spec-
trum has been nondimensionalized by (8°\* g, ;)" and the frequency
has been nondimensionalized by (\3)™'. The parameters have been
chosen to highlight the double peaks and the w2 decay.

portional to Sry. Typically, r, is negative since friction
acts more strongly on the lower layer than on the upper
layer (see 34), so that for small shears the heat flux is
negative. Nevertheless, the fact that the stochastically
excited two-layer model yields mean upgradient heat
and potential vorticity fluxes for certain parameter val-
ues suggests that mixing-length arguments cannot be
used to understand the stochastically excited system in
all parameter regimes.

The heat flux as a function of temperature gradient
is shown in Fig. 7. Comparison with the observed val-
ues obtained from Schubert et al. (1990) (also shown
in Fig. 7) reveals that both the magnitude and seasonal
variation of heat flux are fairly well captured by this
model with these parameters. The contribution of in-
dividual wavenumbers to the total flux is shown in Fig.
8, which reveals that most of the transient eddy heat
flux is due to wavenumbers 1-5 with a peak at 3. Al-
though the observed transient eddy flux at this latitude
appears to peak at wavenumber 5 (A. Solomon 1993,
personal communication based on ECMWF analyses
for 10 Januarys at 850 mb), the model does predict a
peak flux at small wavenumbers and weak fluxes at
large wavenumbers, in agreement with observations.

The divergence of heat flux and eddy energy at the
critical gradient is a consequence of choosing a con-
stant effective dissipation, which may not be appropri-
ate for all turbulent regimes. For very strong thermal
forcing, the turbulent eddies will become more vigor-
ous (as predicted by the parameterization ) and enhance
the effective dissipation and thereby shift the critical
gradient to higher values. Nevertheless, observations
indicate that this effective dissipation is nearly always
2-5 e-folding days in the present regime and this con-
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stancy has important implications. For one, the effec-
tive critical shear represents a relatively constant upper
bound to the mean shear. This follows from taking ac-
count of wave—mean flow interactions—when thermal
driving acts to increase the temperature gradient, the
consequent increase in downgradient fluxes can pre-
vent the gradient from exceeding the critical value. Fur-
thermore, the steepness of the flux-gradient slope im-
plies that enhanced radiative forcing could be balanced
through modest changes in temperature gradient, in
agreement with observations previously invoked as im-
plying the mechanisms underlying baroclinic adjust-
ment (Stone 1978). Whatever the regime, it would be
inconsistent to apply the parameterization developed
here to basic states associated with unstable dynamical
operators (for instance, the covariances would increase
with time lag, in contradiction to all available obser-
vations).

Note that the model predicts an order of magnitude
increase in heat flux in conjunction with a small in-
crease in eddy energy. The reason the two quantities
do not increase at the same rate has already been al-
luded to above: the waves near K* = v2 are more active
baroclinically than other waves and dominate the heat
transport for a given excitation while the other waves
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FiG. 3. Contours of the variance spectrum for the stochastically
excited two-layer model. The spectrum has been nondimensionalized
by (B°\q,,)”", and the frequency is in cycles per day with positive
values referring to westward propagation. The horizontal temperature
gradient is T7(3SN) — T(65N) = 20 K, the barotropic velocity is U
= 10 m s™', the symmetric Rayleigh damping rate is (5 days)~', and
the antisymmetric damping rate is (30 days)™'.
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F1G. 4. Log,, of the variance of a stochastically excited, horizontally uniform two-layer model as a function
of nondimensional dissipation and shear for the case (a) K* = 1.4 and (b) K* = 0.3.

are primarily barotropic and transport relatively little
heat. Since the baroclinically active waves make up a
small fraction of all waves, their contribution to the
total energy at small shears is also a small fraction of
the total encrgy. In contrast, these baroclinically active
waves account for virtually all of the stochastically in-
duced heat flux. Moreover, the baroclinically inactive
waves tend to grow by injecting energy into eddy avail-
able potential energy while leaving the eddy kinetic
energy unaltered.

Verifying the consistency of our parameterization
using observations is confounded by the fact that the
velocity variance in the Northern Hemisphere is sig-

nificantly affected by stationary forcing by topography.
Evidence suggests that this forcing results in low-fre-
quency fluctuations (Blackmon 1976; Blackmon et al.
1977) so that a comparison with band-pass-filtered heat
fluxes may allow more precise conclusions regarding
the consistency of our parameterization.

e. Energetics

The energy budget equation is obtained by multiply-
ing (30) by ¢, (31) by 6, and integrating over the do-
main, making use of the boundary conditions. At equi-
librium,
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FIG. 5. Vertically averaged velocity variance at 50°N as a function
of the vertically averaged temperature difference between 35° and
65°N for the stochastically excited two-layer model (solid line) and
the observed seasonal-zonal-vertical average (S = JJA,F = SON, W
= DJF, S = MAM; the “‘S”’ corresponding to summer is associated
with the smallest temperature gradient). The e-folding time for ther-
mal damping is 20 days. The symmetric and asymmetric dissipation
are as follows:

dotted r, =.20d"' r,=-.03d"'
shortdash r, =.20d™' r,=—.10d™"
longdash r, =.33d™' r,=-.03d"!
dash—dot

rg=.33d" rp=-.10d"

2N H[ ¢, 0] — [Yey + Oeg] — D = 0, (60)
where
D = r,K*[§? + 07] + 2\7re[67]

+ 2K%r[¢0]. (61)
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FIG. 6. Vertically averaged velocity variance for zonal wavenum-
bers 1-9 at S0°N as a function of the vertically averaged temperature
difference between 35° and 65°N for the stochastically excited two-
layer model. The dissipation is r, = .20 d™', r, = —.03 d™'. The
thermal e-folding damping time is 20 days.
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Fic. 7. Net heat flux across 50°N as a function of the vertically
averaged temperature difference between 35° and 65°N for the sto-
chastically excited two-layer model (solid line) and the observed sea-
sonal-zonal-vertical average (S = JJA, F = SON, W = DJF, §
= MAM; the ¢‘S” corresponding to summer is associated with the
smallest temperature gradient). The thermal e-folding damping time
is 20 days. The symmetric and asymmetric dissipation are as follows:

dotted r,=.20d"" ry=-.03d"'
shortdash r, =.20d"' r,=—.10d"
longdash r, =.33d"' ry=-.034d"'

dash—dot r, =.33d"' r,=-.10d7"

The bracket denotes the domain integral. The first term
in (60) is called the baroclinic conversion term because
it represents the rate at which mean available potential
energy is converted to eddy energy. The second term
represents the energy injected into the eddy field by the
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FiG. 8. Heat flux by zonal wavenumbers 1-9 in the stochastically
excited two-layer model as a function of the vertically averaged tem-
perature difference between 35° and 65°N. The dissipation parameters
are r, = .20d™', r, = —.03 d™'. The thermal e-folding damping time
is 20 days.
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stochastic excitation. The last term, D, represents the
eddy energy dissipated by surface drag and thermal
damping and is always positive. The last term of the
dissipation in (61), though related to the dissipation
term ry, is not always positive as are the other terms.
Nevertheless, by rewriting (61) in top/bottom com-
ponent form rather than baroclinic/barotropic compo-
nent form, it is straightforward to show that this term
together with the first term in (61) always sum to a
positive number. The fact that it can be negative is sim-
ply an artifact of our decomposing the equations into
baroclinic and barotropic forms.

The first two terms in (60) can be calculated directly
from the covariance matrix. It is straightforward to use
(11), (13), and (35) to show that

G K2 + )\2

— i€y + Orie0] = E‘m (62)

The input energy decays as 1/K” for large K?, reflect-
ing our use of an excitation that is white in potential
vorticity. Note that the energy injection rate due to the
stochastic excitation is independent of the background
shear except through this dependence on ¢ ;.

The energy budget (60) is balanced to within roun-
doff error in our calculations, verifying the consistency
of these computations. Since we are concerned here
with the general model behavior, we deal with nondi-
mension variables. The variation of the three energy
terms when one of k*, r*, H* is allowed to change and
the others are held fixed at their standard values is
shown in Fig. 9. We have also set r, = 1/(20 days)
and chosen zonal wavenumber 7 to illustrate an inter-
esting influence of asymmetric friction. At H* = 0, the
dissipation balances the excitation. As H* increases,
the disturbances tend to transport heat upgradient and
thereby inject energy into the mean flow. Conse-
quently, the rate of frictional dissipation decreases.
Note that this implies that the disturbances tend to ac-
celerate a westerly thermal wind for small background
temperature gradients. It is clear from (58) that this
upgradient transport for sufficiently small shears is due
to the combination of the 3 effect and asymmetric dis-
sipation. For larger shears, the heat transport becomes
downgradient and diverges as the critical shear H*
= .41 is approached. For small dissipation rates the
input energy is balanced in equal proportions by dis-
sipation and conversion from eddy energy to the mean
flow. For large dissipation rates the input energy is bal-
anced primarily by dissipation. Note, however, that the
baroclinic conversion from mean to eddy reaches a
maximum for intermediate dissipation rates. This max-
imum disappears when the asymmetric friction param-
eter r, is reduced, suggesting that the maximum is due
to wave destabilization by asymmetric damping, which
is ultimately suppressed by symmetric damping.
Finally, the energy balance as a function of zonal wave-
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FiG. 9. The nondimensional energy balance between the baroclinic
conversion from mean to eddy energy (box), dissipation (dash), and
stochastic excitation (solid) as a function of the vertical shear H*
(top), frictional damping rate 7* (middle), and zonal wavenumber k*
(bottom). Only one variable is allowed to vary while the others are
fixed at H* = .35, r* = .1, K* = 1.4,

number reveals the 1/K? dependence of the input driv-
ing and that this input is primarily balanced by dissi-
pation except near the wavenumbers closest to insta-
bility, namely zonal wavenumbers k* = 1.5, 1.7.

f. Forcing orthogonal functions

The influence of the vertical structure in excitation
is most elegantly discussed by using the concept of
forcing orthogonal functions (FOFs). These functions
provide the orthogonal structures ordered in their con-
tribution to the resulting variance when each is equally
excited. These structures represent the counterparts to
the empirical orthogonal functions (EOFs) that are or-
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FiG. 10. Phase difference between upper- and lower-layer wave
structures of the two normal modes and FOFs of the two-layer model
at 50°N as a function of meridional temperature difference. Negative
phase differences correspond to disturbances with westward tilts with
height. Only the wave with zonal wavenumber 3 and meridional
wavenumber 1 is considered since the variance peaks at this wave-
number. The Rossby radius is 1000 km, and the dissipation param-
etersare r, = 20d™", r, = —.03d7".

thogonal structures ordered in their ‘‘explanation’’ of
the observed variance. The appropriate equation for de-
termining the FOFs can be formulated as

dy

—B= = —iDy + ee(2),

dt (63)

‘where () is a scalar stochastic process and the vector
e has been incorporated to specify the amplitude and
relative phase of the vertical structure of the stochastic
excitation. Choosing the norm to be simply the variance
of the streamfunction, the response can be shown to be

PH(DOP() = eKe, (64)

where
= %J‘ (wB” + DY "(wB + D) 'dw. (65)
7r -—00

The Rayleigh quotient theorem implies that the greatest
variance would be achieved when e is the eigenvector
of K corresponding to the largest eigenvalue. The ei-
genvectors of the hermitian matrix K are orthogonal
and allow ordering the forcing distributions according
to their contribution to the variance. These vectors con-
stitute the FOF’s.

For the two-layer model, the FOF contains only two
unique wave properties of the excitation: the ratio of
the amplitudes, r, and relative phase, A¢, between the
two layers defined by

ﬂ Im(al/az)

Re(a,/a,)

ry =

Ad = tan“(

) » (66)

a,
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Fic. 11. Amplitude ratio between upper- and lower-layer wave
structures of the two normal modes and FOFs of the two-layer model
at 50°N as a function of meridional temperature difference. Only the
wave with zonal wavenumber 3 and meridional wavenumber 1 is
considered since the variance peaks at this wavenumber. The Rossby
radius is 1000 km, and the dissipation parameters are r, = .20 d',
Iy = -.03 d—l.

where negative phase corresponds to westward tilts
with height and the amplitude factor for each layer is

a=e +e a=e —e,. (67)
For large temperature gradients, the phase difference
for the two FOF’s are identical (Fig. 10) and the first

FOF has a slightly larger amplitude in the lower layer
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F1G. 12. Streamfunction variance arising from stochastic excitation
of potential vorticity with the two FOFs and the two normal modes.
The variance has been normalized by the variance obtained by ex-
citing the baroclinic component at vanishing shear. The first FOF
yields the largest variance by construction. Only the wave with zonal
wavenumber 3 and meridional wavenumber 1 is considered since the
variance peaks at this wavenumber. The Rossby radius is 1000 km,
and the dissipation parameters are r, = .20d™', r, = —.03d™".
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while the second FOF has a slightly larger amplitude
in the upper layer (Fig. 11). On the other hand, the first
FOF can lead to responses an order of magnitude larger
than the second (Fig. 12). These results can be used to
infer the change in response due to introducing forcing
functions that are correlated in the vertical. In partic-
ular, the response will be larger for those functions that
project more strongly on the first FOF than on the
second.

Consider the case in which the excitation of the baro-
tropic and baroclinic components are statistically in-
dependent. The most general forcing function for this

case is
of €10e”
e = fe ,
€

where €, and ¢, are real, scalar, independent, unit sto-
chastic excitations and o and § are real. Notice that
from (46), (48), the zonal average, statistically steady
response depends only on

X
Q=e7’=ﬁ2(6:) (1))

(68)

(69)

This result implies that the response is independent of
the phase difference between the components. Of
course, this follows from the fact that the two are ex-
cited independently. The velocity variance as a func-
tion of o with 8 adjusted so as-to maintain the same
net energy injection rate is shown in Fig. 13. The figure
illustrates a general fact that we found for a wide range
of parameters: forcing the baroclinic component alone
typically yields a factor of 2 more variance than forcing
the barotropic component alone.

g. Comments on applying stochastic models as a flux
Dparameterization

As with other heat flux parameterizations, our result
reveals a strong dependence on the mean meridional
temperature gradient. Nevertheless, there are distinc-
tive differences. In particular, a parameterization based
on Fickian diffusion yields a heat flux proportional to
the temperature gradient, whereas ours is inversely pro-
portional to a difference in gradients. This leads to a
substantially faster rate of increase in flux with shear
than does diffusion. The parameterization based on
baroclinic instability and mixing-length theories, as de-
veloped by Green (1970) and Held (1974), suggests
that for large temperature gradients the heat flux is pro-
portional to the square of the temperature gradient,
whereas for small gradients the flux is proportional to
the fifth power of the temperature gradient. Both the
diffusive parameterization and the parameterizations
based on instability theory predict downgradient fluxes
for nonzero shears. In contrast, our parameterization
suggests a zero flux for positive temperature gradients.
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FiG. 13. Velocity variance of zonal wavenumbers 1-10 arising
from a stochastically excited two-layer model as a function of the
forcing partitioning parameter «; o = 0 corresponds to exciting only
the baroclinic component, @ = ® corresponds to exciting only the
barotropic component. The model is centered at 50°N with a width
of 30° lat and meridional wavenumbers 1-5 are excited. The Rossby
radius is 100(]) km, and the dissipation parameters are r, = .20 d™',
Iy = '—.03 d_ .

As discussed before, this nonzero intercept is due
to asymmetric friction in the stochastically excited
system.

Consider employing (58) as a parameterization of
the atmospheric heat flux as is used in 1D energy bal-
ance model (Sellers 1969; Budyko 1969). Extensive
study (North 1975; Held and Suarez 1978) indicates
that such models obtain equilibrium solutions that are
insensitive to the details of the heat flux parameteriza-
tion. If we consider only the waves K* = \/-?: , which
tend to dominate the transport, it is straightforward to
show from (58) that

_ q.H
AN*(H? — H*)’

r ’

v'T (70)

where H. is the critical shear for instability at the given
parameters. Assuming that the radiative forcing in mid-
latitudes is such as to attempt to drive the vertical shear
beyond H., (70) shows that for small amplitudes of
excitation g, the heat flux will rise rapidly as H. is
approached and the equilibrated shear will be close to
H,. Indeed, the critical gradient for two-layer instability
has been shown to closely approximate the seasonal
average temperature gradient (Stone 1978). Thus, for
weak stochastic excitation, our parameterization would
be expected to yield an equilibrium temperature gra-
dient similar to that resulting from baroclinic adjust-
ment. On the other hand, Held (1978) and Stone
(1978) have argued from instability theory that the crit-
ical gradient represents a transition from conditions in
which deep, efficient waves transport heat to those in
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which shallow, inefficient waves transport heat. As
Stone (1978) remarks, it is implicit in this explanation
that a very rapid transition exists. Our analysis provides
an explanation for the existence of a sharp transition,
which is otherwise a postulate in linear stability the-
ory—it is due to the inverse flux-shear relation (70)
for the equilibrated system and the fact that the effec-
tive critical shear of the equilibriated continuous at-
mosphere happens to be near the critical shear for the
two-layer model. '

5. Summary and discussion

The response of a linear system associated with hor-
izontally uniform barotropic and two-layer baroclinic
models to stochastic excitation was examined in this
work. The results have been brought to bear on the
hypothesis that the role of nonlinear wave—wave in-
teractions in quasigeostrophic turbulence can be para-
meterized by stochastic excitation and augmented dis-
sipation. The response of the barotropic model to white
noise excitation is very simple to understand: the spec-
trum of the variance peaks near the Rossby mode fre-
quency and the peak is inversely proportional to the
square of the damping rate. The integrated response
variance is proportional to the variance of the excitation
term and inversely proportional to the damping rate.
These results are not fundamentally different from
those expected from forcing a damped oscillator. In
particular, excited disturbances of a uniform barotropic
fluid do not lead to extraction of energy from the back-
ground flow, the disturbances receive energy only from
the excitation and lose energy only through frictional
dissipation. Farrell and Ioannou (1993a,b, 1994) have
pointed out that this behavior follows from the nor-
mality of the dynamical operator when the governing
equations are written in generalized velocity form.

The situation changes considerably in the case of the
two-layer model in which the dynamical operator is
non-normal when vertical shear exists (H # 0) and/or
asymmetric friction is present (r, # 0). In this work,
closed form expressions for the statistical equilibrium
variance and heat flux were obtained [(55) and (58),
respectively]. Although the expressions contain a term
inversely proportional to the product of the damping
rates, the parametric dependence of the response cannot
be fully understood without including the remaining
terms arising from the non-normality of the underlying
system (Farrell and Ioannou 1993b, 1994). For large
temperature gradients, the heat flux behaves as

QAT
AT. — AT’
where AT. is the critical gradient for instability based
on the effective dissipation due to nonlinear scram-

bling. For small positive gradients the flux is propor-
tional to B(7upper — Tower), Which suggests that the flux

v'T' o
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can be upgradient when the dissipation is concentrated
in the lower layer. Interestingly, a flux is induced by
stochastic excitation even in the absence of a temper-
ature gradient; the analytic solution reveals that this
induced flux requires both a f effect and a vertically
asymmetric dissipation.

For reasonable parameter choices, comparisons with
observations suggest that (58) provides an accurate pa-
rameterization of the observed heat flux when the ex-
citation is chosen to inject 5 W m™ into the flow. This
corresponds to forcing zonal wavenumbers between 5
and 7 individually at about 0.5 W m~?, which is of the
same magnitude of net eddy interaction of those re-
ported by Kung (1988) and Boer and Shepherd (1983)
based on observations. For this choice of driving, (55)
yields the correct magnitude of the velocity variance
but fails to capture the variation of variance with shear.
The range of wavenumbers that determine the net heat
flux is much smaller than the range of wavenumbers
that determine the eddy energy. This point is illustrated
in Fig. 14, which shows the baroclinic conversion term
Hv'T’, normalized by the energy injection rate due to
stochastic excitation, as a function of wavenumber for
three values of background shear. Only when the nor-
malized conversion exceeds unity do the eddies extract
more energy from the background shear than they ac-
cumnulate from the stochastic excitation. This level of
conversion occurs only for relatively large shears and
only for wavenumbers 2~4.

A significant fraction of the changes in intra-annual
Northern Hemispheric velocity variance is known to be
associated with seasonal changes in stationary wave ex-
citation. These changes are presumably associated with
enhanced low-frequency forcing, which cannot be ac-
curately modeled as white noise excitation; our para-

BO—@QAT=7.8K

B—HAT=15.6K

A—fAT=233K
1

4
3
1

Normalized Baroclinic Conversion
-
(=]

E
]

1 10 100
Zonal Wavenumber

FiG. 14. Baroclinic conversion produced by stochastically excited
waves as a function of zonal wavenumber for shears AT = 7.8 K
(circle), AT = 15.6 K (square), and AT = 23.3 K (triangle). The
conversion is normalized by the injection rate due to stochastic ex-
citation. The Rossby radius is 1000 km, and the dissipation param-
etersare r, = .20d™, r, = —.03d7".
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meterized eddy kinetic energy may be found to be
consistent with observations when the large fluctua-
tions associated with stationary waves are properly fil-
tered out.

The present work constitutes a first step in presenting
a new physical theory-—we have used simple models
to gain physical insight into the statistical equilibrium
of turbulent fluids. It is a remarkable result that the
simplest baroclinic model imaginable can simulate the
magnitude and basic behavior of the real atmosphere
with approximate estimates of the parameters. A nat-
ural consistency question posed by this success is
whether the eddy fluxes resulting from stochastic ex-
citation lead to a realistic balance with the mean ther-
mal forcing and therefore to a self-consistent general
circulation. This question will be examined in subse-
quent work.
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APPENDIX
Correspondence between Model and Observations

In introductory texts such as Holton (1992), it is
shown that 1) the streamfunction ¢ of the two-layer
model is related to geopotential height ® by

d
=_, (A1)
fo
where f; is the Coriolis parameter; 2) the difference in
geopotential height is related to the vertical average
temperature by the hypsometric equation

2
& - &, =R f Td Inp, (A2)

P
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where R is the gas constant for dry air; and 3) the mass
of the vertical column of atmosphere is

AMass AP
Area g

(A3)

It is straightforward to use (A1) and (A2) to show that
0, as given by (31) for the two-layer model, is approx-
imately related to the log pressure—averaged tempera-
ture by

- 2 fo
T~—80. A4
R (A4)
The two-layer heat flux
a¢l * 1 3(/1 * 1 alljlower iy
Ny = 2 DLupper - Hlower
Ox 2 ox 2 Ox b (A3)

is therefore proportional to the vertically averaged me-
ridional heat flux in the atmosphere. In turn, the zonal
average two-layer heat flux is related to the spectral
coefficients by

oy k

40 =Y —Im¥o.,),
O - %;,2 (Ye1bi1)
where the perturbations are assumed to be harmonic in
x and y. Putting this together, we obtain the total heat
flux across a latitude,

21 —— % dP
L,f c,(v'T") ?

3

(A6)

— 2Lxﬁ)cp(Pl - PZ)
Rg

2o (AT)

ki

and the mean kinetic energy

%fff ((v")? + (u")*)dxdydp

[1f

K+

-x3(5

)(|¢k_,|2+ 16,15, (A8)

where each layer velocity variance is weighted by half
the mass of the atmosphere.

Since the 200-mb level approximates the tropopause
level in mid and high latitude, we identify the pressure
depth P, — P, with 1000 — 200 = 800 mb.

It follows from (A4) that the thermal wind relation
for the two-layer model is

Uupper _ Ulower

H_______iaf'"
2 2fy 9y

This relation is used to replace H by the corresponding
temperature gradients. The temperature gradient can be

(A9)
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simply represented by the temperature difference be-
tween two latitude belts.
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