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Transient amplification of a particular set of favorably configured forcing functions in the 
stochastically driven Navier-Stokes equations linearized about a mean shear flow is shown to 
produce high levels of variance concentrated in a distinct set of response functions. The 
dominant forcing functions are found as solutions of a Lyapunov equation and the response 
functions are found as the distinct solutions of a related Lyapunov equation. Neither the forcing 
nor the response functions can be identified with the normal modes of the linearized dynamical 
operator. High variance levels are sustained in these systems under stochastic forcing, largely by 
transfer of energy from the mean flow to the perturbation field, despite the exponential stability 
of all normal modes of the system. From the perspective of modal analysis the explanation for 
this amplification of variance can be traced to the non-normality of the linearized dynamical 
operator. The great amplification of perturbation variance found for Couette and Poiseuille flow 
implies a mechanism for producing and sustaining high levels of variance in shear flows from 
relatively small intrinsic or extrinsic forcing disturbances. 

I. INTRODUCTlON 

Transition to turbulence typically occurs in channel 
flow experiments at R = O( lOOO), where R is the flow Rey- 
nolds number based on the mean centerline velocity and 
the half-width of the channel. Careful control of the inten- 
sity of disturbances results in persistence of laminar flow to 
much higher Reynolds numbers, which for pipe Poiseuille 
flo~‘~’ can reach as high as Rz50 000. The dynamics of 
such small perturbations as are associated with high R 
transition can, at least initially, be described with accuracy 

t by the Navier-Stokes equations linearized about the back- 
ground flow. Assuming that disturbances of whatever ori- 
gin can be modeled as noise, it is of interest to address, 
making use of linearized perturbation theory, the level of 
variance sustained in the mean by stochastic forcing. 
Moreover, it is well known3 that even in fully turbulent 
flows the linear growth mechanism is solely responsible for 
the transfer of energy from the mean flow to perturbations, 
so that a complete characterization of this linear mecha- 
nism is a necessary step toward understanding turbulent 
flows. 

The familiar problem of the damped harmonic oscilla- 
tor excited by random and uncorrelated impulses exempli- 
fies the physical processes operating in the most familiar 
dynamical systems. It can be shown that the ensemble av- 
erage variance of the displacement, x, of the oscillator is 
given by 

(IxI’)=gp 
where 1 is the variance of the random forcing, w is the 
natural frequency of the oscillator, and y is the damping 
coefficient.4 When o=O there is no restoring force, and we 
obtain Brownian motion, which is not stationary. When 

y=O there is no damping, and random driving again leads 
to nonstationary statistics, while for nonvanishing restor- 
ing force and nonvanishing damping the variance reaches a 
tinite statistically stationary level, such that the input of 
energy from the driving balances the dissipation, and the 
variance level is inversely proportional to the damping co- 
efficient. This behavior is characteristic of all dynamical 
systems with normal dynamical operators. The total vari- 
ance in such systems is the sum of the variance of each of 
the normal modes taken separately, the same as if each 
mode were independently excited by stochastic forcing. 

Consider now a fluid with a background flow field hav- 
ing nonvanishing rate of strain, but with sufficient dissipa- 
tion so that all small perturbations impressed on the tlow 
eventually decay. Linearization of this dynamical system 
about its background flow results in a non-normal dynam- 
ical operator and an associated set of modes that are not 
mutually orthogonal, either in the inner product associated 
with the L, or the energy norm. This lack of orthogonality 
corresponds to the potential for extraction of energy by the 
perturbations from the background flow, irrespectively of 
the existence of exponential instabilities, a result well 
known since the seminal work of Orr.5 The energy balance 
in such a system is between the stochastic forcing, together 
with the induced extraction of energy from the background 
flow, on the one hand, and the dissipation on the other. 
Without stochastic forcing the perturbation tleld would 
vanish. With stochastic forcing an enhanced level of vari- 
ance can be maintained by the stochastically induced trans- 
fer of background flow energy to the perturbation field, and 
this level of variance may exceed that arising simply by 
accumulation of energy from the forcing. In this respect 
stochastically forced non-normal dynamical systems differ 
fundamentally from the classical problem of stochastically 
forced coupled harmonic oscillators. 
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These considerations led Farrell and Ioannou6 to in- 
vestigate the variance maintained by stochastic forcing in 
two-dimensional (2-D) unbounded constant shear and de- 
formation flows. It was found that the variance in pure 
deformation flows increases without bound under stochas- 
tic excitation for any value of the viscosity. In contrast, in 
shear flow the variance was found to be limited to an in- 
crease of a factor of 3 over that arising from the same 
forcing of the unsheared fluid, which is governed by a nor- 
mal dynamical operator. 

Interest in studying stochastic forcing of 3-D pertur- 
bations in channel flows was motivated by the calculations 
of Butler and Farrell,7 Farrell and Ioannov,s Gustavsson,’ 
and Reddy and Henningson, lo in which it was found that 
the maximal growth of 3-D perturbations in channel flows 
far exceeds the growth of their 2-D counterparts, and is 
simultaneously more persistent. This great amplification 
found for a subset of 3-D perturbations in shear flow 
strongly suggests, but does not prove that stochastic forc- 
ing of 3-D perturbations in shear flow induces much higher 
variance levels than were found in the above study of sto- 
chastically forced 2-D perturbations in unbounded con- 
stant shear flow. In this work it is demonstrated that the 
potential for greatly enhanced variance in shear flows sub- 
jected to 3-D stochastic forcing is realized and crucially 
depends on the non-normality of the underlying dynamical 
operator. While unbounded constant shear flow has the 
convenient property, exploited in the aforementioned 
works, of a closed form solution, this is not true for 
bounded flows, so in this work a general method is pre- 
sented that is valid, in principle, for calculating the re- 
sponse of any bounded flow to stochastic forcing. 

II. STOCHASTIC FORCING OF LINEAR NON-NORMAL 
DYNAMICAL SYSTEMS 

Consider the linear autonomous dynamical system: 

f Xi=dijXj+Fijcj e (2) 

The linear dynamical operator, zJ, which controls the de- 
terministic evolution of the system is, in general, non- 
normal [i.e., .o@.~&#&&+, where (t) denotes the Her- 
mitian transpose]. The stochastic nature of the dynamical 
system stems from the random nature of the forcing, 5. 
This forcing is assumed to be a S-correlated Gaussian 
white-noise process with zero mean: 

(~ji(t)~~‘f*(t’))=~Sjjs(t-t’), 
(3) 

where ( > denotes ensemble averaging, and the asterisk 
denotes complex conjugation. This random forcing speci- 
fication excites independently each forcing function, spec- 
ified by the columns f(j) of the matrix Fij. Unless other- 
wise indicated all ii will be taken of equal magnitude i, 
which due to the linearity of the dynamical equation can be 
set equal to unity without any loss of generality. We want 
to determine the evolution of the variance sustained by 
(2), in which generalized velocities have been chosen in a 

manner to be described in the sequel, such that the ensem- 
ble average energy density is given by (Et) 
= (XT (t)Xi( t) ). When the dynamical system approaches a 
statistically steady state, the ensemble average energy den- 
sity of this statistically steady state is given by (E”) 
=lim,,,(X:(t)Xi(t))* 

The solution of (2) for t)O, with initial condition x0 is 
given by 

J 

t 
x(t) =edfxo+ 9 (t-s).Fg- ds, 

0 
(4) 

where 9 (t - s) = ed4(t--s) is the Green’s function. .The 
random response, x, is linearly dependent on 5 and conse- 
quently is also Gaussian distributed. The statistics of the 
response of the dynamical system are consequently fully 
characterized by the first two moments. 

The first moment, the average value of the generalized 
velocities, is given by (x) = e”‘xo and vanishes for large 
times if all the eigenvalues of ~4 have negative real part, 
i.e., if .a? is asymptotically stable, leading to statistics that 
are independent of the initial conditions. In the sequel, we 
will consider only the inhomogeneous solution of (4), an- 
ticipating that at large times the asymptotic stability of JZ! 
will render the statistics independent of the initial condi- 
tions. 

The second moment, the ensemble average energy den- 
sity, can be obtained making use of the assumed statistics 
of the forcing (3) as 

(E’)=(x~(t)xi(t)) t 
zcz 

J J 
ds ’ ds’ ~~(t-s>~~~(~$(s)f;d(s’)) 0 0 X iYjc(t-S’)F& 

-t =4 ba (I ’ .9~&s)9&-s)ds 
0 

= 3 fy’gJ:b). (5) 

We have defined +LJ] t= J ’ Y+(t-s)3((t-.s)ds= J t e.dt(t-S)e&d(t-S) &, 0 0 
(6) 

and fLb’ =FOb. Recall that f Lb’ represents the ath coor- 
dinate of the bth forcing function. 

Setting ~=t---S in (6), we have 59’ = S~e~tTe~rd~, 
and differentiating with respect to time, we obtain 

When LZ! is asymptotically stable, we have from (7) that 

!+il -g at=o. (8) 

The vanishing of (d/dt) 99’ as t-r CO and the integrability 
of (7) ensure the existence of lim,, m :@ ‘= .@ *, and imply 
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that the dynamical system reaches a statistically steady 
state. To obtain the evolution equation for .SYt, we differ- 
entiate (6) with respect to t to obtain” 

with I the identity matrix. The evolution equation is solved 
with the initial condition S?‘=O, as can be seen immedi- 
ately from (6). Taking the f-r CO limit of (9), we obtain 
that SJ m satisfies the equation 

d+.cP+Lw%d=--I, (10) 

which was first derived by Lyapunov in another context. 
This Lyapunov equation can be solved by standard 
methods.” Determination of SP m gives, using (9), a com- 
pact form for the time development of S?“: 

cpt=gp~e”+t~~“e”t (11) 

Note that when J&’ is not asymptotically stable g 1o di- 
verges, according to the linear dynamics, but that the time 
development of variance can still be obtained by the direct 
numerical integration of (9). 

The statistically steady-state variance maintained by 
stochastic forcing follows from (5): 

(E”) =Trace(FtSmF) =Trace(F.YtS? “). (12) 

With a unitary set of forcing functions such that FFt= I, 
the expression for the energy density simplifies to 
(E” ) =Trace( 9 co ) and the variance is independent of the 
specific forcing distribution, i.e., any full rank unitary forc- 
ing distribution will lead to the same variance. 

It is also useful to determine the ensemble average cor- 
relation matrix of the response %’ ; = (xi(t)xT ( t) ) . Follow- 
ing the same steps as in (5) the correlation matrix can be 
reduced to %t=(Xi(t)Xy(t)) t = (s s ds 0 ; ds’ 9 &-s)F&(s) 

x qp-s’)Fgg;(S’) 

s t = ds ~~6(t-s)~b~~~~~(~-~), (13) 0 
or in matrix form, 

$gf= t 
J- 

i?((t-s)Xs+(t--s)ds, ( 14) 0 
with R’=Ffl. The correlation matrix depends on the 
dynamical operator JZ!, and the forcing distribution 7, 
unlike 3 ‘, which depends only on the dynamical operator. 

We can proceed as previously to determine the evolu- 
tion equation of ‘gt. From (14), %“=O and 
%+ m %“= %’ m exists when SZ! is asymptotically stable. 
Time differentiation of ( 14) gives the equation governing 
the temporal evolution of U’, 

(15) 

with solution 

‘gf=~“-e~fy:“e~+t I 7 (16) 
where the asymptotic stationary correlation matrix, % m, is 
determined from the solution of the Lyapunov equation: 

d5?“+%r”.d+==-z%?. (17) 

The variance maintained by the stochastic forcing is 
then (E” ) =Trace( V ” ) . As expected, this value of vari- 
ance can be shown to be the same as that derived earlier in 
(12). 

Consider now the case of full rank unitary forcing for 
which X=1. When J&’ is normal Lyapunov equations 
( 10) and (17) give identical solutions, as can be seen from 
(6) and ( 14), but this is not the case when & is non- 
normal. The significance of this distinction will be dis- 
cussed below. 

Finally, it is of interest to determine the energy input 
by the stochastic forcing. This follows from the energy 
equation in which the energy input appears as 

Ai, = (Xi*eFfjcj) + (XfF${~). (18) 

If F has rank Nf and is assumed unitary in the space 
spanned by its range, then Trace(@.YJ = Nf , and, using 
(3) and (4), we can reduce (18) to 

&i-i,=i Trace(@r) =gNf, (19) 
in which & is interpreted as the energy input per forcing 
function (column of F). 

111. THE KARHUNEN-LOWE DECOMPOSITION FOR 
NON-NORMAL DYNAMICAL SYSTEMS 

In the previous section we showed that the ensemble 
average energy density for a full rank unitary forcing dis- 
tribution (for which Z=F.Ft=l) can be derived, either 
from at = J&P’t(t-s)c~8(t-s) ds, or from the correlation 
matrix %” = ~&~(t-s)e~‘(t-s) ds. Both 3’ and %‘I are, by 
construction, positive definite Hermitian forms with posi- 
tive real eigenvalues associated with mutually orthogonal 
eigenvalues. Each eigenvalue equals the variance ac- 
counted for by the pattern of its corresponding eigenvector, 
and the pattern that corresponds to the largest eigenvalue 
contributes most to the variance. The decomposition of the 
correlation matrix into its orthogonal components is called 
the Karhunen-Loeve decomposition’2 (referred to as K-L 
in sequel). This decomposition has been widely used in the 
analysis of synoptic meteorological dataI and has also 
been applied in turbulence research.14 

The K-L decomposition of %Y” determines the struc- 
tures that contribute most to the ensemble average vari- 
ance of the statistically steady state. These are the primary 
response structures of the dynamical system. They are de- 
termined by solving the eigenvalue problem: 

g mu(i) --;l(O&3 9 (20) 
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in which the variance accounted by the structure u(~) is 
given by A(‘>. 

Eigenanalysis of 33 cq, on the other hand, allows order- 
ing of the forcing distributions according to their contri- 
bution to the variance of the statistically steady state. This 
follows from (5) and the observation that the eigenvalues 
of 8 *, determined from 

&q mp ,/pfn 
, (21) 

are also the stationary values of the Rayleigh-Ritz quo- 
tient: 

cause it is unlikely in a highly non-normal system that the 
forcing functions would also be effectively spanned by such 
a restricted representation. 

IV. STOCHASTIC FORCING OF CHANNEL FLOWS 

A. Formulation 

The nondimensional linearized Navier-Stokes equa- 
tions governing evolution of disturbances in steady mean 
flow with the streamwise (x) velocity varying only in the 
cross-stream direction are 

The forcings, f @I, obtained from solution of the eigenvalue 
problem (21) can be ordered according to their relative 
contribution, ,u(“, to the stochastically maintained vari- 
ance. In the sequel we will contrast these ordered forcings 
determined from (2 1) with the responses ordered accord- 
ing to their contribution to the induced variance deter- 
mined from (20). 

We have determined two sets of orthogonal functions: 
using (21) we ordered the forcing functions according to 
their contribution to producing the variance, and using 
(20) we ordered the response functions according to the 
fraction of the variance accounted for by each. If the dy- 
namical operator G! is normal, these two sets of orthogo- 
nal functions reduce to the eigenfunctions of & and are 
identical to the normal modes of the system. This is easily 
seen because when JZ! is normal JZ!, %Y’, and %” commute, 
and therefore they are simultaneously diagonalized by the 
same eigenvectors. Consequently, for a normal dynamical 
operator the K-L patterns have special dynamical signifi- 
cance: they correspond to the normal modes of the dynam- 
ical system and also to the forcings that excite the normal 
modes, and produce the independent modal contributions 
to the variance. This is not true when & is non-normal, as 
is usually the case for fluid dynamical applications. North” 
realized that when the operator .B? is non-normal the K-L 
decomposition of the correlation matrix does not identify 
the normal modes of JY. Identification of the forcings that 
account for the variance of the statistical steady state for 
non-normal dynamical systems is an important theoretical 
question. We have shown that these forcings can be ob- 
tained by solving the back Lyapunov equation ( lo), and 
we call this the back K-L decomposition. In turn, the 
response of the dynamical system is obtained by solving the 
forward Lyapunov equation ( 17), and we simply call this 
the K-L decomposition. 

Retaining the subspace spanned by the dominant forc- 
ing functions found from the back K-L decomposition is at 
least as important in dynamical investigations of the sys- 
tem, as is retaining the subspace spanned by the dominant 
response functions found from the K-L decomposition. 
Restricting representation of the flow dynamics to a sub- 
space spanned by a restricted set of eigenfunctions of the 
K-L decomposition has been suggested.14 The above con- 
siderations show this to be too restrictive, in general, be- 

a I (S ) a 
+u-& co=,AcdJyazv, 

(234 

(23b) 

where U(y) is the mean streamwise velocity component, v 
is the cross-stream perturbation velocity, w = (a/az) u 
- (a/&) w, the cross-stream component of perturbation 
vorticity (z denotes the spanwise direction), and 
A = a2/ax2 + a”/@” + a2/&? is the Laplacian operator. Ve- 
locity has been nondimensionalized by U,, the maximum 
velocity in the channel; length has been nondimensional- 
ized by L, the half-width of the channel. The Reynolds 
number is defined as R = UoL/v, where Y is the kinematic 
viscosity. We impose no slip boundary conditions at 
y= Al which are equivalent to v=(a/dy)v=w=O at 
y= f 1. Couette flow has mean flow U=y, and Poiseuille 
flow has U= 1 -y2. 

Consider a single Fourier component: 

v=Ciexp(ikx+ilz), W-4 

w=c3 exp(ikz+iZz), Wb) 

physical variables being identified with the real part of 
these complex forms. The field equations can be written in 
the compact form7 

(25) 

in which the Orr-Sommerfeld operator 9, the Squire op- 
erator 9, and the coupling operator % are defined as 

(26a) 

Y= -ikU+A/R, (26b) 

%T=-ilU,, (26~) 

with K2 = k2 +12 and A =d2/dy2- K2. 
We define the perturbation energy density, in the usual 

manner, as 
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E(W) =s -, k* j-l dy~o~dxj-;n/ldZ(U2+v2+w2), 

(274 

u78+;~$‘$8+~cG*8 

(2%) 

1 1 
=i@ -1 s dv $‘A$, 

with $=[:I. The energy metric, -4, is given by 

(28) 

where I is the identity matrix. In deriving (25b), we made 
use of 

a=-; (loi-k;b), 

a=; (kuj+l;O). (29b) 

In deriving (27c), we integrated by parts and made use of 
the boundary conditions. 

Consider now the discrete equivalent of (25). The 
state vector for an N level discretization is 

G 
: . ,. vi : *= 2 . . *i . _dN 

, (30) 

and the initial value problem (25) assumes the discretized 
form: 

in which the linea; cJynamica1 operator, 7, is the dis- 
cretized form of [% p]. By these means the continuous 
dynamical system (25) is approximated as a flnite- 
dimensional dynamical system. Correspondence between 
the continuous and discrete dynamical systems is assumed 
and convergence is tested by doubling the number of dis- 
cretization levels. 

We wish to determine the evolution of the perturbation 
energy density, E( k,l). It is advantageous to transform the 
dynamical equation (3 1) into variables of the generalized 
velocities x=J?‘~‘~$, with 4 given in (28). The dynami- 
cal equation (31) is then associated with the stochastic 
dynamical system: 

(32) 

1 :3d Couette flow, k=i I-2 
2 : 3d Poiseuille flow, k = T I = 2 
3:3d with U-O, k-l l-2 
4 : 2d Couette flow , k = 1 
5:2d with U-0, k=l 

10, I. (, .iiL L... r ..,, j i-d. 
‘.5 2 3 4 56’ I.5 2 a 102 10s 4 6 

R 

PIG. 1. The ensemble average energy density, (E”), for various channel 
flows as a function of Reynolds number, R. Curve 1 is for 3-D perturba- 
tions in Couette flow with k= 1, Z=2. Curve 2 is for 3-D perturbations in 
Poiseuille flow with k=l, 2=2. Curve 3 is for 3-D perturbations in a 
channel with U=O and k=l, Z=2. Curve 4 is for 2-D perturbations in 
Couette flow and k= 1. Curve 5 is for 2-D perturbations in a channel with 
U=O and k= 1. Curves 3 and 5 are linear in R, while in curves 1 and 2 
(E) z-R"*. 

where 
&f$= &l/27 k-112 , (33) 

6 is a random Gaussian white noise process, and 9 is a 
forcing distribution initially assumed to provide unit en- 
ergy density driving to each of the N functions f i that form 
the columns of 9. In the energy metric the maintained 
variance corresponds to the ensemble average energy den- 
sity, (E” > = lim,, m (xT( t)xi( t) >, of the statistical steady 
state. (Further discussion of the relation of generalized 
velocity variables to the normality of ZZ’ may be found in 
the Appendix.) Note that the operator JZ!’ is stable, i.e., has 
a spectrum with negative real parts, for all R in the case of 
the Couette flow, while for the Poiseuille flow .& is stable 
for R < 5772.22.‘6s’7 We will limit our investigation to 
R<5000, so that it may be anticipated that both the Cou- 
ette and the Poiseuille flow will reach a statistical steady 
state. 

B. The ensemble average energy density 

We first determine the variation with Reynolds num- 
ber of the nondimensional ensemble average energy den- 
sity. We consider first the Fourier component with k= 1. 
The nondimensional ensemble average energy density, 
(E” ), is a universal function of the Reynolds number R 
and its dependence on R for a variety of channel flows is 
shown in Fig. 1. These examples include the 2-D pertur- 
bation case with I=0 and no flow, i.e., U=O, (curve 5), 
and the 3-D perturbation case with 1=2 and no flow 
(curve 3). When there is no flow the associated dynamical 
system is normal. Note that in both cases with no flow 
(E”) grows linearly with R, as would be expected for a 
normal dynamical system. The increased variance (nearly 
double) in the flow with 3-D perturbations (curve 3), as 
compared to the flow with 2-D perturbations (curve 5) can 
be attributed to the larger number of forcing modes in the 
former. The (E” > maintained by 2-D perturbations in 
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FIG. 2. The ensemble average energy density for 3-D perturbations in 
Poiseuille flow as a  function of k, 1, with (a) R = 100,  and  (b) R =2000.  

Couette flow as a function of R is shown in curve 4, from 
which it is apparent that the non-normality of the operator 
leads to increased variance compared to that found in the 
normal system with no flow (curves 3 and 5 ) . 

The sustained variance when all 3-D perturbations are 
allowed is shown as a function of R for the Couette and the 
Poiseuille flow in Fig. 1, curves ( 1) and (2), respectively. 
Note the remarkable increase of variance with Reynolds 
number ( (E”) s=R~‘~). The same dependence on the Rey- 
nolds number is found to hold for other choices of k, 1, 
given only that k is not so small as to correspond closely to 
a streamwise roll. 

The total variance for the Poiseuille flow is shown as a 
function of k and I for R= 100, and R =2000 in Figs. 2(a) 
and 2(b), respectively. Note that the maximum variance 
shown occurs on the axis of minimum k. The actual max- 
imum occurs for k=O, corresponding to an infinitely ex- 
tended streamwise roll. The maximum contribution to the 
variance coincides with the roll axis both because of the 
growth and the persistence of the roll solutions. While the 
variance increases sharply near the roll axis (k=O), this 
increase is concentrated in a small area of k,l space. Also, 
note from Fig. 2 that the (k,Z) area that contributes to the 
total variance increases with R. 

The ensemble average energy density sustained by the 
streamwise roll (k=O, I= 1 j is shown as a function of R in 
Fig. 3. For comparison, the oblique wave with k= 1 is also 

Poiseuille Flow I = 1 

:k-0 
‘:k-1 

FIG. 3. Variation of ensemble average energy as a  function of Reynolds 
number,  R, for 3-D perturbations in plane Poiseuille flow. Both cases are 
for spanwise wave number  I= 1. Curve 1  is for streamwise wave number  
k=O, and  curve 2  for k= 1. 

shown. The calculation was performed for Poiseuille flow, 
but similar results hold for the Couette and other stable 
shear flows examined.” For small R the dynamical oper- 
ator LS! [cf. (33)] is dominated by the (normal) diffusion 
operator, leading to a linear dependence of the variance on 
R, as is the case for all normal systems for which the 
sustained variance is inversely proportional to the dissipa- 
tion. For higher R the variance of the streamwise compo- 
nents grows approximately as R3. This is due to 0(R2> 
transient energy growth7119 over the time O(R) during 
which input energy accumulates before it dissipates. 

While special initial conditions have been shown to 
yield robust transient growth,7-‘0,19 it does not necessarily 
follow that arbitrary random initial conditions lead to en- 
semble average energy growth. We  have shown that in the 
mean the growth of favorably configured perturbations off- 
sets the decay of unfavorably configured perturbations, 
leading to robust growth of the maintained variance as the 
Reynolds number increases. 

We  turn now to the dependence of the maintained di- 
mensional ensemble average energy density [(I?“) (units 
J mS2>] on the parameters of the flow: the mean shear, 
UdL, and the kinematic viscosity, Y. The nondimensional 
ensemble average energy density for &= 1 is 
(E”) ==Trace( V m  ) = f (R), a universal function of the 
Reynolds number, R. We  assume that the dimen@al en- 
ergy input over the channel is prescribed to be kin (units 
W  m-‘). Because of the linear relationship between the 
response and the energy input, 

(El”)=pU;L&f (R), (34) 

where p is the constant density of the fluid. From ( 19) we 
relate 6, the nondimensional energy input per forcing func- 
tion, to the total energy input: 

lii=i,=/LlU~kNfy (35) 

where Nf is the number of equally excited forcing func- 
tions. Thus we obtain 
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(36) 

For Fourier components off the roll axis (i.e., WO) 
f(R)zR . 3’2 Consequently, for flows with the same U,, 
and the same geometry the maintained dimensional vari- 
ance as a function of Y will behave as 

. 1 
(EF$) = C&n 7 3 (37) 

where C is a dimensional constant. For flows with the same 
kinematic viscosity but different mean shears s= Ud L, the 
dependence of the maintained variance on shear is 

{Eg) = C,?&,S~/~. (38) 

For streamwise rolls (i.e., k-O), f(R) zR3. For flows 
with the same U0 and the same geometry, the maintained 
dimensional variance as a function of v will then be 

where C is a dimensional constant. For flows with the same 
kinematic viscosity but different mean shears, SE Uo/L, 
the dependence of the maintained variance on shear for the 
streamwise rolls is 

(E;Jo) = Cl?&. (40) 

Comparison of (38) and (40) suggests that for a given 
fluid increasing shear favors the emergence of streamwise 
rolls. 

C. The K-L and back K-L decomposition for the 
Couette and Poiseuille flow 

The contribution of the forcing functions, p(j), to the 
ensemble average energy as determined from (21), are 
shown in Fig. 4(a). Similarly the contribution of the re- 
sponse functions, ;lci), to the total variance, determined 
from (20), are shown in Fig. 4(b). Note that only a few of 
the response functions are required to account for most of 
the variance. This is a property of the K-L decomposition: 
it provides the most parsimonious orthogonal basis func- 
tions and typically most of the variance arises from a small 
subset of leading modes. For example, in the Poiseuille 
flow with k=l and I=2 at R=lOO, the first four modes 
account for 75% of the variance, and the first 85 modes 
account for 99% of the variance. For R = 1000 the first 
four modes account for 92% of the variance. At R=5000 
the first four modes account for 82% of the variance, and 
99% of the variance, is accounted for by the first 30 modes. 
It is important to note that these results do not depend on 
the discretization, as long as the main contribution to the 
variance has been resdved. 

For a specific Fourier component the contribution of 
each mode to the variance decays rapidly with mode num- 
ber rendering the total variance convergent as the number 
of modes increases, as can be seen, for example, from Fig. 
4. If we were to excite all modes, each with unit energy, we 
would need divergent total energy forcing as our resolution 
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FiIG. 4. Contribution of forcing and response functions to total variance. 
The case shown is Poiseuille flow with k= 1, 1=2, and R= 1000. The 
maintained total variance is 2553 for unit forcing of each degree of free- 
dom. (a) Variance resulting from the ordered forcing functions. (b) Vari- 
ance resulting from the ordered response functions. 

increased. This situation is common to the statistical me- 
chanics of classical systems. While ensemble average en- 
ergy for a specific Fourier component converges as the 
number of modes increases, Fig. 2 indicates that a low pass 
truncation is necessary to assure finiteness of the total 
power input under the assumption of white noise forcing. 

Figures 5 (a) and 5(b) show the single forcing distri- 
bution that produces the most variance in Couette flow at 
R = 1000. Note that the structure is similar to that of an 
optimal excitation of the flo~.~ The response pattern, the 
first K-L pattern, for Couette flow at R = 1000 is shown in 
Figs. 5 (c) and 5(d) . Note the difference between the forc- 
ing and response structures remarked on previously. This 
is a characteristic property of non-normal dynamical oper- 
ators. The corresponding structures for Poiseuille flow are 
shown in Figs. 6(a)-6(d). Note that the dominant re- 
sponse of both the Poiseuille and Couette flow exhibits the 
characteristic streak structure. 

V. CONCLUSIONS 
Observations of transition from laminar to turbulent 

flow have consistently shown, since the experiments of 
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FIG. 5. Structure of the principal forcing and  response functions for Couette flow with k= 1, I=2, and  R= 1000.  The maintained total var iance is 4244  
for unit forcing of each degree of f reedom. (a) The principal forcing function cross-stream velocity, U, in the x-y plane. (b) The principal forcing function 
streamwise velocity, U, in the y-z plane. The principal forcing function contributes 1855 units to the total variance. (c) The principal response function 
cross-stream velocity, U, in the x-y plane. (d) The principal response function streamwise velocity, u, in the y-z plane. The principal response function 
contributes 1749 &its to the total variance. 

Reynolds, *’ that transition is highly sensitive to back- 
ground disturbances. A reason for this sensitivity arises 
from the existence of a subset of optimal perturbations that 
produce high levels of transient growth, even though these 
canonical problems typically are asymptotically stable at 
the Reynolds numbers for which transition is found to 
occur.7-10P1g Unless the background disturbance field is 
contrived to have a null projection on these growing dis- 
turbances, they can amplify sufficiently to instigate transi- 
tion when forcing typical of ambient background noise in 
experiments is imposed. 

While the theory leading to identification of optimal 
excitations addresses transient growth as an initial value 
problem, we have shown in this work that a continuous 
stochastic excitation of viscous shear flow produces high 
levels of variance if the Reynolds number of the flow is 
sufficiently large. This variance arises primarily from exci- 
tation of a restricted subset J favorably configured forcing 
functions, distinct from the optimal perturbations, which 
can be found as the solutions of a Lyapunov equation. In a 
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similar manner, the response functions that form the pri- 
mary structures of the maintained variance can be identi- 
fied with solutions of a related Lyapunov equation. The 
primary forcing functions determine a low-dimensional 
subspace that must be spanned by a basis for the stochastic 
dynamics, while the primary response functions similarly 
determine a subspace that must also be spanned by the 
dynamical basis. The distinction between the forcing and 
response functions is a consequence of the non-normality 
of the linear dynamical operator, and no such distinction 
arises in unsheared flow, unsheared convection, or other 
dynamical systems characterized by normal operators. 

Only a slight extension of this mechanism for mainte- 
nance of variance under stochastic forcing is required to at 
least conceptually rationalize the maintenance of the fully 
turbulent state. The elements of this construction comprise 
the already demonstrated great amplification of a subset of 
perturbations, together with a mechanism to replenish the 
growing subspace, as the members are depleted through 
their transient evolution, so as in this way to produce a 
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statistical mean state. The obvious candidate mechanism to 
replenish the subset of growing perturbations is the non- 
linear interactions of the perturbations that were neglected 
in the linear dynamics. The requisite scattering of energy 
back into the growing subspace need not be particularly 
efficient, given the great amplification of the members of 
this subspace. We may model this process by observing 
that the km’” spectrum of isotropic turbulence is produced 
on the time scale of the eddy turnover at a particular scale. 
The nonlinear interactions also tend to disrupt the coher- 
ence of the growing disturbances on the same eddy turn- 
over time scale.8’21 It can be expected then that the level of 
variance will rise until these competing processes of replen- 
ishment and disruption obtained a statistical balance, with 
a variance level such as to produce an eddy turnover time 
at the dynamically dominant scales of a small multiple of 
the shear time scale. 

While the task of explicitly modeling maintenance of 
the fully turbulent state is beyond the scope of the present 
study, the great amplification of variance demonstrated in 
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this work shows the rich dynamics of asymptotically stable 
shear flows. 
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APPENDIX: THE ORTHOGONAL NORM METRIC 

The non-normality of the operator, 
&& = L & 1/2Fd - I/2 , (Al) 

was shown in Sec. IV to greatly influence the statistics of 
the dynamical system. It is clear from (Al) that the use of 
different norms to measure perturbation magnitude alters 
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the normality of the dynamical system.15’22 The freedom to 
choose a norm allows the investigator to concentrate on 
those aspects of the dynamics that are of greatest interest. 
This issue has often been neglected, perhaps because all 
norms are equivalent for white noise excitation of the or- 
thogonal modes of normal dynamical systems. We have 
chosen A to correspond to energy density in which case 
LZ? is non-normal for the shear flows examined. Because of 
the importance of the non-normality of JS’ in determining 
the associated stochastic dynamics, it is of interest to de- 
termine the most general A that renders LZ? a normal 
operator. 

If & is normal then ~~t=~t~, which is equiva- 
lent to 

T-“$-Z-‘.PJf=.A-1.P~/CCL7. (A21 

Hence .F and JV1flA commute and have the same 
eigenvectors. If we denote by Q the matrix consisting of the 
eigenvectors of 7 arranged in columns, then 

‘AP’fl~@=@~, 

where 3 is a diagonal matrix. Hence 

(A3) 

Y-L-.f@=,.4Y@Y. (A41 

Therefore A @ is the eigenvector matrix of 9, which, 
because Cp is the eigenvector matrix of 7, has the eigen- 
vector matrix cP+-‘. Hence 

“dQ,=<D-Wl, (A5) 

where 9 - ’ is any positive definite diagonal matrix. Thus, 
we have shown that the most general metric that renders 
i;;t’ normal is 

.,f2=(@mD+)-1. (A61 

The related norm is the measure of perturbation mag- 
nitude consisting of a weighted sum of the squared ampli- 
tudes of the modes that make up the perturbation. We have 
shown that this is the only norm in which the modes are 
orthogonal. Despite the apparent simplicity gained by the 
fact that the dynamical system is normal in these general- 
ized coordinates, the sum of squared amplitudes of the 
modes making up a disturbance has no obvious physical 
significance such as attaches to perturbation energy or en- 
strophy. 
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