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ABSTRACT

Synoptic-scale eddy variance and fluxes of heat and momentum in midlatitude jets are sensitive to small
changes in mean jet velocity, dissipation, and static stability. In this work the change in the jet producing the
greatest increase in variance or flux is determined. Remarkably, a single jet structure change completely char-
acterizes the sensitivity of a chosen quadratic statistical quantity to modification of the mean jet in the sense
that an arbitrary change in the jet influences a chosen statistical quantity in proportion to the projection of the
change on this single optimal structure. The method used extends previous work in which storm track statistics
were obtained using a stochastic model of jet turbulence.

1. Introduction

Recognition of the role of nonnormality in the linear
stability theory of physical systems led to the devel-
opment of Generalized Stability Theory (GST; Farrell
1982, 1988; Farrell and Ioannou 1996a, hereafter
FI96a). Compared to the more traditional method of
modes, GST allows a far wider class of stability prob-
lems to be addressed including stability of aperiodic
operators (Farrell and Ioannou 1996b, hereafter FI96b;
Farrell and Ioannou 1999, hereafter FI99). In addition
to addressing evolution of sure initial perturbations,
GST also provides methods for calculating stability of
uncertain and stochastic systems (Farrell and Ioannou
2002b) and statistically steady distributions of variance
and fluxes in stochastically forced systems (Farrell and
Ioannou 1993a,b), which led to a new mechanistic mod-
el of geophysical and laboratory turbulence (Farrell and
Ioannou 1994, 1995, 1998; DelSole 1996, 2001b). This
theory has been extensively verified in recent studies of
storm track statistics (Whitaker and Sardeshmukh 1998;
Zhang and Held 1999; DelSole 2001a).

In this work we extend this stochastic turbulence the-
ory to study the sensitivity of storm track statistics to
changes in mean jet structure and parameters. Such an
extension of stability theory to address the sensitivity
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of statistically steady quadratic quantities is natural to
the point of view taken in GST, which directs attention
to transient growth supported by the nonnormality of
the jet dynamics and therefore allows a physical theory
to be constructed for the statistical steady state of a
system characterized by robust energy transfer between
the mean state and the perturbations, such as the tur-
bulent meridional jet to be modeled. This study is mo-
tivated by the observation that relatively small changes
in jet structure, as occur for example in association with
El Niño, at times produce large changes in storm track
statistics while at other times apparently similar alter-
ations of jet structure result in modest changes in the
statistics (Chang et al. 2002). We show that this obser-
vation can be understood from the fact that a single
optimal structure determines the sensitivity of a qua-
dratic statistical quantity to jet structure change.

The problem is framed as an optimization of the re-
sponse to stochastic forcing of the dynamical operator
associated with the jet, the optimization being done over
structured changes in the operator. The term structured
change refers to a change such as would result from
variation of jet velocity as distinct from arbitrary chang-
es in the operator which may have no direct physical
interpretation. The quantity to be optimized is quadratic
and may be a variance or a flux such as that of mo-
mentum or heat. The optimization can be generalized
to target a particular region.

We first obtain the change of the covariance matrix
resulting from a complete set of structured changes in
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the dynamical operator; then the sensitivity is found by
optimizing over this set of structured operator changes.
In a study related to the first of these objectives Penland
and Sardeshmukh (1995) examined the sensitivity of
eigenvalues and eigenvectors of dynamical operators
and their associated covariance matrices to specified
small operator changes.

2. Method for obtaining the sensitivity of variance
and fluxes to structured operator changes

Consider a perturbation vector c governed by the
equation

dc
5 Ac 1 Fh(t), (1)

dt

in which A is the time independent linear dynamical
operator, h is a vector noise process white in time with
uncorrelated components, and F is a structure matrix
that determines the covariance matrix of the stochastic
forcing Q 5 F†F (superscript † indicates Hermitian trans-
pose). The white noise process is assumed to be Gauss-
ian and is fully specified by its ensemble average sta-
tistics:

^h(t)& 5 0, ^h (t)h (t9)& 5 d d(t 2 t9),i j ij (2)

in which ensemble averages are denoted by ^ · &. If A
is asymptotically stable, a statistical steady state is
reached in which the ensemble average statistics are
equal to the time averages.1

It was shown by Farrell and Ioannou (1993, 1995,
1996a) that with the operator A a linearization of the
jet dynamics and with appropriate dissipation and forc-
ing, (1) accurately models jet turbulence, a result that
has been extensively verified (Whitaker and Sardesh-
mukh 1998; Zhang and Held 1999; DelSole 2001a).
Equilibrium perturbation variance and fluxes are ob-
tained in this turbulence model from the ensemble av-
erage correlation matrix C 5 ^c †c&, which is in turn
obtained from the Lyapunov equation (FI96a)

†AC 1 CA 5 2Q. (3)

In this way quadratic statistical quantities such as var-
iance and fluxes are determined directly from the op-
erator A and the forcing structure Q. The operator A in
physical applications is a function of the background
state of the system including the jet velocity and the
distribution of damping and static stability. The stability
issue examined in this work is the sensitivity of qua-
dratic statistical quantities to physically relevant chang-
es in jet structure. Such physical changes in the jet are
reflected in specific structured changes of the operator
A. As an example, we may wish to determine the unit
norm change in background jet velocity resulting in the

1 For a discussion of this interpretation of the ensemble average
see Farrell and Ioannou (2002a, 2003).

greatest increase in momentum flux convergence. In ad-
dition we may wish to target the optimization to con-
centrate on specific regions of the jet, for instance to
maximize momentum flux into the jet.

Before addressing sensitivity it is necessary to choose
a norm to measure operator magnitude and a linear form
to measure the quadratic quantity being optimized. One
convenient choice for operator norm is the Frobenius
norm, which is the square root of the sum of the squares
of the elements of A:

2 †\A\ 5 A*A 5 trace(A A). (4)O OF i j i j
i j

In addition other more targeted norms may be intro-
duced. For example, if we wish to investigate operator
changes caused by changes in the mean wind then a
norm on velocity change of the form

2 2 2\U\ 5 (U 1 U9 ) dy, (5)E
where U9 is the shear, may be more appropriate. In
operators obtained by discretization of continuous sys-
tems, such as occur in the formulation of problems in
hydrodynamics, care must be taken that the optimal op-
erator converges as resolution increases. This is not nec-
essarily ensured as, for instance, the magnitude of the
derivatives available for the optimum change in the
mean jet may increase with increasing resolution. In
such cases the choice of a norm such as (5) may be
important in ensuring convergence as the continuous
limit is approached.

The quadratic quantity being optimized is obtained
from the statistical steady covariance matrix and is mea-
sured by a linear form T that maps the covariance matrix
to the positive real scalars. For example, the operator
change leading to the maximum increase in total eddy
variance is found by choosing T to be the trace linear
form.

Let the operator A be changed to A(e), where e is the
scalar magnitude of the perturbation. The covariance
C(e) maintained at equilibrium by A(e) satisfies the Lya-
punov equation

†A(e)C(e) 1 C(e)A(e) 5 2Q. (6)

It follows then that the covariance tendency

dC
C9 5 (7))de

e50

can be determined by solving the equation
††AC9 1 C9A 5 2(A9C 1 CA9 ), (8)

in which

dA
A9 5 (9))de

e50

is the mean operator tendency and the covariance C is
obtained by solving the Lyapunov equation (3).
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Assume that the total structured operator tendency A9
is spanned by a basis of structured tendencies ; thatA9i
is,

A9 5 a A . (10)9O ii
i

If is the covariance tendency induced by , thenC A99i i

the total covariance tendency is

C9 5 a C . (11)9O ii
i

We seek the total structured operator tendency A9 that
maximizes T C9. This operator tendency will be called
the optimal operator tendency. In order to rationalize
the maximization we must normalize the individual op-
erator tendencies . We seek the operator tendency,A9i
specified by the vector a through (10), that maximizes
the quotient:

T C9
Q 5 . (12)

Ta Wa

The matrix W is the inner product that measures and
normalizes the total operator tendency A9. For example
if the Frobenius inner product is chosen then the entries
of the matrix W are

W 5 (A , A ) 5 A9* A9 . (13)9 9 O Oi ji j i,ab j,ab
a b

Maximization of (12) maximizes the quadratic quantity
tendency measured by T over combined operator ten-
dencies (10) measured in the metric induced by W. The
optimum operator tendency is found by noting that using
the column vector l with elements

l 5 T C ,9ii (14)

the quotient (12) can be written as
Tl a

Q 5 . (15)
Ta Wa

The maximum of Q is obtained for
21W l

a 5 . (16)opt
T 22Ïl W l

This is the method for determining the normalized
structured operator change leading to maximum increase
in a specified quadratic quantity. This operator change
will be called the optimal structure change.

It is remarkable that a single operator change fully
characterizes any quadratic quantity tendency. If an ar-
bitrary operator change is performed the quadratic ten-
dency is immediately obtained by projecting the oper-
ator change on this single optimal structure change. In
the next section this remarkable result will be examined
further.

Having obtained the normed operator change leading
to the maximum tendency in the chosen integrated qua-
dratic quantity, as specified by the linear form T, we can
define a fractional optimal operator sensitivity measure:

d lnE (0) T C9optopts 5 5 , (17)
de T C

where E(e) 5 T C(e) and is the optimum covarianceC9opt

tendency.

3. Example: The operator tendency leading to the
greatest variance increase in a barotropic jet

Consider a zonal jet with streamfunction perturba-
tions c(t)eikx, where x is the coordinate in the zonal
direction and y, the coordinate in the meridional direc-
tion. The perturbation dynamics is governed by the
barotropic vorticity equation

2]D c
2 25 2ikUD c 2 ik(b 2 U 0)c 2 rD c

]t

41 nD c 1 Fh(t), (18)

where U is the diagonal matrix of mean flow, U0 is its
curvature, and the jet is excited stochastically by h(t)
assumed to be Gaussian and delta correlated in time.
The operators D2 and D4 in the above equation are dis-
cretizations of

22 2d d
2 22 4D 5 2 k , D [ 2 k . (19)

2 21 2dy dy

The flow is confined to the channel 21 # y # 1, with
boundary conditions of vanishing streamfunction per-
turbation at the channel walls. The constant damping
rate is r, and the diffusion coefficient n is taken nonzero
in some examples in order to damp structures on the
discretization scale. Distances are nondimensionalized
by L 5 104 km21, velocities by U 5 20 m s21, and
time by T 5 L/U; with these choices, a time unit cor-
responds to 1.8 days, b 5 8 corresponds to the planetary
vorticity gradient at 458 latitude, a linear damping co-
efficient of r 5 0.18 corresponds to a damping rate of
1/10 day21, and n with nondimensional value 1024

damps perturbations of 100-km scale at the rate of
1/10 day21.

Consider the mean zonal jet:
2U(y) 5 sech (4y). (20)

We seek the change in U(y) resulting in the greatest
increase in the mean energy density of the perturbation
field:

†E } ^c Mc& 5 trace(C), (21)

where M is the matrix representation of the discretized
operator 2D2 so that E is proportional to the kinetic
energy of the perturbation field. In (21) c is the column
vector of the streamfunction at the discretization levels
and C is the steady-state covariance. For simplicity, the
stochastic forcing is assumed to be distributed uniformly
across the channel; that is, F in (18) is chosen to be the
identity matrix.

The sensitivity of the perturbation energy to changes
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FIG. 1. For the barotropic jet U ( y ) 5 sech2(4y): sensitivity of
eddy variance to the optimal structure for mean velocity change as
a function of zonal wavenumber k of the forcing eddy field (con-
tinuous line). Also plotted is the sensitivity obtained for the equiv-
alent normal system in which the variance is half the sum of the
inverses of the decay rates of the mean operator modes (dashed
line). The coefficient of linear damping is r 5 0.15 and the diffusion
coefficient is n 5 6.8 3 1024 .

FIG. 2. For the barotropic jet U(y) 5 sech2(4y): growth rate of the
least damped perturbation as a function of zonal wavenumber k of
the eddy field. Other parameters as in Fig. 1.

in mean zonal velocity is determined by expanding the
mean velocity change in the trigonometric basis:

n /2 (2j 2 1)py
dU 5 a cos 1 a sin( jpy)O 2j21 2j[ ]2j51

n

[ a U (y), (22)O i i
i51

where n is the number of discretization levels; forming
the perturbation operator associated with each discre-
tized sinusoidal velocity perturbation U

212 2A 5 2ik(D ) [UD 2 U0],9i i (23)

and using the Lyapunov equation (8) the covariance
tendency produced by each of the elements of theC9i
basis . The perturbation operator is normalized in theA9i
Frobenius norm (4); other reasonable choices of norm
lead to qualitatively similar results. The sensitivity
shown as a function of wavenumber in Fig. 1 is greatest
for wavenumbers for which the spectrum of the stable
mean operator A is closest to neutrality as may be ver-
ified by inspection of the (negative) growth rate of the
least damped eigenfunction of the mean operator A
shown in Fig. 2. This dependence is expected in normal
systems; for example, in a one-dimensional system with
growth rate l(l , 0), the perturbation variance main-
tained by unit variance white noise is

1
E 5 2 , (24)

2l

and the sensitivity of the maintained variance to changes
in the damping rate

d lnE 1
5 2 (25)

dl l

is inversely proportional to the distance of the system
from neutrality. In dimensions greater than one, for
which nonnormality of A is possible, the sensitivity is
maximized at the wavenumber for which the combined
influence of distance from neutrality and nonnormality
is maximum. The sensitivity obtained for the equivalent
normal system can be used in order to quantify the
importance of operator nonnormality. In a direct exten-
sion of the result for a one-dimensional system the var-
iance maintained in higher-dimensional equivalent nor-
mal systems is half the sum of the inverses of the decay
rates of the modes of the mean operator. This equivalent
normal sensitivity is shown in Fig. 1 (dashed line). The
sensitivity of the equivalent normal system underesti-
mates the sensitivity of the nonnormal operator.

A velocity change produces greatest variance increase
for stochastic forcing with zonal wavenumber k 5 5.14.
This mean flow modification is an increase in shear in
the neighborhood of the inflection point of the absolute
vorticity of the jet, that is, the latitude at which U0 5
b, which is also the region of primary support of the
stochastic optimal (as shown in Fig. 3). The stochastic
optimal is the forcing structure FSO that when excited
uncorrelated in time maintains the greatest variance (cf.
Farrell and Ioannou 1996a; Kleeman and Moore 1997).
It can be inferred from (8) and the solution of the as-
ymptotic Lyapunov equation that the greatest sensitivity
is biased toward operator tendencies A9 that lead the
matrix A9 C 1 CA9† to project most strongly on the
covariance of the stochastic optimal QSO 5 FSO . It†FSO

is natural then to expect optimal operator modification
to be located near the region of the flow where the
stochastic optimal is concentrated and this is verified,
for example, for k 5 5.18 (Fig. 3). This tendency for
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FIG. 3. Optimal structure dU ( y ), which is the structure of the
mean flow change resulting in maximum tendency in perturbation
energy for the barotropic jet. Also shown is the background mean
jet that is changed and a contour plot of the structure of the sto-
chastic optimal associated with the mean jet (contour values arbi-
trary). The optimal structure change is centered in the flow region,
where the stochastic optimal is concentrated. The eddy field has zonal
wavenumber k 5 5.14. The other parameters are as in Fig. 1.

FIG. 4. Decomposition of the mean velocity profile of the barotropic
jet U(y) (dashed) into a velocity change in the direction of the optimal
structure of velocity change dU\ and a velocity change perpendicular
to the structure of the optimal dU⊥. The inner product used for this
orthogonal decomposition is the Frobenius. All the integrated vari-
ance tendency is produced by dU\ while the velocity change dU⊥

produces 0 integrated variance tendency. As a result, while the op-
timal sensitivity is about 89, imposing a velocity perturbation pro-
portional to the shape of the barotropic jet itself produces a sensitivity
in total variance of only 3.5.

concentration of the optimal modification in the region
of the stochastic optimal is commonly seen in examples
and is useful for first-order understanding, however, this
result is contingent on the choice of norm and on the
structured changes of the jet that are allowed. Clearly
if we allowed only changes in the region of the jet
maximum the optimal modification would not be con-
centrated in the region of the first stochastic optimal.

The optimal structure of velocity change dUopt shown
in Fig. 3 characterizes fully the sensitivity of the flow
in the sense that the tendency in total variance results
only from the part of an arbitrary dU that projects on
dUopt, which we refer to as dU\ . This single structure
characterizes the quadratic tendency, and the orthogonal
complement to dUopt , which we denote dU⊥, produces
0 total variance tendency. It is remarkable that if the
total mean state dimension is n, the space of velocity
changes leading to 0 total variance tendencies has di-
mension n 2 1. That there is such a large subspace
producing 0 tendency indicates the difficulty of obtain-
ing large tendencies in quadratic statistical quantities by
arbitrarily changing velocity profiles. Large quadratic
quantity tendencies occur only where there is a sub-
stantial projection on the optimal structure. Consider for
example a velocity change with the structure of the mean
profile U(y) itself. At the perturbation wavenumber k
5 5.14 at which the maximum tendency occurs we find
that this change leads to a tendency of only 3.5, which
is far smaller than the tendency of 89 that occurs if the
optimal structure velocity change is imposed. The de-
composition of such a velocity change into its dU\ and
dU⊥ components is shown in Fig. 4. Only a small part

of this velocity change projects on the optimal structure
velocity change. Most of the velocity change is in the
direction perpendicular to dUopt and this velocity change
makes zero contribution to the tendency in total vari-
ance.

The results obtained are converged both as the res-
olution is increased and also as the number of spectral
coefficients ai is increased. This convergence is facili-
tated by the choice of norm and the inclusion of dif-
fusion to damp the largest wavenumbers.

Consider the sensitivity of the variance to the friction
parameter now taken to be a function of y, r(y). The
change in friction parameter is expanded as

n /2 (2j 2 1)py
dr(y) 5 a cos 1 a sin( jpy)O 2j21 2j[ ]2j51

n

[ a r (y). (26)O i i
i51

For each element of the basis, ri(y), form the diagonal
discretized friction Ri and derivative and from theseR9i
the modified operators

21 92 2A 5 2(D ) [R D + R D ], (27)9i yi i

with Dy the matrix y derivative. The covariance ten-
dencies are then obtained as before. The operatorC9i
tendencies are again normalized in the Frobenius norm.
The sensitivity as a function of wavenumber k is shown
in Fig. 5 has the same form as that obtained for velocity
changes. The structure of the optimal change is shown
in Fig. 6 for wavenumber k 5 5.14.
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FIG. 5. For the barotropic jet: optimal sensitivity of eddy variance
to change in linear damping as a function of zonal wavenumber k of
the eddy field (continuous line). Also shown is the optimal sensitivity
obtained in the equivalent normal system for which the variance is
half the sum of the inverses of the decay rates of the modes of the
mean operator (dashed line).

FIG. 6. For the barotropic jet: optimal structure of the linear damping
change resulting in greatest tendency in perturbation energy. Also
shown is the background jet and a contour plot of the structure of the
stochastic optimal associated with the mean jet (contour values arbi-
trary). The optimal structure of the jet is centered in the flow region
where the stochastic optimal is concentrated. The eddy field has zonal
wavenumber k 5 5.14. The other parameters are as in Fig. 1.

4. Example: The operator tendency leading to the
greatest heat flux increase in a baroclinic jet

We wish to determine the sensitivity of heat flux to
jet structure changes in a baroclinic model and choose
the Green problem as an example. This model is Bous-
sinesq with constant stratification on a b plane and has
periodic boundary conditions in the zonal x direction;
solid walls in the meridional y direction and a solid lid
at height z 5 H. The zonal flow is U(z) 5 z. Horizontal
scales are nondimensionalized by L 5 1000 km; vertical
scales by H 5 fL/N 5 10 km; velocity by U0 5 30 m
s21, and time by T 5 L/U0, so that a nondimensional
time unit corresponds to approximately 9.25 h. Midlat-
itude values are chosen for the Brunt–Väisälä frequency,
N 5 1022 s21, and Coriolis parameter, f 5 1024 s21.
The nondimensional planetary vorticity gradient at 458
latitude is b 5 0.53.

The nondimensional linearized equation governing
streamfunction perturbations c collocated on discreti-
zation levels in z is

2]D c
2 25 2ikUD c 2 ikbc 2 rD c 1 Fh(t), (28)

]t

in which the perturbation is assumed to be of the form
c(z, t) eikx1ily, where k is the zonal and l the meridional
wavenumber. The perturbation potential vorticity is
D2c, with D2 [ ]2/]z2 2 k2 2 l2 and the perturbation
potential vorticity damping rate is r, which is selected
to have the value r 5 0.2.

Conservation of potential temperature at the ground,
z 5 0, and tropopause, z 5 1, provides the boundary
conditions

2] c ]c ]c
5 2ikU(0) 1 ikU9(0)c 2 r

]t]z ]z ]z
2 21 G (k 1 l )c at z 5 0,g

(29)
2] c ]c ]c

5 2ikU(1) 1 ikU9(1)c 2 r at z 5 1,
]t]z ]z ]z

(30)

where U9(0) and U9(1) denote the velocity shear at z 5
0 and z 5 1, respectively. The coefficient of Ekman
damping Gg [ (N/U0) has value Gg 5 0.105 cor-Ïn/2 f
responding to an effective vertical eddy momentum dif-
fusion coefficient n 5 20 m2 s21 in the boundary layer.

We seek the modification of the zonal jet producing
the greatest increase in the time mean vertically inte-
grated northward heat flux by the perturbation field. The
heat flux is obtained from the ensemble mean covariance
C 5 ^cc †&:

k
H } ^yT& 5 trace{Im[diag(D C)]}, (31)z2

where diag is the matrix diagonal and Dz is the matrix
representation of the vertical derivative. For simplicity
the stochastic forcing is distributed uniformly.

Expanding the mean velocity change in the trigo-
nometric basis,

n /2

dU 5 a cosjp z 1 a sinjp zO 2j21 2j
j51

n

[ a U (z), (32)O i i
i51
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FIG. 7. For the baroclinic problem: optimal sensitivity of eddy
heat flux to mean velocity change as a function of zonal wavenum-
ber k of the eddy perturbation field in the case of no Ekman damping
(Gg 5 0) (continuous line). Optimal sensitivity obtained when Ek-
man damping is included at the lower boundary (Gg 5 0.105)
(dashed line). The meridional wavenumber of the eddies is l 5 p/2
and the coefficient of linear damping is r 5 0.2.

FIG. 9. Optimal structure leading to maximum tendency in north-
ward heat flux. The straight line is the background mean jet that is
being changed. Also shown is a contour plot of the structure of the
stochastic optimal associated with the mean jet (contour values ar-
bitrary). The most sensitive region for jet change is where the sto-
chastic optimal is concentrated. The eddy field has zonal wavenumber
k 5 1.4 and there is no Ekman damping. The other parameters are
as in Fig. 7.

FIG. 8. For the baroclinic problem: growth rate of the least damped
eigenfunction as a function of zonal wavenumber k. The meridional
wavenumber of the eddies is l 5 p/2. The continuous curve is with
no Ekman damping, and the dashed curve is with Ekman damping
Gg 5 0.105. The coefficient of linear damping is r 5 0.2.

FIG. 10. As in Fig. 9, except that the zonal wavenumber of the
eddy field is k 5 3.

and forming the perturbation operator associated with
each sinusoidal velocity change Ui(z),

212 2A 5 2ik(D ) (U D 2 U0),9i i i (33)

allows, using the Lyapunov equation (8), calculation of
the covariance tendency produced by each of theC9i
elements of the basis, from which the associated heatA9i
flux tendency can be found using (31). The perturbation
operator is normalized in the Frobenius norm (4); other
reasonable choices of norm lead to qualitatively similar
results.

The optimal sensitivity (17) for total heat flux ten-
dency is shown in Fig. 7 as a function of the zonal
wavenumber of the stochastic forcing. The heat flux
sensitivity is greatest for wavenumbers for which the
spectrum of the stable mean operator is closest to neu-
trality (cf. the growth rate of the least damped eigen-
function of the mean operator A is shown in Fig. 8).

The jet modification producing the greatest heat flux
tendency for stochastic forcing with zonal wavenumber
k 5 1.4 is shown in Fig. 9, and in Fig. 10 for k 5 3.
In both cases, there is no Ekman damping and the sto-
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FIG. 11. As in Fig. 10, except that Ekman damping with Gg 5
0.105 has been introduced at the lower boundary. Note that the op-
timal structure has moved to upper levels, where the support of the
stochastic optimal is also concentrated.

chastic optimal is located in the lower troposphere. The
stochastic optimal for k 5 1.4, which is the wavenumber
associated with the greatest tendency is located near the
steering level of the least stable mode. The stochastic
optimal for k 5 3 for which the tendency is low is
located in the lower troposphere at a location that would
allow growth of the optimal perturbations as they prop-
agate upward, in the manner described by Tung (1983).
The presence of Ekman damping at the lower boundary
results in the optimal change of the mean flow moving
to upper levels where the stochastic optimal is located
(Fig. 11).

While we have optimized heat flux tendency in this
baroclinic jet example, similar jet modifications also
produce maximum increase in perturbation energy ten-
dency.

5. Conclusions

This work extends GST to obtain a method for cal-
culating the sensitivity of quadratic quantities such as
variance, energy, and fluxes of heat and momentum, to
change in jet structure. The jet structure change could
include velocity, dissipation, and other dynamical var-
iables, and these jet structure changes, as well as region
of the response optimization, can be localized in the jet.
The unique jet structure change producing the greatest
change in a chosen quadratic quantity also completely
characterizes the sensitivity of the quadratic quantity to
jet change in the sense that an arbitrary jet change in-
creases the quadratic quantity in proportion to its pro-
jection on this optimal structure change. This result pro-
vides an explanation for observations that substantial
differences in quadratic storm track quantities such as
variance occur in response to apparently similar influ-

ences such as comparable SST changes and moreover
provides a method for obtaining the optimal structural
change. The mechanism underlying the optimal jet
change can in many instances be understood to be fa-
cilitating growth of the stochastic optimal for the jet by
increasing shear or decreasing damping in the region of
primary support of the stochastic optimal.

It should be noted that initial jet changes resulting
from an externally applied forcing produced, for ex-
ample, by sea surface temperature changes, may induce
yet further changes in the jet through modification of
the divergence of heat and momentum fluxes and these
secondary effects are observed to be substantial in some
situations (Held et al. 1989). Complete description of
the equilibrium jet configuration requires accounting
self-consistently for these secondary changes in the jet
produced by the induced fluxes of heat and momentum.
Such a study coupling the mean jet dynamics and the
statistical flux model has been carried out and steady,
periodic and aperiodic self-consistent solutions were
found in this nonlinear stochastic system (Farrell and
Ioannou 2003).

Acknowledgments. This work was supported by NSF
ATM-0123389 and by ONR N00014-99-1-0018.

REFERENCES

Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track
dynamics. J. Climate, 15, 2163–2183.

DelSole, T., 1996: Can quasigeostrophic turbulence be modeled sto-
chastically? J. Atmos. Sci., 53, 1617–1633.

——, 2001a: A simple model for transient eddy momentum fluxes
in the upper troposphere. J. Atmos. Sci., 58, 3019–3035.

——, 2001b: A theory for the forcing and dissipation in stochastic
turbulence models. J. Atmos. Sci., 58, 3762–3775.

Farrell, B. F., 1982: The initial growth of disturbances in a baroclinic
flow. J. Atmos. Sci., 39, 1663–1686.

——, 1988: Optimal excitation of neutral Rossby waves. J. Atmos.
Sci., 45, 163–172.

——, and P. J. Ioannou, 1993a: Stochastic dynamics of baroclinic
waves. J. Atmos. Sci., 50, 4044–4057.

——, and ——, 1993b: Stochastic forcing of the linearized Navier–
Stokes equations. Phys. Fluids, A5, 2600–2609.

——, and ——, 1994: A theory for the statistical equilibrium energy
and heat flux produced by transient baroclinic waves. J. Atmos.
Sci., 51, 2685–2698.

——, and ——, 1995: Stochastic dynamics of the midlatitude at-
mospheric jet. J. Atmos. Sci., 52, 1642–1656.

——, and ——, 1996a: Generalized stability theory. Part I: Auton-
omous operators. J. Atmos. Sci., 53, 2025–2040.

——, and ——, 1996b: Generalized stability theory. Part II: Non-
autonomous operators. J. Atmos. Sci., 53, 2041–2053.

——, and ——, 1998: Perturbation structure and spectra in turbulent
channel flow. Theor. Comput. Fluid Dyn., 11, 215–227.

——, and ——, 1999: Perturbation growth and structure in time-
dependent flows. J. Atmos. Sci., 56, 3622–3639.

——, and ——, 2002a: Perturbation growth and structure in uncertain
flows. Part I. J. Atmos. Sci., 59, 2629–2646.

——, and ——, 2002b: Perturbation growth and structure in uncertain
flows. Part II. J. Atmos. Sci., 59, 2647–2664.

——, and ——, 2003: Structural stability of turbulent jets. J. Atmos.
Sci., 60, 2101–2118.



2652 VOLUME 61J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the
extratropical response to El Niño. J. Atmos. Sci., 46, 163–174.

Kleeman, R., and A. M. Moore, 1997: A theory for the limitation of
ENSO predictability due to stochastic atmospheric transients. J.
Atmos. Sci., 54, 753–767.

Penland, C., and P. D. Sardeshmukh, 1995: Error and sensitivity anal-
ysis of geophysical eigensystems. J. Climate, 8, 1988–1998.

Tung, K. K., 1983: Initial value problems for Rossby waves in a
sheared flow with critical level. J. Fluid Mech., 133, 443–469.

Whitaker, J. S., and P. D. Sardeshmukh, 1998: A linear theory of
extratropical synoptic eddy statistics. J. Atmos. Sci., 55, 237–
258.

Zhang, Y., and I. Held, 1999: A linear stochastic model of a GCM’s
midlatitude storm tracks. J. Atmos. Sci., 56, 3416–3435.


