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This paper demonstrates the maintenance of self-sustaining turbulence in a restricted
nonlinear (RNL) model of plane Couette flow. The RNL system is derived directly
from the Navier-Stokes equations and permits higher resolution studies of the dy-
namical system associated with the stochastic structural stability theory (S3T) model,
which is a second order approximation of the statistical state dynamics of the flow.
The RNL model shares the dynamical restrictions of the S3T model but can be
easily implemented by reducing a DNS code so that it retains only the RNL dy-
namics. Comparisons of turbulence arising from DNS and RNL simulations demon-
strate that the RNL system supports self-sustaining turbulence with a mean flow
as well as structural and dynamical features that are consistent with DNS. These
results demonstrate that the simplified RNL system captures fundamental aspects
of fully developed turbulence in wall-bounded shear flows and motivate use of the
RNL/S3T framework for further study of wall-turbulence. C© 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4898159]

I. INTRODUCTION

The Navier-Stokes (NS) equations provide a comprehensive model for the dynamics of turbu-
lence. Unfortunately, these equations are analytically intractable. They have, however, been exten-
sively studied computationally since the pioneering work of Kim, Moin, and Moser1 and a number of
highly resolved numerical simulations exist, see, e.g., Refs. 2–5. Ever increasing computing power
promises to make possible simulation of an even wider range of turbulent flows. However, a com-
plete understanding of the physical mechanisms underlying turbulence in the NS equations, even in
simple parallel flow configurations, remains elusive. Thus, considerable effort has been devoted to
the search for more tractable models for studying the dynamics of turbulence.

The Linearized Navier-Stokes (LNS) equations are a particularly appealing simplified model
because they can be analyzed using well developed tools from linear systems theory.6, 7 These
equations have been used extensively to characterize energy growth and disturbance amplification
in wall-bounded shear flows, in particular the large disturbance amplification that arises from the
non-normal linear operators governing these flows.8–15 The LNS equations capture the energy
production mechanism of the full nonlinear system16 and linear non-normal growth mechanisms
have been shown to be necessary for sub-critical transition to turbulence.17 Related studies of the
LNS equations have also provided insight into the mechanism maintaining turbulence. In particular,
investigations involving the Orr-Sommerfeld-Squire equations have illustrated that linear coupling
between these operators is required to generate the wall layer streaks that are a necessary component
of the process maintaining turbulence in wall-bounded shear flows.18, 19 In this context, the term
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“streak” describes a “well-defined elongated region of spanwise alternating bands of low and high
speed fluid.”20 The LNS equations have also been used to predict second-order statistics21 and the
spectra of turbulent channel flows.18, 22–26 The above results and a host of others illustrate the power
of the LNS equations as a model for studying physical mechanisms in wall-turbulence. While the
LNS equations provide insight into a number of aspects of the mechanisms underlying turbulence,
there are two fundamental aspects of turbulence that the LNS system is unable to comprehensively
model: the turbulent mean velocity profile and the mechanism that maintains turbulence.

Empirical models have also proven useful in capturing certain aspects of turbulent flows. For
example, Proper Orthogonal Decomposition (POD) has been used to construct low dimensional
ordinary differential equation models of turbulent flows, see, e.g., Refs. 27 and 28. However,
empirical models of this type are constructed based on data resulting from experiments or simulations
rather than proceeding directly from the NS equations.

Researchers have also sought insight into turbulence through examining numerically obtained
three-dimensional equilibria and periodic orbits of the NS equations, see, e.g., Refs. 29 and 30. For
plane Couette flow, the first such numerical solution was computed by Nagata.31 Details concerning
these numerically obtained fixed points and periodic orbits for plane Couette flow can be found in
Refs. 32 and 30. These solutions reflect local properties of the attractor and the extension of these
solutions to the global turbulent dynamics has yet to be completed.

The 2D/3C model33–35 is a recent attempt to obtain a simplified model that is nonlinear, analyti-
cally tractable and derived from the NS equations. The assumptions underlying this model are based
on experimental36–38 and analytical evidence13, 15, 25, 39 pointing to the central role of streamwise
coherent structures in wall-turbulence. This streamwise constant model has been used to accu-
rately simulate the mean turbulent velocity profile,35 to identify the large-scale spanwise spacing
of streamwise coherent structures and to study the energetics of fully developed turbulent plane
Couette flows.40 The primary limitation of the 2D/3C model is that it does not retain the dynamics of
streamwise varying perturbations and instead relies on external excitation to generate a perturbation
field. As a consequence, the 2D/3C system supports only one-way coupling, that is the perturbation
field influences the mean flow but is not itself influenced by the mean flow. Moreover, the system
requires persistent excitation to sustain a turbulent state. In fact, the laminar solution of the unforced
2D/3C model has been shown to be globally asymptotically stable.41, 42, 69

The current work describes a more comprehensive model that is similar to the 2D/3C model in
its use of a streamwise constant mean flow, but which also incorporates two-way interaction between
this streamwise constant mean flow and a streamwise varying perturbation field. This coupling is
chosen to parallel that used in the Stochastic Structural Stability Theory (S3T) model.43 The S3T
equations are comprised of the joint evolution of the streamwise constant mean flow (first cumulant)
and the ensemble second order perturbation statistics (second cumulant), and can be viewed as a
second order closure of the dynamics of the statistical state. These equations are closed either by
parameterizing the higher cumulants by a stochastic excitation13, 44, 45 or by setting the third cumulant
to zero, see, e.g., Refs. 46–48. This restriction of the NS equations to the first two cumulants involves
parameterizing or neglecting the nonlinear interactions between the streamwise varying perturbations
in the NS equations while retaining the interaction between these perturbations and the streamwise
constant mean flow. This closure results in a nonlinear autonomous dynamical system that governs
the evolution of the statistical state of the turbulence comprising this mean flow and its second order
perturbation statistics. The restricted nonlinear (RNL) model described in the current work shares
the dynamical restrictions of the S3T model but approximates the statistical closure by constructing
the covariance using a single realization of the flow. In other words, a simulation of the RNL system
produces the statistical state dynamics by approximating the second cumulant using a single member
of the infinite ensemble that forms the covariance in the S3T dynamics.

The S3T model has recently been used to study the dynamics of fully developed wall-
turbulence,49 in particular that of the roll and streak structures. These prominent features of wall-
turbulence were first identified in the buffer layer.50 Rolls and streaks have often been suggested
to play a central role in maintaining wall-turbulence. However, neither the laminar nor the turbu-
lent streamwise mean velocity profile gives rise to these structures as a fast inflectional instability
of the type generally associated with the rapid transfer of energy from the mean flow that sustains
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the perturbation field. These structures are, however, associated with optimal transient growth in
wall-bounded shear flows, which leads to robust transfer of energy from the mean wall-normal
shear to the perturbation field. In particular, this transfer occurs as the roll circulation drives the
streak perturbation through the lift-up mechanism.51 One posited resolution of the conundrum posed
by the ubiquity of the roll and streak structure in turbulence despite the linear stability of these
structures, is their participation in a regeneration cycle in which the roll is maintained by pertur-
bations resulting from the break-up of the streaks.52, 53 This proposed cycle is a nonlinear process
whereby the turbulence is sustained by recurring excitation of the linear non-normal lift-up growth
process.

The regeneration cycle of rolls and streaks has been attributed to a variety of alternative mech-
anisms collectively referred to as self-sustaining processes (SSPs). One class of SSP attributes the
perturbations sustaining the roll circulation to an inflectional instability of the streak.54–57 However,
other researchers subsequently observed that most streaks in the buffer layer are too weak to sup-
port inflectional instability and postulated that transient growth is an equally plausible explanation
for the origin of roll-maintaining perturbations.58 Moreover, transiently growing perturbations can
potentially tap the energy of the wall-normal mean shear. In fact, an important class of optimally
growing perturbations in wall-bounded shear flows are oblique waves with this property of drawing
on the mean shear59 and consistently, oblique waves are commonly observed to accompany streaks
in wall-turbulence.58 The mechanism in which transiently growing perturbations that draw on the
mean shear to maintain the roll/streak complex through a SSP requires an explicit explanation for
the collocation of the perturbations with the streak, whereas SSPs based on instability of the streak
inherently provide this explanation. A related SSP mechanism has been identified in the S3T system.
In that SSP, which can be fully characterized using the theory of statistical state dynamics, the roll
is also maintained by transiently growing perturbations that tap the energy of the mean shear rather
than by an inflectional instability of the streak. The crucial departure from previously proposed
transient growth mechanisms is that these transiently growing perturbations result from parametric
instability of the time-dependent streak60 rather than arising from break-down of the streak.61 This
parametric SSP explains inter alia the systematic collocation of the streak with the roll-forming
perturbations and the systematic transfer of energy from the wall-normal shear to maintain the
streak. The discussion above demonstrates that there remains a substantial difference of opinion
among investigators as to how the nonlinear instability inherent to the conceptual model of the SSP
operates. Clearly, there is a need for further investigation and new tools in order to comprehensively
characterize the SSP. One such tool is provided by the RNL framework, which has a number of
advantages for investigating the underlying dynamics of the SSP including its simplified dynamical
setting that is directly derived from NS and easy to implement within an existing Direct Numerical
Simulation (DNS). In addition, the RNL modeling framework does not rely on a particular Reynolds
number or channel size to isolate the underlying mechanisms and therefore Reynolds number trends
as well as the dynamics of the SSP in large channels can be explored. Another advantage of the RNL
framework is that it does not model particular features of the SSP in isolation but rather captures the
dynamics of these structures as part of the system dynamics.

In this paper, we first verify that the S3T dynamics are well approximated by the RNL model.
We then demonstrate that the RNL system produces self-sustaining turbulence that is naturally
supported by a small number of streamwise modes. Comparisons with DNS show that simulations
of the RNL system produce accurate mean statistical quantities such as the mean velocity profile
while supporting roll and streak structures that are consistent with those involved in the SSP of
wall-turbulence. The large-scale features, perturbation energies, and spectra obtained from RNL
simulations also compare favorably with those of DNS. The RNL system therefore acts as a bridge
between the analytically tractable dynamics of the S3T system,60 which can be studied using the
powerful methods of matrix analysis, and DNS. Its relative analytical and computational tractability
when compared to DNS along with its ability to retain essential features of wall-turbulence suggests
that the RNL model and the associated S3T framework provide a powerful new platform with which
to study the dynamics of wall-turbulence. For example, the severe restriction of the nonlinearity in
the dynamics of the RNL together with its greatly reduced dimension may allow us to gain insight
that can be used to develop flow control strategies.
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The remainder of this paper is organized as follows. Section II derives the RNL model from the
NS equations and establishes its relation to the S3T system. In Sec. II B we describe our numerical
approach and then in Sec. III we demonstrate that the RNL system produces turbulence that is
strikingly similar to that of DNS. This result verifies that the interaction between the perturbations and
the streamwise constant mean flow retained in the RNL/S3T framework is sufficient for maintaining
turbulent behavior. In Sec. IV we compare fully developed RNL turbulence to that arising from
a stochastically forced 2D/3C model, to highlight the importance of the fundamental interactions
between the perturbations and the mean flow. These interactions, which are present in the RNL
model but not in the 2D/3C model, are essential for sustaining turbulence. Finally, we conclude the
paper and point to directions of future study.

II. METHODS

A. Modeling framework

Consider a plane Couette flow between walls with velocities ±Uw. The streamwise direction is
x, the wall-normal direction is y, and the spanwise direction is z. Quantities are non-dimensionalized
by the channel half-width, δ, and the wall velocity, Uw. The non-dimensional lengths of the chan-
nel in the streamwise and spanwise directions are, respectively, Lx and Lz. Streamwise averaged,
spanwise averaged, and time averaged quantities are, respectively, denoted by angled brackets,
〈 • 〉 = 1

Lx

∫ Lx

0 •dx , square brackets, [•] = 1
Lz

∫ Lz

0 •dz, and an overline • = 1
T

∫ T
0 •dt , with T suffi-

ciently large. The velocity field uT is decomposed into its streamwise mean, U(y, z, t) = (U, V, W ),
and the deviation from this mean (the perturbation), u(x, y, z, t) = (u, v, w). The pressure gradient
is similarly decomposed into its streamwise mean, ∇P(y, z, t), and the deviation from this mean,
∇p(x, y, z, t). The corresponding Navier-Stokes (NS) equations are

Ut + U · ∇U + ∇ P − 1

R
�U = −〈u · ∇u〉, (1a)

ut + U · ∇u + u · ∇U + ∇ p − 1

R
�u = − (u · ∇u − 〈u · ∇u〉) + ε, (1b)

∇ · U = 0,∇ · u = 0, (1c)

where the Reynolds number is defined as R = Uwδ/ν, with kinematic viscosity ν. The parameter ε

in (1b) is an externally imposed divergence-free stochastic excitation that is used to induce transition
to turbulence.

We derive the RNL system from (1) by first introducing a stochastic excitation, e, to parameterize
the nonlinearity, u · ∇u − 〈u · ∇u〉 as well as divergence-free external excitation ε in (1b) to obtain

Ut + U · ∇U + ∇ P − 1

R
�U = −〈u · ∇u〉, (2a)

ut + U · ∇u + u · ∇U + ∇ p − 1

R
�u = e, (2b)

∇ · U = 0,∇ · u = 0. (2c)

This results in a nonlinear system where (2a) describes the dynamics of a streamwise mean flow
driven by the divergence of the streamwise averaged Reynolds stresses; we denote these streamwise
averaged perturbation Reynolds stress components as, e.g., 〈uu〉, 〈uv〉. On the other hand, Eq.
(2b) accounts for the interactions between the streamwise varying perturbations, u(x, y, z, t), and
the streamwise constant mean flow, U(y, z, t). Equation (2b) can be linearized around U(y, z, t)
to yield

ut = A(U)u + e, (3)

where A(U) is the associated linear operator, which is described in detail in the Appendix.
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The closely related S3T system is obtained by making the ergodic assumption of equating the
streamwise average with the ensemble average over realizations of the stochastic excitation ε in
(1b). The S3T system is then formed as a second order closure of the NS equations in (1), in which
the first order cumulant is U and the second order cumulant is the corresponding spatial covariance
C between any two points x1 and x2. We refer to the resulting closed system of equations as the
(second order) statistical state dynamics of the flow:

Ut = −U · ∇U − ∇P + 1

R
�U + LC, (4a)

Ct = (A1(U) + A2(U)) C + Q. (4b)

Here, Q is the second order covariance of the stochastic excitation, which is assumed to be
temporally delta correlated, and LC denotes the divergence of the streamwise averaged Reynolds
stresses expressed as a linear function of the covariance C. The expression A1(U)C accounts for the
contribution to the time rate of change of the covariance arising from the action of the operator A(U)
evaluated at point x1 on the corresponding component of C. A similar relation holds for A2(U)C .
Further details regarding Eqs. (3) and (4) are provided in the Appendix.

In isolation, the mean flow dynamics (4a) define a streamwise constant or 2D/3C model of
the flow field35, 41 forced by the divergence of the streamwise averaged Reynolds stresses specified
by LC . The S3T system (4) describes the statistical state dynamics closed at second order, which
has been shown to be sufficiently comprehensive to allow identification of statistical equilibria
of turbulent flows and permit analysis of their stability.60 The S3T system provides an attractive
theoretical framework for studying turbulence through analysis of its underlying statistical mean
state dynamics. However, it has the perturbation covariance as a variable and as a result becomes
computationally intractable for high dimensional systems. In particular, the perturbation covariance
has dimension O(N2) for a system of dimension O(N) and is only directly integrable for low order
systems.

The RNL model shares the dynamical restrictions of the S3T model and these systems can
therefore be directly related to one another. Results obtained from the RNL and S3T models will
agree if the exact covariance of the S3T is adequately approximated by the single ensemble member
retained in the RNL model. Since the RNL model in (2) uses a single realization to approximate the
ensemble covariance rather than employ the infinite ensemble of the S3T dynamics, it avoids explicit
time integration of the perturbation covariance equation and therefore facilitates computationally
efficient studies of the S3T system dynamics. The RNL system has the additional advantage that it
can be easily implemented by restricting a DNS code to the RNL dynamics in (2).

In this paper we consider the unforced RNL system, which corresponds to setting e = 0 in
(2b). This system models the RNL dynamics occurring after an initial transient phase during which
an excitation has been applied to initiate turbulence. We demonstrate that subsequent to this tran-
sient phase, the RNL system supports turbulence that closely resembles a DNS of fully developed
turbulence in plane Couette flow.

B. Numerical method

The numerical simulations in this paper were carried out using a spectral code based on the
Channelflow NS equations solver.62, 63 The time integration uses a third order multistep semi-implicit
Adams-Bashforth/backward-differentiation scheme that is detailed in Ref. 64. The discretization
time step is automatically adjusted such that the Courant-Friedrichs-Lewy (CFL) number is kept
between 0.05 and 0.2. The spatial derivatives employ Chebyshev polynomials in the wall-normal
(y) direction and Fourier series expansions in the streamwise (x) and spanwise (z) directions.65

No-slip boundary conditions are employed at the walls for the y component and periodic boundary
conditions are used in the x and z directions for all of the velocity fields. Aliasing errors from the
Fourier transforms are removed using the 3/2-rule, as detailed in Ref. 66. A zero pressure gradient is
imposed in all simulations. Table I provides the dimensions of the computational box, the number of
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TABLE I. Geometry for the numerical simulations. x, y, and z define the computational domain. Nx, Ny, and Nz are the
number of grid points in their respective directions. Mx and Mz are the number of respective x and z Fourier modes used after
dealiasing and My is the number of Chebyshev modes used in each simulation.

x y z Nx × Ny × Nz Mx × My × Mz

DNS [0, 4π ] [− 1, 1] [0, 4π ] 128 × 65 × 128 83 × 65 × 41
RNL [0, 4π ] [− 1, 1] [0, 4π ] 16 × 65 × 128 9 × 65 × 41
2D/3C [− 1, 1] [0, 4π ] 65 × 128 65 × 41

grid points, and the number of spectral modes for the DNS and simulations of the RNL and 2D/3C
systems.

In both the DNS and RNL simulations we use the respective stochastic excitations ε in (1) and
e in (2) only to initiate turbulence. In order to perform the RNL computations the DNS code was
restricted to the dynamics of (2) with e = 0.

For simulations of the 2D/3C system, the influence of the instantaneous mean flow U(y, z, t) on
the perturbation dynamics was eliminated by replacing the term U · ∇u + u · ∇U on the right-hand
side of (2b) with Ulam · ∇u + u · ∇Ulam, where Ulam = (U (y), 0, 0) defines the laminar velocity
profile for plane Couette flow with U(y) = y.

III. RESULTS

In this section we compare simulations of the RNL system (2) to DNS of fully developed
turbulence in plane Couette flow. Turbulence is initiated by applying the stochastic excitation ε in
(1b) for the DNS cases and e in (2b) for the RNL simulations over the interval t ∈ [0, 500], where
t represents convective time units. All of the averaged quantities reported are for t > 1000 and all
of the results in this section are based on R = 1000. The geometry and resolution for each of the
DNS and RNL cases in this section are given in Table I. This table reflects one of the computational
benefits of the RNL system: the fact that its turbulence is supported by a greatly reduced number of
streamwise modes. This reduction in the dimension of the dynamics supporting the turbulent state in
the RNL system is not a restriction of the dynamics but rather a direct consequence of the modeling
framework, and is consistent with the similar reduced number of streamwise modes that supports
turbulence in the S3T system as discussed in Ref. 60. We verified that increasing the number of
streamwise modes used for the RNL simulations has no effect on the simulation results reported
herein.

The turbulent mean velocity profile obtained from the DNS is compared to that obtained using
the unforced RNL system in Figure 1(a). Figure 1(b) provides a comparison of the same data in
wall units, u+ = u/uτ and y+ = (y + 1)uτ /ν with friction velocity uτ = √

τw/ρ, Reτ = uτ δ/ν, and
ν = 1/R. The wall unit values for the DNS data shown in Figure 1(b) are Reτ = 66.2 and uτ /Uw

= 6.62 × 10−2, while the corresponding parameters for the RNL simulation are Reτ = 64.9 and
uτ /Uw = 6.49 × 10−2. Figure 1 illustrates good agreement between the turbulent mean velocity
profile obtained from the RNL simulation and that obtained from the DNS, which is consistent with
recent studies.49, 67

Instantaneous snapshots of the turbulent velocity fields from the DNS and the RNL simulation
are displayed in Figure 2, which shows contour plots of the U velocity field with the V , W vector
fields superimposed. The particular snapshots shown in Figure 2 suggest that the DNS and the
RNL system produce similar roll circulations and streak structures. We investigate the similarity of
the streaks arising from the DNS and the RNL simulation further in Figures 3(a) and 3(b), which,
respectively, show the spectral densities of the streak velocity, U − [U ], at y+ = 15 and the center
of the channel. The reported values are averaged over 1000 convective time steps. The spectral
densities of the streaks obtained from the RNL simulation and the DNS at y+ = 15 have nearly the
same peak energy density, which occurs at a wavelength of 4π /3δ. At this wall normal location, the
energy density of the streaks in both systems sharply decay at longer wavelengths. At the channel
center, the RNL simulation and DNS agree well at low wave numbers and show similar trends.
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FIG. 1. Turbulent mean velocity profiles (based on streamwise, spanwise, and time averages) in (a) geometric units and
(b) wall units obtained from the DNS (red solid line) and the RNL simulation (black dashed line).

However, the streak energy density of the DNS attains a higher peak. The streak energy density of
the RNL system also shows a broader peak that occurs over λz ∈[2π , 4π ]δ versus λz ∈[2π , 4π /3]δ
in the DNS. The results in Figure 3 show close agreement between the spectral density of the DNS
and RNL system streaks in the near wall region and only modest differences at the center of the
channel.

(b)

0 2 4 6
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1

0 2 4 6
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1

(a)

FIG. 2. A y-z plane cross-section of the flow (at x = 0) at a single snapshot in time for the (a) DNS and the (b) RNL
simulation. Both panels show contours of the streamwise component of the flow, uT, with the wall-normal and spanwise
velocity vectors superimposed. The RNL is self-sustaining (e = 0) for the time shown. (a) DNS, (b) RNL.
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FIG. 3. Averaged spectral densities of the streak velocity, U − [U ], at (a) the center of the channel and (b) y+ = 15. Each
panel compares the RNL simulation (black squares) to the DNS (red squares). Lines are shown solely to guide the eye.
(a) y+ = 15, (b) channel center.

Figure 4 shows the spanwise premultiplied spectra, kz Ei (ỹ, λz) for the RNL simulation and the
DNS. Here we define the spanwise premultiplied spectra as

kz Ei (ỹ, λz) = kz

∑
kx

Eii (ỹ, kx , kz)
∑

ỹ

∑
kx

Eii (ỹ, kx , kz)
, (5a)

Eii (ỹ, kx , kz) = î(ỹ, kx , kz) î†(ỹ, kx , kz), (5b)

where λz = Lz/kz, ỹ = y + 1, i ∈ {u, v, w}, î is the Fourier transform of i with respect to x and
z, and î† is the complex conjugate of î . The premultiplied spectra of both the DNS and the RNL
simulation exhibit a shift from longer wavelengths far from the wall to smaller wavelengths closer
to the wall. The results for kz Ev(ỹ, λz) and kz Ew(ỹ, λz) show modest differences, in particular the
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FIG. 4. Normalized premultiplied spectra kz Ei (ỹ, λz) for i = {u, v, w} as a function of spanwise wavelength, λz/δ, and ỹ/δ,
where ỹ = y + 1. Panels (a)–(c) respectively show kz Eu (ỹ, λz), kz Ev(ỹ, λz), and kz Ew(ỹ, λz) from the RNL simulation.
Panels (d)–(f) show the same quantities computed from the DNS.
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FIG. 5. Normalized premultiplied spectra kx Ei (ỹ, λx ) for i = {u, v, w} as a function of streamwise wave length, λx/δ, and
ỹ/δ, where ỹ = y + 1. Panels (a)–(c) respectively show kx Eu (ỹ, λx ), kx Ev(ỹ, λx ), and kx Ew(ỹ, λx ) from the RNL simulation.
Panels (d)–(f) show the same quantities for the DNS. The RNL premultiplied spectra exhibit a rapid falloff in streamwise
energies in comparison to the DNS premultiplied spectra.

peaks of these spectra occur at a smaller spanwise wavelength in the DNS data versus the RNL
results. This reflects a mildly steeper falloff in the energy associated with the small scales in the
DNS as compared to the RNL system. The kz Eu(ỹ, λz) values for the DNS shown in Figure 4(d)
have a pronounced bimodality and localized concentration of the spanwise premultiplied spectra
around a small interval of spanwise wavelengths. These features are not seen in the RNL results in
Figure 4(a) and this difference is the subject of ongoing work.

Figure 5 shows the corresponding streamwise premultiplied spectra, calculated in a manner
consistent with (5). Here, the effect of the reduced number of streamwise modes that are supported
by the RNL system dynamics is clear. The concentration of these spectra in the largest scales results
directly from setting e = 0 in (2b). When this is done, all but a small number of the streamwise
modal energies in the RNL vanish rapidly, i.e., when e = 0 the RNL system is naturally supported
by a small number of streamwise harmonics. Consequently, the RNL model can be explored using
simulations with a very small number of streamwise modes. The practical application of this result
is made clear in Table I, which shows that only 16 streamwise modes are needed to calculate the
RNL model as opposed to 128 streamwise modes for the DNS.

Figure 6 shows the time-averaged Reynolds stresses, [〈u′+u′+〉], [〈u′+v′+〉], [〈v′+v′+〉], and
[〈w′+w′+〉] where the streamwise fluctuations, u′, are defined as u′ = uT − uT , the wall-normal
fluctuations, v′, are defined as v′ = vT − vT and the spanwise fluctuations, w′, are defined as
w′ = wT − wT . u′+, v′+, and w′+ designate these fluctuations scaled by uτ , such that u′+ = u′/uτ ,
v′+ = v′/uτ , and w′+ = w′/uτ . These figures illustrate close agreement between the u′v′ Reynolds
stress obtained from the RNL simulation and DNS. As shown in Figure 1(b), the turbulent flow
supported by DNS and the RNL simulation exhibit nearly identical shear at the boundary. Therefore,
the average energy input and by consistency the dissipation must be the same in these simulations.
On the other hand, the streamwise component of the time-averaged Reynolds stresses, u′u′, attains
a higher peak magnitude in the RNL simulation than in the DNS. This difference is not surprising
because the streamwise varying components are substantially influenced by interactions with small
scales in the flow. The nonlinear interactions between the streamwise varying perturbations that are
neglected by the RNL model participate in the transfer of energy to the small scales of the flow
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FIG. 6. Time-averaged Reynolds stresses (a) [〈u′+u′+〉], (b) [〈u′+v′+〉], (c) [〈v′+v′+〉] and (d) [〈w′+w′+〉] obtained from the
DNS (red solid line) and the RNL simulation (black dashed line).

and removing these interactions leads to the elimination of flow energy associated with higher wave
numbers. As a result, there is substantially reduced effective perturbation induced dissipation of the
supported lower wave number fluctuations. Under this curtailment of spectral transfer, the associated
time-averaged streamwise normal Reynolds stress attains a larger magnitude at equilibrium in the
RNL system. In contrast, the wall-normal and spanwise time-averaged Reynolds stress components
have a lower magnitude in the RNL model as compared to the DNS. This indicates that the Reynolds
stresses required to maintain the RNL mean velocity profile at statistical equilibrium are being
produced by smaller RMS amplitudes for the v′ and w′ velocity components. Further characterization
of these differences and the related dynamics are the subject of continuing investigation.

Figures 7(a), 8(a), and 9(a), respectively show close agreement in the root-mean-square (RMS)
velocity departure from laminar, defined as

√
(uT − Ulam)2, the RMS streak velocity,

√
(U − [U ])2,

and the RMS roll velocity,
√

V 2 + W 2, obtained from the RNL simulation and the DNS. Although
these values are reported over the time interval t ∈ [200, 2000], the behavior remains consistent over
longer time periods and when different time intervals are selected. The fact that the RNL system
produces self-sustaining turbulence is demonstrated in these figures as the system maintains the
same behavior after the initial forcing is removed (i.e., there are no differences observed between
the behavior before and after t = 500).

The time scales associated with the RMS of the velocity deviation from laminar, the RMS
streak velocity, and the RMS roll velocity are explored in Figures 7(b), 8(b), and 9(b), which display
the temporal Fourier spectra associated with these quantities calculated over the time interval
t ∈ [1000, 6000]. These plots show close agreement in the time-scales of these quantities especially
in the RMS of the velocity departure from laminar and the RMS streak. The RMS roll spectrum has
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FIG. 7. (a) RMS of the velocity deviation from laminar,
√

(uT − Ulam)2 versus time for the DNS (red solid line) and the
RNL simulation (black dashed line) and (b) the corresponding Fourier spectrum for the DNS (red triangles) and the RNL
simulation (black squares).

a higher amplitude than the DNS, especially in the energy associated with the longest scales. This
difference is the topic of ongoing study. The close correspondence between the RNL simulation
and the DNS in the quantities depicted in Figures 7–9 indicates that the RNL system accurately
captures important structural features of turbulence despite its dynamical restrictions. These results
also indicate strong similarities between the structural features of the rolls and streaks in RNL
turbulence and the roll/streak structures that play a key role in the SSP identified in the S3T model.60

This observation combined with the close relationship between the S3T and RNL dynamics suggest
that these SSPs share an underlying mechanism. Further investigations of these similarities is the
subject of ongoing work.

Figure 10(a) shows Reτ from the RNL simulation and the DNS as a function of dimensionless
time, uτ t/δ. The time interval in Figure 10(a) corresponds to t ∈ [1000, 6000], which verifies that
the RNL system maintains turbulence over an extended interval of time. The RNL simulation
thus exhibits both self-sustaining behavior and dissipation comparable to that of DNS. Figure 10(b)
compares the temporal Fourier spectrum of Reτ of the RNL simulation and the DNS. This calculation
used the convective time t rather than the dimensionless time, uτ t/δ reported in Figure 10(a). As with
the spectra of the velocity measures reported in Figures 7(b), 8(b), and 9(b), the Fourier spectrum of
Reτ shows that the RNL system and DNS have similar temporal behaviors.
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FIG. 8. (a) RMS streak velocity,
√

(U − [U ])2 versus time for the DNS (red solid line) and the RNL simulation (black
dashed line) and (b) the corresponding Fourier spectrum for the DNS (red triangles) and the RNL simulation (black squares).
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FIG. 9. (a) RMS roll velocity,
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V 2 + W 2 versus time for the DNS (red solid line) and the RNL simulation (black dashed
line) and (b) the corresponding Fourier spectrum for the DNS (red triangles) and the RNL simulation (black squares).
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FIG. 10. (a) Reτ versus dimensionless time, uτ t/δ obtained from the DNS (red solid line) and the RNL simulation (black
dashed line) and (b) Fourier spectrum of the time evolution of Reτ for the DNS (red triangles) and the RNL simulation (black
squares). This Fourier spectrum is calculated for Reτ versus the convective time scale, t, as opposed to the dimensionless
time parameter, uτ t/δ, used in (a). The time-averaged values corresponding to the DNS data are Reτ = 66.2 and uτ /Uw =
6.62 × 10−2. The corresponding values for the RNL simulation are Reτ = 64.9 and uτ /Uw = 6.49 × 10−2.

IV. COMPARISON OF THE RNL AND 2D/3C MODELS

We now verify the fundamental role of the coupling between the mean flow equation (2a) and
the perturbation equation (2b) in the maintenance of turbulence in the RNL system by comparing
the RNL and 2D/3C models.35 The 2D/3C system can be obtained from (4) by replacing the
instantaneous mean flow U(y, z, t) in (4b) with the laminar Couette flow Ulam = U (y) in order to
eliminate the interaction whereby the mean flow influences the perturbations. In this case, we can
express the mean flow dynamics as a forced streamwise constant (2D/3C) system given by

Ut + U · ∇U + ∇P − 1

R
�U = LC∞, (6a)

(A1(Ulam) + A2(Ulam)) C∞ = −Q, (6b)

where C∞ denotes the asymptotic equilibrium of the perturbation covariance and Q is the second
order covariance of a spatially (in y and z) and temporally delta-correlated, divergence free stochastic
excitation, that is, Tukey filtered to match the boundary conditions, see, e.g., Ref. 49.

Figure 11(a) shows the same mean velocity profiles as in Figure 1(a) along with one obtained
using a stochastically forced 2D/3C model.35 This plot demonstrates close correspondence between
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FIG. 11. (a) Turbulent mean velocity profiles (based on a streamwise, spanwise, and time averages) obtained from
the DNS (red solid line), and simulations of the RNL (black dashed line) and 2D/3C systems (blue dashed-
dotted line). There is no stochastic excitation applied to the DNS or the RNL simulation during the time inter-
val used to generate the profile, whereas the 2D/3C simulation was continuously forced with e = 0.030. (b) The
RMS streak velocity

√
(U − [U ])2 obtained from the DNS (red solid line) as well as the RNL (black dashed

line) and 2D/3C simulations (blue dashed-dotted line) where stochastic excitation was applied to each model
for t ∈ [0, 500], i.e., the excitation was stopped at t = 500, which is indicated by the vertical red dotted
line.

the mean velocity profiles obtained from DNS and simulations of the 2D/3C and RNL systems.
Figure 11(b) shows the time evolution of the RMS streak velocity from the DNS as well as that from
the 2D/3C and RNL simulations. This figure shows that the streak in the 2D/3C model gradually
decays to zero after the external excitation is removed at t = 500. These results demonstrate that a
stochastically forced 2D/3C model accurately captures the turbulent mean flow profile, but cannot
maintain turbulence without persistent excitation, see, e.g., Refs. 41, 69.

The critical difference between the 2D/3C and RNL systems is that the 2D/3C model lacks
two-way interaction between the mean flow (2a) and the perturbation dynamics (2b). This difference
is summarized by the block diagram in Figure 12. Both of these models include pathway 1© in which
the perturbations, u(x, y, z, t), influence the dynamics of the mean flow, U(y, z, t). However, the RNL
system (and its associated ensemble mean S3T model) also includes the feedback pathway 2©, from
the mean flow to the perturbation dynamics. In Figure 11(b) the effect of this feedback from the mean
flow to the perturbations, pathway 2© in Figure 12, is seen to be critical for capturing the mechanism
of the SSP maintaining the turbulent state. As shown in Sec. III and in Figure 11, turbulence in the
RNL system self-sustains (i.e., is maintained in the absence of stochastic excitation). Turbulence
maintained by the same mechanism was seen previously in the S3T system in a minimal channel
study.60

FIG. 12. In both the 2D/3C and the unforced RNL model (II A) (and its associated ensemble mean S3T model) the
perturbations, u, influence the dynamics of the mean flow, U. This coupling is denoted pathway 1© in the block diagram.
The RNL and S3T models augment the 2D/3C formulation with feedback from the mean flow to the perturbation dynamics,
which is illustrated through pathway 2©.
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In addition to being necessary to produce self-sustaining turbulence, the feedback from the
mean flow to the perturbations produces streaks that are quantitatively and qualitatively similar to
those observed in the DNS results, and notably more accurate than those obtained in the 2D/3C
simulation. This result is consistent with the fact that in the 2D/3C model the streak is not regulated
by feedback from the mean flow to the perturbation field, pathway 2© in Figure 12. Therefore,
understanding the maintenance of the roll and streak structures as well as the mechanism by which
turbulence is maintained in a statistical steady state requires a model that includes feedback from
the streamwise constant mean flow to the streamwise varying perturbation dynamics. Remarkably,
only this additional feedback needs to be added to the 2D/3C system to capture the dynamics of the
SSP, that is to both maintain the turbulent state and enforce its statistical equilibrium.

V. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

In this work we have demonstrated that the RNL system, which adopts the dynamical restrictions
of the S3T model, self-sustains turbulent activity. Comparisons between RNL simulations and
DNS demonstrate good agreement between the mean velocity fields and the dynamically central
[〈u′+v′+〉] component of the time-averaged Reynolds stress, while quantitative differences in the
normal Reynolds stress components are seen. The results of this work suggest that the maintenance
of turbulence is crucially related both to the influence of the perturbations on the streamwise mean
flow (captured in the forced 2D/3C model) and the feedback from the mean flow to the streamwise
varying perturbation field, which is additionally retained in the RNL model. Given that the RNL
system restricts nonlinearity to the mean flow equations and nonlinear coupling to that between the
streamwise mean flow components and the perturbations, this agreement indicates that this highly
restricted dynamics captures the fundamental mechanism sustaining turbulence in plane Couette
flow. The ability to capture self-sustaining turbulence in a computationally and analytically tractable
framework opens up new avenues for probing the dynamics of wall-turbulence and developing
flow control strategies. The insight gained through this restricted model can then be tested in
DNS.

The RNL model shares the dynamical restriction of the S3T system and can be obtained
directly from a DNS by eliminating the streamwise varying perturbation-perturbation nonlinearity
while retaining the streamwise constant mean-perturbation nonlinearities. The results of this work
demonstrate that S3T dynamics are well approximated by the single realization of the S3T covariance
used in the RNL model. The RNL system can therefore be seen as providing a bridge between the
S3T model and DNS, which allows analytic insights gained using the S3T model to be related to
DNS and for the mechanisms operating in these systems to be comprehensively compared. Ongoing
work is aimed at explicitly investigating the dynamical similarities and differences in these systems.
A major focus of this work involves exploiting insight gained from the previous studies of the S3T
system. The close connection between the dynamics of the RNL and S3T models and the similarities
between the structural features of the rolls and streaks that play a key role in the S3T and RNL
dynamics provides evidence that the same mechanisms are operating in these systems. The SSP of
the S3T system is well understood and ongoing work aims to characterize the extent to which this
same SSP operates in the RNL dynamics. Forming a successful connection between these SSPs and
that of the DNS holds the promise of providing insight into the dynamics of wall-turbulence.
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APPENDIX: DETAILS OF THE S3T/RNL SYSTEM FORMULATION

The operator A(U) in (3) is obtained by taking the divergence of (2b) and using continuity (1c)
and ∇ · e = 0 to express the pressure as

p = −�−1 [∇ · (U · ∇u + u · ∇U)] , (A1)

so that

A(U)u = −U · ∇u − u · ∇U + ∇�−1 [∇ · (U · ∇u + u · ∇U)] + 1

R
�u. (A2)

In the above, �−1 is the inverse of the Laplacian, rendered unique by imposition of the no slip
boundary conditions at the channel walls.

As described in Sec. II, the S3T system is a second order closure of the NS equations in (1),
in which the first order cumulant is U and the second order nine component cumulant is the spa-
tial covariance at time t of the flow velocities C ≡ C(1, 2) = 〈〈u1 ⊗ u2〉〉 between the two points
x1 = (x1, y1, z1) and x2 = (x2, y2, z2) where ⊗ is the tensor (outer) product.68 The ensemble aver-
age over forcing realizations is denoted by 〈〈 · 〉〉, which under the ergodic assumption is equivalent
to the streamwise average, i.e., 〈〈 · 〉〉 ≡ 〈 · 〉. The flow then evolves according to (4), which is restated
here for clarity:

Ut = −U · ∇U − ∇P + 1

R
�U + LC,

Ct = (A1(U) + A2(U)) C + Q,

where A1(U)C = 〈(A1(U)u1) ⊗ u2〉 indicates the contribution to the time rate of change of the
covariance from the action of the operator A(U), evaluated at point x1, on the corresponding
component of C, and a similar relation holds for A2(U)C . Q = 〈〈e1 ⊗ e2〉〉 is the second order
covariance of the stochastic excitation under the assumption that the noise is temporally delta
correlated. The mean equation (4a) is forced by the divergence of the perturbation Reynolds stresses
−〈u · ∇u〉 and this term can be expressed as a linear function of the covariance, LC .

If (4a) is considered to be forced independently by a specified Reynolds stress divergence
specified symbolically as LC , then the mean flow dynamics (4a) define a forced streamwise constant
or 2D/3C model of the flow field.35, 41 The S3T system is obtained by closing the dynamics through
the coupling of the perturbation covariance evolution equation (4b) to the streamwise constant 2D/3C
model.
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61 J. Jiménez, “Near-wall turbulence,” Phys. Fluids 25, 101302 (2013).
62 J. F. Gibson, “Channelflow: A spectral Navier-Stokes simulator in C++,” Technical Report (University of New Hampshire,

2014), see Channelflow.org.
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