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ABSTRACT

The stability of the Gulf Stream flow predicted by a nonlinear quasigeostrophic model is examined by employing
an iterative method, which uses both the tangent linear equations and the adjoint tangent linear equations of
the quasigeostrophic model. The basic state flow is the model’s representation of the Gulf Stream as observed
during January and February 1988. The growth of perturbation energy is examined as a measure of disturbance
growth and linear perturbations are found that are optimal in the sense that they maximize the growth of
perturbation energy. The structures of optimal perturbations are compared with the structure of the normal
modes. The optimal perturbations are found to be more locatized and to grow much more rapidly than the
normal modes.

Optimal perturbations are of interest because they can be used to place tight constructive upper bounds on
the growth of perturbations to ocean currents such as the Gulf Stream, and they provide valuable information
about the predictability of such flows.

Initially the stability of a basic-state flow that is stationary in time is considered. The inclusion of time
dependence in the basic state is straightforward using the method adopted here, and it is found that the time
evolution of the basic-state flow can have a large influence on the structure and preferred location of the optimal
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perturbation.

1. Introduction

Stability analysis of atmospheric and oceanic flows

has traditionally involved indentifying the modes of
maximum exponential growth (e.g., Eady 1949; Char-
ney 1947; Pedlosky 1979; Gill 1982). While modal
analysis has enjoyed a fair degree of success in explain-
ing certain aspects of the observed atmospheric cir-
culation (e.g., Frederiksen 1982, 1986, 1989; Freder-
iksen and Webster 1988), modal growth rates are sig-
nificantly reduced by realistic dissipation (e.g., Pedlosky
1979; Valdes and Hoskins 1988; Farrell 1985), and
‘modal analyses often fall short of explaining the rapid
growth rates associated with cyclogenesis. Furthermore,
in the atmosphere, normal modes derived from ob-
served flows are generally global in nature, while in
reality disturbances are often highly localized, at least
in their early stages.

An aiternative to the traditional modal approach to
stability analysis has recently been advanced based on
demonstrations that rapid transient growth can arise
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from nonmodal disturbances (Farrell 1985). Initial
growth of nonmodal disturbances occurs even in ex-
amples for which the basic-state flow field supports no
individual growing normal modes. Under these cir-
cumstances, the energy released by transient growth
can be channeled into neutral or lightly damped modes,
which can attain large amplitude by this mechanism
(Farrell 1988).

A convenient property of unstable modal solutions
is that they grow at the same rate with respect to all
norms. However, in general, normal modes are not
orthogonal, except in the special case of self-adjoint sys-
tems, and it can be shown that the structure of the
disturbance required to optimally excite a normal mode
is not the same as that of the normal mode itself (Farrell
1989). Optimal structures can be found for the general
disturbances for which the growth in a chosen norm
is maximized; for example, Farrell (1989) found op-
timal perturbations that maximize the growth of
quasigeostrophic perturbation root-mean-square
streamfunction amplitude and perturbation energy
over synoptic time periods in a baroclinic atmosphere.
These optimal perturbations were found to have growth
rates and structures consistent with the cyclogenesis
mechanism described by Petterssen and Smebye (1971)
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in which an upper-level disturbance is observed to
overtake a lower-level depression in a vertically sheared
flow. Optimal perturbations characteristically have
specific structures that develop in time and become
oriented in such a way so as to maximize growth in
the chosen norm over the given time interval.

One important reason for studying optimal pertur-
bations is to place an upper limit on the growth that
can occur for a given flow configuration. The rapid
growth associated with optimal perturbations is also
relevant to assessing predictability in numerical models
of both the atmosphere and ocean. It is well known
that small differences in the initial conditions of at-
mospheric general circulation models can give rise to
model forecasts that diverge rapidly in time (e.g., Lor-
enz 1965, 1969a,b, 1982; Charney et al. 1966; Hoffman
and Kalnay 1983; Palmer 1988). While it is often as-
sumed that the most rapidly growing normal mode is
the most important disturbance to study, optimal per-
turbations that grow more rapidly than the most rapidly
growing mode over the forecast time can be found,
which may be more important in limiting predictability
(Lacarra and Talagrand 1988; Farrell 1990). The study
of optimal perturbations can yield information about
preferred locations and mechanisms of model forecast
error growth.

Recently, Farrell and Moore (1992, hereafter FM)
employed an iterative method for finding optimal per-
turbations to oceanic flows using a nonlinear model,
the associated tangent linear model, and its adjoint, in
an extension of the method used by Lacarra and Tal-
agrand (1988). Farrell and Moore demonstrate this
method in a periodic zonal channel and consider pure
barotropic, pure baroclinic, and mixed shear instabil-
ities that develop on a Gaussian jet, with dimensions
and flow parameters similar to those of the observed
Gulf Stream. In this paper, we extend the method of
FM and apply it to a more realistic Gulf Stream con-
figuration using the Harvard open-ocean quasigeo-
strophic model that has been used for forecasting the
Gulf Stream (Robinson et al. 1989a,b). We examine
the stability of a typical Gulf Stream configuration by
finding the most rapidly growing normal mode and,
in addition, a series of optimal perturbations that max-
imize the growth of physically meaningful norms. We
begin by considering the stability of stationary basic
states and then extend our analyses to nonlinear time-
dependent basic states.

The dynamics of ocean eddy formation are not fully
understood, and the influence of eddies on the large-
scale ocean circulation is largely unknown. Theoretical,
modeling, and observational studiesaimed atincreasing
our understanding of eddy formation and the stability
of ocean flows have been undertaken in the context of
both ocean currents (e.g., Hauriwitz and Panofsky
1950; Pedlosky 1964; Tareev 1965; Orlanski and Cox
1973; Killworth 1980; Ikeda 1981; Tracey and Watts
1986) and the open ocean (e.g., Robinson and Mc-

MOORE AND FARRELL

1683

Williams 1974; Gill et al. 1974; MODE Group 1978).
The Gulf Stream is often considered to be an archetypal
western boundary current, and previous studies have
focused either on the influence that different parameter
ranges have on Gulf Stream stability (Orlanski and Cox
1973; Holland and Haidvogel 1980) or on the dynamics
of particular events such as meander and eddy for-
mation (Ikeda 1981; Robinson et al. 1988). While the
example considered here was chosen to illustrate a
method of stability analysis, it also demonstrates the
power of the tangent linear model and its adjoint as
an analysis tool for examining the stability of complex
mixed barotropic and baroclinic flow fields.

The linear theory of optimal perturbations is briefly
reviewed in section 2. The quasigeostrophic system of
equations, their associated tangent linear equations, the
adjoint tangent linear equations, and their methods of
solution are described in section 3. The perturbation
energy equation for the open-ocean model is derived
in section 4 and is used to analyze the modes and op-
timal perturbations found later. Section 5 describes the
model domain and the Gulf Stream flow fields used in
this study. The fastest-growing modes and optimal
perturbations on a Gulf Stream flow, which is assumed
stationary in time, are described in section 6. The con-
dition of stationarity is relaxed in section 7, and optimal
perturbations and modes are found on spatially and
temporally varying Gulf Stream flows. Concluding re-
marks can be found in section 8.

2. Linear theory of optimal excitation

First we must decide what we mean when we say
that a perturbation is optimal (i.e., whether the per-
turbation is to maximize the growth of perturbation
energy, or some other quantity such as the squared
perturbation streamfunction amplitude or perturbation
potential enstrophy). In this section a method is de-
scribed for obtaining the optimal excitation for a par-
ticular flow regime, which involves using the adjoint
of the physical system under consideration. A number
of groups (NCAR, NMC, ECMWF, METEOQO-France,
and AOML) are currently developing the adjoints of
atmospheric or oceanic general circulation models to
be used for data assimilation purposes. However, we
will demonstrate that these adjoint models can also be
used for the study of instabilities, and for investigating
the predictability of atmospheric and oceanic fore-
casting systems, a potentially very powerful application
of such models. A brief discussion of perturbation
equations and their properties follows; a more extensive
development can be found in Le Dimet and Talagrand
(1986) and Lacarra and Talagrand (1988).

Consider a nonlinear system with state vector :

dy

2 L) 0y

The solution y(¢) corresponds to a trajectory in phase
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space uniquely determined by an initial condition ¥(0).
Perturbations to this initial condition result in devia-
tions from the original trajectory, so that the system
follows a new trajectory yAz) = Y(z) + 6y(z). Sufficiently
small deviations dy(t) are obtained by integrating the
tangent linear perturbation equation:

oy
dt

obtained by linearizing (1) about the solution y(z). This
system relates deviations from the original trajectory
to perturbations éy(0) imposed at the initial time ¢
= (. In general, A(?) is a linear but nonautonomous
operator; it is autonomous if y is a stationary solution
of (1). There is a unique operator, called the propagator
(also referred to as the resolvent by Le Dimet and Tal-
agrand 1986), that connects the initial conditions at
time ¢ = 0 to the solution at a later time #:

oy(t) = R(, 0)oy(0). 3

Before we can define the adjoint of (3), we must first
define an inner product, (¥, ¢ ). Using this inner prod-
uct, we can define a norm that is a measure of the
relative magnitude of solutions,

W] =g, ¥ @

The choice of an inner product and associated norm
is consequential and should reflect some physically
meaningful measure that sheds light on a particular
aspect of perturbation development. All of the norms
of a single normal mode will grow or decay at the same
exponential rate, and any norm is as good as another
for assessing the growth of such a mode. This is not
the case for optimal perturbations, and the determined
structure as well as the growth rate of these perturba-
tions depends on the norm chosen. We reserve our
choice of inner product and norm appropriate for this
study until section 3. Our present discussion is suffi-
ciently general to encompass any choice of norm and
inner product.

For any linear operator M, there exists an adjoint
operator M¥*, such that

(B Mo) = (MY, ¢) &)

(Courant and Hilbert 1962). In particular, there exists
for the propagator (R) of our system an adjoint prop-
agator (R*) with the property

(3(D), 3Dy = (R(, 0)3¢/(0), R(z, 0)5¢(0))
= (R¥(0, HR(, 0)o%(0), 3¥(0)).  (6)

The adjoint propagator is obtained from S(0, ), the
propagator of the adjoint of (2); that is,

doy*
dt

where A*(¢) is the adjoint of A(z). It is easy to show

= A8y, (2

= —AX(1)oy*, Q)
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that the inner product of any solution of the pertur-
bation equation (2) with a solution of the associated
adjoint equation (7) is constant, and particularly,

(8¥(0), S0, Ho*(1)) = (R(, 0)6¢(0), W*(1)).  (8)

Recalling the definition of the adjoint (5), inspection
of (8) shows that the adjoint of the propagator of the
perturbation equation between time 0 and ¢ is the
propagator of the adjoint equation between time ¢ and
0. Operationally, the perturbation adjoint over a time
interval ¢ can be obtained by integrating its adjoint
equation backward in time over the same interval.

We are now equipped to find the most rapidly grow-
ing perturbation in the norm of the bracket inner
product (4) over a specified time interval. We define a
squared amplification factor A using (4) over a time
interval 7 as

_ (R(r, 0)3/0), R(r, 0)3/(0))
(6(0), 5Y(0)) '

Equation (9) can be rewritten using the property of the
adjoint (5) as

A

9

(R*0, )R(7, 0)5¢(0), 54(0))
(8¥(0), 8¥(0)) '

The largest eigenvalue of the composite operator
R*R,, where R, = R(7, 0), will be associated with the
most rapidly growing eigenvector of the norm (&Y, &y ).
The entire spectrum of the operator R*R, is of interest
if we wish to study the growth of variance in the system
(Lorenz 1965; Farrell 1990), but for the present pur-
poses we restrict our attention to the largest A and its
associated eigenfunction. These can be obtained by a
simple application of the power method, suggested by
inspection of (10), as follows. First, integrate the first-
guess 6¢(0) forward in time from ¢ = 0 to ¢ = 7. Second,
integrate the result backward in time with the adjoint
equation from ¢ = 7 to ¢ = 0, and iterate this procedure
until convergence to the perturbation of largest A is
isolated. This procedure is constructive in that it pro-
vides both the amplification factor A2 and the most
rapidly growing perturbation. Clearly, the form of the
adjoint R* and the ultimate meaning of A depend on
our choice of inner product. We must choose carefully
an inner product that defines a physically meaningful
norm.

If we restrict attention to stationary solutions of (1),
the perturbation equation (2) is autonomous, and the
most rapidly growing mode is found by integrating for-
ward a random initial & until exponential growth is
obtained and the leading eigenfunction emerges. The
most effective excitation of the most rapidly growing
normal mode follows from the biorthogonality between
the normal modes of the perturbation equation and
the normal modes of its adjoint. Recalling the property
of adjoints (5), and that the spectrum of an operator
is identical to that of its adjoint, a biorthogonality re-

A= (10)
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lation can be found so that for properly normalized
oy¥ and &y, (Courant and Hilbert 1962)

(OYF, &Yy = by (11)
An arbitrary initial perturbation ¢ can be projected
onto the modes:

N->co

= > by (12)
i=1

and excitation of the jth mode «; is found using (11):

o = U2 &)
ERC N

It follows from the Cauchy-Schwarz inequality that
the maximum «; resuits from choosing ¢ to be the
adjoint of the target normal mode. While for self-ad-
Jjoint systems the optimal strategy for exciting a normal
mode is to introduce a perturbation with the structure
of that mode, this is not the case for non-self-adjoint
systems.

(13)

3. The tangent linear model and adjoint

Our investigation will be restricted to oceanic flow
fields described by the quasigeostrophic equations of
motion, but the method described here is not restricted
to quasigeostrophic systems and can be applied to any
dynamical system. The numerical model that we have
used is based on the Harvard University quasigeo-
strophic open ocean model described in detail by
Haidvogel et al. (1980), Miller et al. (1981), and Rob-
inson and Walstad (1987). Only a brief summary of
the model is presented here, so the interested reader
should consult the above references for further infor-
mation.

The numerical model solves the nondimensional
quasigeostrophic equations of motion for streamfunc-
tion (¥) and vorticity ({) given by

o Y

o Tl O+ B+ F(H=0 (14)
2y (¥ _ o
VH¢+F32(032) =0, (15)

subject to the surface and bottom boundary conditions,

2,9 (¥ A4 N\ _
I az(a) r21(¢,az)+w+f;(qaz)_o

at z=0 and z=-H, (l16)

where F(¢) is dissipation of vorticity { applied in the
form of a Shapiro filter of eighth order (Shapiro 1970).
The Jacobian operator J is defined as
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and the nondimensional parameters are given by

Vot fiD? N3
_g_o; B = BoDro; FZZN(z)Hz; U=‘]\7(2)
N=_% g” fo = 29 sinB,,
P

where V4, 1, D, and H are the scalings used for velocity,
time, horizontal distance, and height in the vertical,
respectively; 8o and N} are the scalings for the merid-
ional gradient 8 of the Coriolis parameter and the
buoyancy frequency N?; O is the central latitude of the
model domain; and Q is the angular velocity of the
earth. The values of these parameters appropriate for
the Gulf Stream (see Robinson et al. 1988) are

Vo=04ms™, ¢ =4days, D =40km,
H=700m, ©,=383°N, Nj=2X103s7?
£=93X107s Be=2X10"mst. (A7)

In Eq. (16), w is the vertical ageostrophic velocity
due either to wind-stress forcing at the surface or to
the presence of bottom topography. In what follows,
we will assume a flat bottom and no wind-stress forcing.
Equations (14), (15), and (16) are solved in an open
domain, with four open boundaries. At these bound-
aries the open boundary conditions of Charney et al.
(1950) are applied: ¥ is specified everywhere on the
open boundary, while { is specified only at inflow
points.

In order to cast the problem in the framework of
section 2, we require the tangent linear equations as-
sociated with (14) and (15) and their appropriate
boundary conditions. The first-order equations that
describe the evolution of perturbations 8y on a basic-
state flow field y are

-g—lk + aL7'J(Y, LoY) + oL J(6y, L)
L0 _
+ gL ™ + L7'F(Léy) =0, (18)
e ) o 2]

+Fs(dg) 0 at z=0 and z=-H, (19)

where the operator L is defined as

9( 9
oz \% 9z)

In our fully open domain, we will assume that per-
turbations occur only in the interior of the domain;
that is to say, 6y = 0 at all open boundaries. In addition,
we will assume that any vorticity perturbations 8¢
= Loy advected by the basic flow y exit the domain at

L=vV4+T12 (20)
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boundary points where the basic flow is directed outside
of the domain. At such points, 6{ is unconstrained and
does not need to be specified. At boundary points where
the basic-state flow is directed into the model domain,
we will assume that no vorticity perturbations enter
the domain from outside, in which case 6 = 0 at these
points. These boundary conditions will be a good ap-
proximation to the true open boundary conditions for
the perturbation equations over times comparable to
that taken by a disturbance to be advected through the
domain. For the Gulf Stream domain discussed later,
this time is ~ 10 days. For time periods longer than
this, disturbances will reach the boundary, and so the
influence of the flow outside of the model domain will
be important.

In order to derive the adjoint of Eq. (18) subject to
(19), we must choose an inner product over the domain
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of interest that yields a physically meaningful norm
for use as a measure of perturbation growth. To this
end, we define

L, (0
Y, ¢) = — f f f VLedxdydz,
—k V-l J-H

where I, [,, and —H define the horizontal and vertical
extent of the domain of interest. Using (5) and (21),
we can derive the adjoint of (18); namely,

Aoy
at

21

+ aJ(y, *) + aL ' J(6y*, Ly)

¢*
+BLT =+ LFXL™'0y%) = 0. (22)

On the boundaries, the following boundary integral
terms result:

* aoY* . Ho 661& AoY* L\
I ~f f [ a5¢ 5§'+ 51,0 ( 3 + ald(y, oy )) + 5\051#* o ( Py + aJ(y, oY ))]—[X dydz
- Iy* , o 3oy (oy* . I,
I, = f f [ aétﬁ* ¢+ oy ay( 4y, ¢*)) + apayr ay( + Gy, By ))]_Iydmz
= o> . ) 351[/ a‘W/* .
I, = f f [ ( P (A )) e —~ ( o Tl 8y ))] dedy, 23)

where I, = { + By is the basic-state potential vorticity.
In order to satisfy the definition of the adjoint (5), we
require that the boundary integrals I, I,, and I vanish.
The boundary conditions for the tangent linear equa-
tion given above can be expressed as

oWy=0 at x=/[, and x=-[;

oy=0 at y=/[, and y=-I;
-‘”—‘p—o at z=0 and z=—H,
0z

8¢ = 0 when d¢/dx and dy/dy imply inflow.

To ensure that I, = I, = I, = 0, we require the fol-
lowing boundary conditions for the adjoint equation
(22):

ooY*
at

asy*
ot

531/*) =0 at x=1/[, and x = =/

+ CZJ(II/, 6'10*) = O at y= ly. and y= _ly;

9 [9dv* + aJ(y, y*)| =0 at z=0 and z = —H,;
az| at ? ’
oy* = 0 when 3Y/0x and dy/dy imply outflow.

The identity (5) requires that the inner product of
any solution of the tangent linear equations and adjoint
equations be time invariant; that is,

a ] —_
py (8y*, &) = 0. (24)

Consider now the inner product of 6y with itself;
namely,

(v, 89) = —f_ll f: :y f_o  WLbydxdydz. (25)

Integration by parts and application of the boundary
conditions on &y yields

s -[ [ [ (&

+ ((—9%)2 + I? (aw) dxdydz. (26)
dy a

The right-hand side of Eq. (26) is twice the integral of
the total energy of the perturbation (6E). »

Using Eq. (25) the growth factor A of Eq. (10) will
be a measure of the growth of perturbation energy
where R, is the propagator of Eq. (18) and R} is the
propagator of Eq. (22). Even though the adjoint model
(22) has been derived using an inner product that yields
the perturbation energy norm (26), the adjoint equation
(22) can generally be used to find optimal perturbations
for other quadratic norms of & by making a suitable
transformation of the adjoint variables.

The nonlinear quasigeostrophic equations. (14)-(16)
were discretized in space on an Arakawa B grid (Ara-
kawa and Lamb 1977) with a grid spacing of 15 km
and solved numerically using the finite element method
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of Fix (1975). There were four model levels in the ver-
tical, and ¢ and { were calculated at depths of 150 m,
450 m, 800 m, and 2750 m. The model was discretized
in time using an Adams-Bashford scheme and a time
step of 45 minutes. The model geometry will be de-
scribed later in relation to the Gulf Stream basic-state
flow field.

The tangent linear equation (18) and the adjoint
equation (22) were discretized and solved in an iden-
tical manner to the fully nonlinear equations. The ad-
joint numerical model was, in fact, derived from the
finite difference form of the model equations using the
method described by Thacker (1990) so as to yield an
exact adjoint of the forward model in finite difference
space. The adjoint numerical model is described in
more detail by Moore (1991).

Following the procedure outlined in section 2, we
have used the tangent linear mode] and its adjoint to
find the largest eigenvalue (i.e., corresponding to
growth), and associated eigenvector, of the discretized
form of the operator R¥R, of Eq. (10). The procedure
is iterative as follows: we first integrated the tangent
linear equations (18) and (19) forward in time from ¢

ff Ha—t+VV6dxdydz—fff [

+Vor @Wﬂwﬂddd+J;f&f dﬂ %i(

where V = Ui + Vpj, and Uy = — dy/dy and V,, = dy/
dx are the zonal and meridional components of the
basic-state flow field in the direction of the unit vectors
i and j; € is the perturbation energy given by

_L[(@ (00N L, a0y
() (5 )] e

[

MOORE AND FARRELL

1687

= (0 to ¢ = 7 starting from an arbitrary first-guess field
8¢1(0), where the subscript 1 refers to the first iteration.
The first-guess field usually takes the form of random
noise. The adjoint equation (22) is then integrated
backwards in time from ¢ = 7 to ¢t = 0 with initial
conditions 8y¥(r) = 8y,(7). The result 8y§(0) then be-
comes the initial condition for the next forward iter-
ation of the tangent linear model [i.e., &/»(0)
= 8¢¥(0)], and the forward-backward integration is
repeated many times. As the iteration proceeds, the
eigenfunction of the energy operator with the largest
growth emerges from the initial first-guess field 8,(0)
and dominates the tangent linear model solution.

4. The perturbation energy equation

The behavior of an unstable perturbation growing
on some basic-state flow field can be examined by con-
sidering the energy equation for the perturbation. For
the open-ocean domain considered here, this equation
is obtained by multiplying Eq. (18) by é¢ and inte-
grating over the entire domain. After integration by
parts, neglecting dissipative terms, and application of
the perturbation boundary conditions we obtain

36y 3oy 36y Aoy 3 (3dy 9oy
(6x ay) to ay(ax ay)+U° (ay ay)

30y 85y 3 ( 38y ddy
% az)+ Us az( )]d xdydz, (27)

The velocities and density of the perturbation flow
are given by

3oy

a6 a6
w2, Wy

ay ox’ 0z

The perturbation energy equation for the model do-
main can be written more concisely as

(29)

0 a ot a 7 a ”
. Dt dxdydz—af f fH[Voé;(uv)+an (u'v)+an(u )

- (v’2)]dxdydz + al? f f f [Vo — (ou0) — Up — (av’0’):|dxdydz (30)
b

where D/Dt is the “total” rate of change operator fol-
lowing a fluid element.

The first term on the right-hand side of (30) repre-
sents the integral of the time rate of change of pertur-
bation energy sources due to barotropic processes. The
sum of all terms under the integral represents the rate
at which kinetic energy is transferred between the per-
turbation and the mean flow due to the work done by
the Reynolds stresses (#/'v/, #/1/, v'0') on the mean flow.
The second term on the right-hand side of (30) rep-

resents the integral of the time rate of change of per-
turbation energy source terms due to baroclinic pro-
cesses. Each term in this integral represents the rate at
which the perturbation density (or heat) fluxes release
potential energy from the vertical shear of the basic-
state flow field. For brevity, we will refer to the quantity
whose integral is the rate of release of perturbation en-
ergy by barotropic and baroclinic processes as Cy,op, and
Cain- We can, therefore, write Eq. (30) as
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[.LL

0
" 5w [ [ [ o

f f f Caindxdydz. (31)

Baroclinic instabilities are associated with the pres-
ence of vertical shears in the velocity, which implies
the existence of a horizontal temperature gradient. For
a basic-state flow possessing only vertical shear, particle
motions associated with growing perturbations are, on
average, so directed as to produce a thermal flux down
the temperature gradient of the basic state so as to re-
lease available potential energy. Regions of baroclinic
energetics can usually be recognized by the tendency
of perturbation streamlines to slope upstream in the
vertical plane. The reverse is true in regions of decay
in which perturbation streamlines slope downstream
in the vertical plane.

Barotropic instabilities arise due to the presence of
a horizontal mean-flow strain rate. In this case, particle
motions are so directed as to produce a Reynolds stress
directed down the basic-state momentum gradients so
as to release available kinetic energy. A region of baro-
tropic instability growth can usually be recognized by
‘a tendency for the perturbation streamlines to slope
upstream in the horizontal plane.

5. The basic-state flow field

As discussed in the Introduction, the purpose of this
study is twofold: (i) we are interested in the stability
properties of a given flow field, and (ii) we wish to find
the structure and growth of optimal perturbations aris-
ing in the field of random perturbations on the initial
conditions of a numerical model and so assess the
model’s predictability.

It remains to choose a basic-state flow field to ex-
amine? We could consider the stability of Gulf Stream-
like jets in our open-ocean domain. However, this case
is similar to the work presented in earlier studies by
Orlanski and Cox (1973), Holland and Haidvogel
(1980), and Farrell and Moore (1992). Alternatively,
we could consider the ensemble average of a number
of different kinds of events, such as the formation of
warm core and cold core eddies, and try-to understand
the dynamics of the instability processes underlying
these events. Clearly, the latter case would involve a
large number of experiments. For this reason, we have
chosen to examine the stability of a single observed
event. From a modeling viewpoint, the results obtained
are applicable to the problem of predictability, and our
experiments and analyses emphasize the wealth of in-
formation that the method provides about instability
mechanisms in general.

The events that we shall examine are the evolution
of Gulf Stream meanders and eddies observed during
late January and early February in 1988 as part of the
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Harvard University GULFCAST experiment (Rob-
inson et al. 1989a,b). The model was initialized using
a so-called “feature model” approximation to the Gulf
Stream based upon AVHRR data, AXBT observations,
and Geosat altimeter data collected on or around 27
January 1988 (Robinson et al. 1989a,b). The quasi-
geostrophic model was run forward in time for 9 days
to predict the ensuing evolution of the Gulf Stream.
The model domain used was flat bottomed and rec-
tangular, being 1155 km in length and 720 km wide,
centered at 38.3°N, 62.8°E, and rotated 22° anticlock-
wise to the zonal direction. Full details of the model
initialization procedure are given in Robinson and
Walstad (1987).

The feature model used to initialize the numerical
model is described in detail in Robinson et al. (1988)
and is of the following form:

-2l
z> —h
p= (32)
] exp(— g)VM[(I ;‘Z) =it 1]
L z < —h;,

where u is the alongstream velocity component, the
across-stream component being identically zero; y is
the across-stream coordinate; A, (=1000 m) is the depth
at which u = V), along the stream axis, and H is the
depth of the ocean; V7, Vi, and Vp are the surface,
thermocline, and bottom values of velocity along the
stream axis taken to be 1.65 m s7!, 0.25 m s™!, and
0.05 m s™!, respectively; and g, is the horizontal e-
folding length scale of the jet taken to be 40 km. The
geographical position and shape of the Gulf Stream
axis (i.e. y = 0), used in Eq. (32), was determined from
AVHRR data.

The basic-state streamfunction ¢ at a depth of 150
m on days 5, 7, and 9 of the model integration is shown
in Figs. la, 1b, and Ic. The dominant feature is the
large meander labeled M2, present near the center of
the model domain. Over the 4-day period shown, this
meander steepens and begins to detach from the main
stream and by day 9 has formed a cold core eddy.
Another important event to note is the steepening of
the meander labeled M1, and the interaction between
the warm core eddy W1 with the main stream near
the western edge of the model domain. We will ex-
amine the stability of the flow regimes depicted in
Figs. la-1c.

6. Unstable waves on Gulf Stream flows stationary
in time
In this section we will consider the stability of Gulf
Stream flows, stationary in time as would occur if ap-
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FIG. 1. Basic-state streamfunction y at depth 150 m after
(a) S days, (b) 7 days, (c) 9 days of integration.

propriate forcings were included to balance the mean-
flow temporal variation (Pedlosky 1979). Some of the
modes and perturbations discussed below are sum-
marized in Table 1.

a. The fastest growing normal mode

The perturbation we shall consider first is the fastest-
growing normal mode. As discussed in section 2, one
advantage of considering perturbations of modal form
is that they grow at the same exponential rate in all
norms. The fastest-growing normal mode was found
by integrating the tangent linear equation (18) for éy
forward in time starting from an arbitrary nonzero ini-
tial condition in the form of random noise. The fastest-
growing normal mode eventually dominated the model
solution. As with all forms of linear, stability analysis,
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the mode so generated has arbitrary phase and ampli-
tude.

Figure 2 shows &y at 150 m for the fastest-growing
normal mode (hereafter referred to as FGNM) on the
Gulf Stream flow of Fig. 1a, which was assumed ren-
dered stationary in time. The approximate position of
the Gulf Stream axis on this day is also indicated. The
alongstream wavelength varies between 250 km and
500 km, and the period of the mode is close to 31 days.
Three phases of the mode 8 days apart (approximately
1/4 wave period) are shown in Fig. 2.

The time-averaged energetics of FGNM were ex-
amined by suppressing the exponential growth factor
of the mode and averaging over a wave period. This
approach is equivalent to the “random phase ensemble
mean” analyses of Frederiksen (1982). The random
phase ensemble mean total perturbation energy of
FGNM at a depth of 150 m is shown in Fig. 3a. The
perturbation energy is localized, particularly in the
southward-flowing arm of the meander M2 and down-
stream of the northward flowing arm. The region in
which the warm core eddy W1 interacts with the main
stream 1is also a region of significant energy release.
Perhaps the most dominant feature in Fig. 3a is the
region of large perturbation energy associated with
warm core eddy W2,

We have used the energy equation (30) to examine
the contribution of barotropic and baroclinic processes
to the total perturbation energy of FGNM. The kernel
of the first term on the right-hand side of (30) represents
the rate of release of perturbation energy due to baro-
tropic processes, Cyop in (31). Similarly, the kernel of
the second term on the right of Eq. (30) represents the
rate of release of perturbation energy by baroclinic
processes, Cgqin. Because Eq. (30) has been obtained
through integration by parts, Cy,op and Cgin can only
be interpreted in an integral sense and so are indicative
of the physical processes occuring over a region rather
than at a point. The random phase ensemble means
of Cirop and Cain (hereafter, Cyop and Cgip) are shown
in Figs. 3b and 3c, at a depth of 150 m for FGNM. An
obvious feature of Figs. 3a and 3b is that there are
regions of both energy growth and energy decay. The
integral of Cy,, and Cg;, over the horizontal domain
at 150 m reveals that the average rate of change of
perturbation energy due to barotropic and baroclinic
processes is positive. This is confirmed in Fig. 4, which

TABLE 1. A summary of some of the modes and perturbations
referred to in this study and calculated under the assumption of a
Gulf Stream flow that is stationary in time.

Period of optimal

Perturbation = Norm growth rate maximized growth (days)
FGNM Principal normal mode —
FGEI 8E = 1 (3¢, 9 1
ADNM Principal adjoint normal mode —
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F1G. 2. Perturbation streamfunction &} for the fastest-growing
normal mode, FGNM, on the Gulf Stream flow of Fig. 1a, which
was assumed stationary in time. Different phases of the mode are
shown 8 days apart. The approximate position of the Gulf Stream
axis, taken to be the zero streamline of Fig. la, is also drawn.

shows that the total perturbation energy 6 E for FGNM
increases with time. The domain integral of Cp is
almost five times larger than the integral of C;,, which
indicates that the growth of FGNM is dominated by
barotropic processes. In agreement with Fig. 3a, the
regions of preferred energy release due to barotropic
and baroclinic processes are the southward-flowing arm
of the meander M2 and downstream of the northward-
flowing arm close to the meander neck region.
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The energy release associated with the interaction of
W1 with the main stream is associated primarily with
barotropic instability, while the energetic warm core
eddy W2 appears to be influenced almost equally by
both barotropic and baroclinic instability. It would ap-
pear from Ci,, and Cgn that the basic-state flow of
Fig. 1a is unstable with respect to both barotropic and
baroclinic processes.

It is illuminating to examine the instantaneous rate
of change of the perturbation energy associated with a
particular configuration of 8y, since this reveals the

CONTOUR FROM —-3.8 TO 4.5 BY .3

F1G. 3. Random phase ensemble means of (a) perturbation
energy &, (b) Cyrop, and (€) Cain, for FGNM,
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FI1G. 4. Time evolution of 8E for different normal modes and optimal perturbation.

way in which basic-state energy is transferred to the
perturbation. Figures 5a and 5b show, respectively,
snapshots of the barotropic energy kernel C,,, and the
baroclinic energy kernel Cgy;, at 150 m during the phase
of FGNM shown in Fig. 2a. Energy growth due to
barotropic processes can be seen to occur in regions
where perturbation streamlines 6y slope upstream in
the horizontal plane and release available KE. Con-
versely, barotropic processes lead to decay in regions
where 6y slopes downstream and where perturbation
energy is converted into basic-state KE.

Figure 6 shows a snapshot vertical section of 6y from
Fig. 2a taken along the axis of the Gulf Stream. Energy
growth due to baroclinic processes (Fig. 5b) occurs in
regions where the streamlines 6y slope upstream in the
vertical plane (as at locations 3 and 6) where available
PE is released from the basic-state flow. Conversely,
where phase lines of 6y slope downstream (as at lo-
cation 4 in Fig. 6), Cin, decays as perturbation energy
is converted into basic-state PE.

Some aspects of the large-scale evolution of the basic
state depicted in Fig. 1 can be explained in terms of
the fastest-growing normal mode FGNM. Figure 7
shows the difference Ay in the basic-state streamfunc-
tion ¥ between day 5 and day 9 (cf. Fig. 1a minus Fig.
1c). A comparison of Fig. 7 and Fig. 2a shows that
apart from a difference in amplitude and phase, FGNM
and Ay share a number of common features. This sim-

ilarity suggests that FGNM may be an approximate
mode of the nonlinear equations (14) and (15) as well
as a mode of the tangent linear equation (18). Figure
7, however, suggests that other disturbances also con-
tribute to the large-scale evolution of the basic state.

b. Optimal perturbations for 6E

Using the iterative method described in section 3,
we can find the eigenvector with the largest growth in
the perturbation energy norm 8E = 1(8y, &¢). The
resulting perturbations are referred to as optimal per-
turbations.

We will show first how the structure of an optimal
perturbation changes as the specified time interval of
optimal growth is increased. Figure 8 shows &y at a
depth of 150 m at initial time ¢ = 0 for optimals that
maximize the growth of 6F on the flow field of Fig. 1a
(assumed rendered stationary in time) over 3 hours
(Fig. 8a), 12 hours (Fig. 8b), and 1 day (Fig. 8c). The

- resulting optimal perturbations will be referred to as

FGEE, FGEH, and FGEl]l, respectively. The number
of iterations employed to find each optimal was 800,
200, and 100, respectively, after which no further
changes occured in the overall shape and location of
each perturbation. As Fig. 8 indicates, the structure of
each perturbation changes as the time interval allowed
for optimal growth increases, but the region always fa-
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FI1G. 5. A snapshot of (a) Cyop and (b) Cgiq at 150 m for FGNM.
The zero contour is suppressed for clarity.

vored for growth by the optimal perturbation is the
neck of the meander M2. The alongstream wavelength
of each optimal shown in Fig. 8 is much less than that
of FGNM discussed above. For the remainder of this
section, we mainly confine our attention to the optimal
referred to as FGE 1, which maximizes the growth rate
of 6F over a 1-day time interval.

The optimal perturbation FGE1 is not of modal
form, and so we cannot define a random phase-ensem-
ble mean to study its energetics as we did for FGNM.
We will, therefore, restrict our attention to instanta-
neous energetics using the energy equation (30), noting
as before that the various terms in (30) give the con-
tribution to the time rate of change of 6E. As such, Eq.
(30) indicates the energetic processes that are occuring
in a given region rather than at individual points. Fig-
ures 9a and 9b show snapshots of the energy kernels
Clirop and Cgip, respectively, for the optimal FGE1 at a
depth of 150 m at initial time ¢ = 0. In contrast to
FGNM of Fig. 2, Cyop and Cyin for FGE! are every-
where positive, and regions of maximum growth are
concentrated on the southward-flowing and northward-
flowing arms that form the neck of meander M2.
Comparison of Fig. 9a with Fig. 8c reveals that the
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regions of maximum C,,, occur where phase lines of
oy tilt upstream in the horizontal-plane. The neck of
M2 is a region of large horizontal velocity shear due
to the proximity of the opposing arms of the meander.
As a consequence, there is a source of available KE for
perturbation growth in this region. As Fig. 9a shows,
the region of energy release due to barotropic processes
spans the entire neck of M2. In contrast, Fig. 9b shows
that Cg;, is confined mainly to the axis of the Gulf
Stream jet. Baroclinic energetics feed on the available
PE of the basic-state flow, and it is along the jet axis
that the basic-state vertical shears are largest. Figure
10a shows a vertical section of 6y at ¢ = 0 for FGE1
taken along the southward-flowing arm of meander
M2. The regions of intense baroclinic interaction are
clearly associated with regions where the perturbation
streamlines slope upstream in the vertical plane. Figures
9a and 9b indicate that at time ¢ = 0, the contribution
of Cyop to the total time rate of change of perturbation
energy is larger than the contribution to C;,.

The structure of FGEI after day 1 is displayed in
Fig. 8d, which shows §y at 150-m depth. The “arrow-
head” appearance of 6y in Fig. 8c at ¢t = O is less pro-
nounced at ¢t = 1 day, these structures having evolved
into more elliptical features; Cop and Cain of FGE1 at
t = 1 day are shown in Fig. 11. The general features
of the energy growth patterns are similar to those at ¢
= 0, only now there are small regions of energy decay
where perturbation streamlines slope downstream in
the horizontal and vertical planes.

The change in the overall appearance of the optimal
FGE] is consistent with the release of energy from the
basic state. In the horizontal plane, the perturbation
streamlines advance downstream as time increases, re-
leasing the maximum amount of available KE possible
from the basic-state flow in the time available. Figure
10b shows a vertical section of 6y for FGE1 along the
axis of the southward-flowing arm of the meander at
time ¢t = 1 day. As time increases, Fig. 10 reveals that
streamlines advance downstream in the vertical plane,
releasing the maximum amount of available PE from
the basic state in the time available. At time ¢ = 0, Cyop
is larger than Cg,, but by time ¢ = 1 day, they are
similar. It appears, therefore, that FGE1 is able to sus-
tain a rapid growth over the chosen time interval by
initially drawing mainly upon the available KE of the
basic state through barotropic instability.

To illustrate that FGEI1 is indeed optimal in the sense
that it maximizes the growth of total perturbation en-
ergy 6F over a 1-day period, Fig. 4 shows 6 F for FGE1
as a function of time. Clearly the growth rate of 6F
during FGEI exceeds that of the fastest growing mode,
FGNM.

As the period of optimal growth 7 increases from 3
hours to 1 day, Fig. 8 shows that the horizontal up-
stream tilt of &y also increases, which indicates that
the amount of available basic-state KE released by each
optimal perturbation increases with 7. In a similar way,
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FIG. 6. A vertical cross section of &) for FGNM along the axis of the Gulf Stream.

an increase in 7 is accompanied by an increase in the
vertical upstream tilt of 8y and an increase in the release
of available basic-state PE. Table 2 presents a summary
of the properties of different optimal perturbations for
the energy norm and shows that the growth factor A
increases with 7. Also shown in Table 2 is the ratio A/
7, which is the average time rate of change of \; A/
can be thought of as a measure of a perturbations po-
tential for releasing basic-state energy. Table 2 shows
that even though longer 7 yields a greater release of
basic-state energy, the potential of the perturbation to
release energy is diminished. This is also reflected in
the peak e-folding times attained by each disturbance
shown in Table 2; as 7 increases, the maximum ex-
ponential growth rate attained by each disturbance de-
creases,

Since we are modeling oceanic flows in an open-
ocean domain, it is important to examine the influence
of the open boundaries. To investigate the effect that
the open boundaries have on the optimal FGE1, we
constructed a new model domain (referred to as D,)
that was smaller than the original model domain (re-
ferred to as D,) shown in Fig. la. Here D, was formed
by moving the eastern and western open boundaries,
denoted AB and CD in Fig. 1a, to the new locations

A’B' and CD' (shown in Fig. 1b), which are towards
the center of D,. The optimal perturbation for the en-
ergy norm over 1 day (hereafter FGE1s) was then com-
puted for the Gulf Stream flow field bounded by
A’B'CD’ of D,. The boundary conditions imposed on
the tangent linear and adjoint models along A'B’, B'C,

CONTOUR FROM -4 TO 4 BY .25

FIG. 7. The difference in ¢ of the basic state between
day 5 (Fig. 1a) and day 7 (Fig. 1b).
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FIG. 8. 8y at 150 m and ¢ = 0 for the optimal perturbations that maximize the growth rate of 4E over (a) 3 hours, FGEE;
(b) 12 hours, FGEH; (c) ! day, FGE1, on the stationary basic state of Fig. 1a; and (d) as in (c) but at time ¢ = 1 day.

C'D/, and D'A’ of D, were identical to those described
in section 3.

Figure 12 shows &y at 150 m and ¢ = O for FGEls,
and a comparison with Fig. 8c shows that FGEls is
almost identical to the energy optimal FGE1 of D,.
The growth of 8E for FGEls is shown in Fig. 4 and is
very similar to that of FGEI. Clearly the structure and
location of the optimal perturbation in this case is in-
sensitive to the location of the open boundaries.

¢. Optimal excitations for the normal mode

The biorthogonality relation (11) for normal modes
of the tangent linear and adjoint equations can be used
to find the optimal excitations for a given mode. Be-
cause the system is not self-adjoint, the normal modes
are not orthogonal, and a given mode will not be its
own optimal excitation. Before we can find the optimal
excitation for a given mode, we must first decide in
what sense it is to be considered optimal.

It can easily be shown from Eqs. (11) and (13) that
the optimal excitation for the fastest-growing normal
mode of Egs. (18) and (19) (Fig. 2) in the energy norm

OF is the fastest-growing normal mode of the adjoint
equation (22). As in the case of the mode FGNM, the
fastest-growing adjoint normal mode (hereafter referred
to as ADNM) can be found by integrating Eq. (22)
starting from random noise until the fastest-growing
adjoint normal mode dominates the solution. Figure
13 shows a snapshot of éy* at 150 m for ADNM ob-
tained in this way. The growth rate of 6 E following the
initialization of the tangent linear model with ADNM
is shown in Fig. 4. Figure 4 shows that the growth rate
of ADNM eventually overtakes that of FGNM. Clearly,
however, the optimal excitation for FGNM grows
much less rapidly in energy than the optimal pertur-
bation FGEI.

7. Unstable waves on time-varying Gulf Stream
flows

In this section we will examine the effect that a time-
varying Gulf Stream flow has on the optimal pertur-
bations and normal modes. We will limit our attention
to optimals that maximize the growth rate of 8E. The
time-varying Gulf Stream flow considered here is the
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FIG. 9. (@) Crop and (b) Cyin at 150 m and ¢ = 0 for FGEL.
The zero contour is suppressed for clarity.

4-day period depicted in Figs. 1a, 1b, and lc, during
which the large meander M2 steepens and detaches
from the main stream to form a cold core eddy. Other
events to note are the steepening of the meander labeled
M1 located close to the inflow at the western boundary
and the strong interaction that occurs between warm
core ring W1 and the main Gulf Stream.

Optimal perturbations on time-varying Gulf Stream
flows were found using the iterative method described
in section 3, with ¢ of Egs. (18) and (22) varying in
time. Figure 14 shows &) at ¢t = 0 for optimal pertur-
bations that maximize the growth of 8E over time in-
tervals of 2 days, 3 days, 31/> days, and 4 days, where
time 7 = 0 corresponds to the Gulf Stream flow of Fig.
1a. Figures 14a and 14b show that the preferred region
of growth is the neck of meander M2, and as the time
period of optimal growth increases from 2 to 3 days,
the tilt of the streamlines upstream in the horizontal
plane increases. When the period of optimal growth
reaches 31/; days (Fig. 14c), other regions of growth
are favored by the perturbation. In addition to the neck
of M2, Fig. 14c shows that the region where W1 merges
with the main stream is also favored for growth by the
optimal. When the period for optimal growth is in-
creased to 4 days (Fig. 14d), the neck of M2 is no longer
favored for energy growth by the optimal. Instead, the
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energy optimal perturbation is localized entirely in the
region where W1 merges with the Gulf Stream.

To illustrate that the behavior of the optimal is gov-
erned by the time history of the Gulf Stream flow, Figs.
15a and 15b show 6y at ¢ = O for optimal perturbations
that grow most rapidly in 6E over 2 days and 4 days,
respectively, on the Gulf Stream flow of Fig. la, as-
sumed rendered stationary in time. As the time period
for optimal growth increases, the area occupied by the
perturbation becomes larger, but in both cases the neck
of M2 is favored for growth.

Our results show that the neck of M2 acts as a source
of energy for the optimal perturbations considered.
However, for time-varying flows, meander M2 becomes
less favorable for growth over longer time intervals be-
cause as Fig. 1 shows, M2 gradually steepens and forms
a cold core eddy. Once this eddy detaches from the
main Gulf Stream, the neck of M2 disappears and along
with it the region of large shear and large rate of strain.
Perturbations forming in the neck of M2 at times before
this (cf. Figs. 1a and 1b) will therefore have a limited
source of energy with which to grow after detachment
of M2 has occurred. The energy source associated with
M2 disappears when the eddy forms, and this will most
likely lead to the decay of perturbations that form in
the neck of M2 because they will be unable to sustain
rapid growth for the full 4-day period depicted in Fig.
1. In order to be optimal, the perturbations will instead
seek alternative sites for growth, and as Fig. 14d shows,
a suitable location is the region where W1 merges with
the Gulf Stream.

To further illustrate the important influence that a
time-varying flow has on the preferred location of the
energy optimal, Figs. 16a and 16b show optimals that
maximize the growth of 6E over 1 day on the Gulf
Stream flows of Figs. 1b and Ic, respectively, if it is
assumed that these flows are rendered stationary in
time. In Fig. 16a, M2 is still attached to the main Gulf
Stream and the energy optimal favors the neck of M2
for growth. In Fig. 16b, however, M2 has evolved into
an eddy, and it is this eddy that is favored by the per-
turbation for optimal growth. Figure 16¢ shows the
energy optimal for a 2-day time interval that spans the
period when M2 separates from the Gulf Stream. In
this case a time-varying Gulf Stream flow is used to
calculate the optimal so that the perturbation knows
about the formation of the eddy. In appearance, the
resulting optimal of Fig. 16¢ looks like a combination
of the optimals depicted in Figs. 16a and 16b. As time
advances, the optimal of Fig. 16¢ develops both on the
southward-flowing arm of the cold core eddy and on
the main axis of the Gulf Stream.

This demonstrates that the formation of the cold
core eddy is not sufficient to preclude the growth of
optimal disturbances in the region of M2. It would
appear that the actual time history of the basic state
also plays an important role in determining the pre-
ferred location of optimal growth. This idea is con-
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FIG. 10. A vertical cross section of éy for FGEI at (a) ¢ = 0, (b) £ = 1 day.

firmed if we note that for each optimal in Fig. 8, at no
time is the region of eddy-mean flow interaction as-
sociated with W1 a preferred region of growth, as was
the case for the optimal perturbations of Figs. 14c and
14d that develop on time-evolving basic states. Table
2 compares the growth factors A of optimal perturba-
tions for stationary and time-evolving basic states. In
general, Table 2 shows that optimal perturbations for
time-evolving flows tend to grow faster than their
counterparts on flows assumed stationary in time.
The normal modes of the system are also influenced

by a time-varying Gulf Stream. The normal modes in
this case were found by employing the iterative tech-
nique described previously, which has also been used
recently by Joly and Thorpe (1991) for time-varying
flows, to examine the normal modes associated with
frontogenesis in the atmosphere. The tangent linear
model is integrated forward in time over an interval =
starting from a random noise field, but in this case ¥
of Eq. (18) varies with time as in Fig. 1. At the end of
each iteration, the 6y field so obtained becomes the
initial condition for the next iteration. The fastest-
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FIG. 12. 8y at 150 m and ¢ = 0 for FGEI1S, the optimal perturbation
that maximizes perturbation energy growth over day in domain D,.

growing normal mode associated with the time-depen-

dent basic state eventually dominates the tangent linear
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FIG. 11. (2) Cyop and (b) Cain 2t 150 m and ¢ = 1 day for FGE1.  {lows varying in time over 2 days and 4 days, with the

The zero contour is suppressed for clarity. flow field of Fig. 1a defining initial time ¢ = 0 in each

TABLE 2. A summary of the growth \ = §E(7)/8E(0), period of optimal growth 7, and e-folding times attained by the different optimal
perturbations and principle normal modes considered in this study. The basic state is referred to as stationary (S) or time dependent (T),
and for stationary states the Gulf Stream flow used is indicated by a figure reference.

Perturbation

T N7 Peak e-folding time

description A (days) (days)™ of 3E (days) Basic state
Principle mode 1.39 1 2.94 S (Fig la)

(FGNM)
Energy optimal 1.2 1/8 9.6 0.60 S (Fig 1a)
Energy optimal 2.0 172 4.0 0.63 S (Fig 1a)
Energy optimal 4.0 1 4.0 0.62 S (Fig 1a)

(FGEI)
Energy optimal 11.5 2 5.8 0.67 S (Fig 1a)
Energy optimal 30.3 3 10.1 0.71 S (Fig 1a)
Energy optimal 66.7 4 16.7 0.75 S (Fig 1a)
Energy optimal 42 1 4.2 0.61 T
Energy optimal 12.9 2 6.45 0.63 T
Energy optimal 322 3 10.7 0.67 T
Energy optimal 77.1 4 19.3 0.68 T
Principle mode 2.21 2 2.40 T
Principle mode 2.88 3 2.61 T
Principle mode 4.26 4 2.41 T
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F1G. 13. 8y at 150 m for the fastest-growing normal mode
ADNM of the adjoint model.

case. Figure 17 shows &y at the initial time for each
mode. As the time over which the Gulf Stream evolves
is increased from 2 days (Fig. 17a) to 4 days (Fig. 17b),
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the region influenced by the growth of the principle
normal mode decreases.

8. Concluding remarks

The optimal perturbations that we have found in
this study tell us where and how perturbations to a
Gulf Stream basic-state flow can achieve maximum
growth in the perturbation energy norm over a given
time interval. Studies of optimal perturbations are im-
portant because they reveal the mechanisms by which
disturbances can achieve rapid growth and the loca-
tions in which rapid growth can occur. Using this
knowledge, suboptimal perturbations with structures
similar to but less specialized than optimal perturba-
tions can be constructed, which nevertheless grow more
rapidly than normal modes as demonstrated by Farrell
(1985). Suboptimal disturbances must arise in models
as a result of uncertainties in the model initial condi-
tions due to observation errors or analysis errors, since
every error projects onto the complete optimal set that
includes this most rapidly growing member. Further-

CONTOUR FROM .1 TO 1 BY .1
CONTOUR FROM —-1 TO —.1 BY .1

CONTOUR FROM .1 TO 1 BY .1
CONTOUR FROM -1 TO —.1 BY .1

CONTOUR FROM .1 TO t BY .1
CONTOUR FROM -1 TO —.1 BY .1

CONTOUR FROM .1 TO 1 BY .1
CONTOUR FROM -1 TO —.1 BY .1

FIG. 14. 6y at 150 m and ¢ = 0 for optimal perturbations that maximize the growth of 8 over time intervals
of (a) 2 days, (b) 3 days, (c) 314 days, (d) 4 days on a time-varying Gulf Stream flow.
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a
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FIG. 15. 8¢ at 150 m and ¢ = O for optimal perturbations that
maximize the growth of §E over time intervals of (a) 2 days and (b)
4 days on the Gulf Stream flow of Fig. 1a when assumed stationary
in time.

more, parameterizations of physical processes such as
convection could introduce highly structured small-
scale errors into models if, for example, convection
was to occur in the model at the wrong location or at
the incorrect time. The rapid development of such
small-scale optimals may be related to the observation
of Lorenz (1969a) that small-scale model errors amplify
more rapidly than errors on the large scale. Clearly,
the results and ideas presented here are relevant to the
question of the predictability of oceanic flows such as
those of Fig. 1, since uncertainties in the model initial
conditions may amplify in the unstable regions, sug-
gested by the optimal perturbations.

The dynamics of an error in the initial conditions
of a model can be viewed as the evolution along the
solution trajectory of the initial error (Lorenz 1965;
Farrell 1990). Following this argument further, let us
assume that the initial errors of the system are spher-
ically distributed in some norm, say energy. As the
system evolves in time, the sphere becomes an ellipsoid,
the semiaxes of which are proportional to the square
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root of the eigenvalues of the matrix R¥R, in Eq. (10).
The eigenvector of this matrix associated with the larg-
est eigenvalue is the one that grows the most over the
time interval 7 in the chosen norm. To completely un-

a

CONTOUR FROM .1 TO 1 BY .1
CONTOUR FROM -1 TO -.1 BY .1

CONTQUR FROM .1 TO 1 BY .1
CONTOUR FROM —1 TO —-.1 BY .1

CONTOUR FROM .1 TO 1 BY .1
CONTOUR FROM -1 TO —.1 BY .1

FIG. 16. 6y at 150 m and ¢ = O for optimal perturbations that
maximize the growth of 8E (a) over 1 day on the Guif Stream flow
of Fig. 1b when assumed stationary in time, (b) as (a) but for the
flow of Fig. lc, and (c) over 2 days on a time-varying Gulf Stream
flow during the period when meander M2 detaches from the main
stream.
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FI1G. 17. 6y at depth 150 m for the fastest-growing normal mode
on the Gulf Stream varying in time over (a) 2 days and (b) 4 days.

derstand the predictability of a given flow field, we re-
quire the complete spectrum of eigenvalues \;, since
perturbation variance is dependent upon the entire
spectrum. The values of \; > 1 are associated with per-
turbations that grow in time in the chosen norm, while
those with A; < 1 decay. Farrell (1990) has considered
the predictability of several simplified flow fields of rel-
evance to the oceanic and atmospheric circulations,
and in general, finds that only a few percent of the
eigenfunctions of the perturbation energy matrix have
significant growth rates. In other words, the predict-
ability of the flow may be determined by only the first
few optimal perturbations.

To determine the predictability of flows such as that
of Fig. 1, we need to examine the behavior of other
eigenfunctions of the optimal problems considered and
not confine our attention to the fastest growing. This
is probably impractical using the iterative method em-
ployed here, but more eigenfunctions could be found
using currently available eigenanalysis routines, even
for systems as large as that considered here. This will
be the subject of a subsequent paper.
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Even though we have found only the first member
of the entire spectrum of eigenfunctions, it is still in-
teresting to speculate how the predictability of the sys-
tem might be influenced by the fastest-growing eigen-
vectors found for the energy norm. Table 2 shows the
peak e-folding time of 0E = 1(8y, &) achieved by
each of the fastest-growing normal modes and optimal
perturbations considered in sections 6 and 7. For the
case with a stationary basic state, the optimal pertur-
bation FGE1 over 1 day grows almost five times faster
than the fastest-growing mode FGNM. Increasing the
time interval of optimal growth from 1 to 4 days re-
duces the growth rate of FGE1 by a factor of 1.2, but
even so, the 4-day energy optimal still grows four times
faster than FGNM. We have found that the time history
of the basic-state flow can significantly influence the
growth rate and preferred location of the optimal as
the time interval of optimal growth is increased.
Changes in the structure and e-folding time of the fast-
est-growing mode, however, are not nearly so marked.

Based on the optimals of Gulf Stream flows that are
stationary in time, one might be inclined to suggest
that the flow field of Fig. 1 is inherently less predictable
in the region of the large meander M2, since it is here
that errors in the initial conditions can achieve maxi-
mum growth over a wide range of optimal-growth
times. However, if we take into account the temporal
variation of the basic state, then based upon the energy
optimal found in section 7, with most rapid energy
growth over 4 days, we would be inclined to suggest
that the meander M1 is the most unpredictable feature
in the model. For the time-evolving flow studied, eddy
formation appears to stabilize the flow with respect to
optimal perturbation growth, while eddy merger events
appear to destabilize the flow. Clearly, further work is
required to elucidate the predictability of such flow
fields using the spectrum of optimal perturbations.

TABLE 3. A selection of e-folding times for Gulf Stream meanders
calculated in other theoretical, modeling, and observational studies.

e-folding
time
Source (days) Comments
Hauriwitz and 0.7 Barotropic instability only
Panofsky (1950)
Lipps (1963) 3.8 Barotropic instability only
Tareev (1965) Baroclinic instability only:
2.6 Frictionless
4.0 With friction
Orlanski and Cox Baroclinic instability only:
(1973) 0.6-3.0 Linear analysis
1.0-7.0 Nonlinear analysis with
GCM
Tracey and Watts 4-30 From observation
(1986)
Watts and Johns 6-14 From observation
(1982) (uncertainty +50%).
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However, the results presented here illustrate not only
the wealth of information available from the tangent
linear model and its adjoint, but also the potential im-
portance of analyzing time-varying basic states.

While the computational cost of a complete inves-
tigation of the predictability of oceanic flows using the
current iterative method is prohibitive, and while our
conclusions are somewhat specific to the example
studied, we believe that adjoint models are potentially
very powerful multipurpose modeling tools that should
be actively developed by ocean prediction and nu-
merical weather-prediction centers.

Finally, we note that the study of optimal pertur-
bations can be used to place an upper bound on the
growth rate of disturbances on geophysical flows. Table
3 presents a selection of estimates of the e-folding time
for meanders on the Gulf Stream calculated theoreti-
cally from models or inferred from direct observations.
As Table 3 shows, a wide range of e-folding times have
been found for Gulf Stream meanders depending upon
their spatial scale and their geographical location with
respect to bottom topography. All of the modes and
optimal perturbations investigated in this study have
e-folding times (see Table 2) that lie in the range 0.7-
3.0 days suggested by Table 3.
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