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ABSTRACT

A theory for quasigeostrophic turbulence in baroclinic jets is examined in which interaction between the mean
flow and the perturbations is explicitly modeled by the nonnormal operator obtained by linearization about the
mean flow, while the eddy—eddy interactions are parameterized by a combination of stochastic excitation and
effective dissipation. The quasi-linear equilibrium is the stationary state in dynamical balance between the mean
flow forcing and eddy forcing produced by the linear stochastic model. The turbulence model depends on two
parameters that specify the magnitude of the effective dissipation and stochastic excitation. The quasi-linear
model produces heat fluxes (upgradient), momentum fluxes, and mean zonal winds, which are remarkably
consistent with those produced by the nonlinear model over a wide range of parameter values despite energy
and enstrophy imbalances associated with the parameterization for eddy-eddy interactions. The quasi-linear
equilibrium also appears consistent with most aspects of the energy cycle, with baroclinic adjustment (though
the adjustment is accomplished in a fundamentally different manner), and with the negative correlation between
transient eddy transport and other transports observed in the atmosphere. The model overestimates the equilib-
rium eddy kinetic energy in cases in which it achieves correct eddy fluxes and energy balance. Understanding
the role of forcing orthogonal functions rationalizes this behavior and provides the basis for addressing the role
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of transient eddies in climate.

1. Introduction

Normal mode instability theory, as elucidated by
Charney (1947) and Eady (1949), has been widely
accepted as a paradigm for understanding the origin of
transient eddies dominating atmospheric fluctuations
on periods ranging from a few days to weeks. Theo-
retical difficulties and lack of correspondence with ob-
servations of developments on synoptic and planetary
scales led to the introduction of nonmodal development
theory (Farrell 1982, 1984, 1985, 1989). The normal
mode paradigm has led to a variety of climate equili-
bration theories in which finite amplitude normal
modes play a dominant role. For example, Held (1978)
and Branscome (1983) have postulated that the mean
transient eddy flux is determined in structure by the
most unstable normal mode and in magnitude by the
mean available potential energy; Stone (1978), Lind-
zen and Farrell (1980), Gutowski (1985), and Lindzen
(1993) have postulated that eddies act to adjust the
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background state to a configuration that is marginally
unstable to normal modes. The nonmodal paradigm
has led to stochastic models for eddy variance and
fluxes of heat and momentum produced by transient,
nonmodal disturbances that are excited randomly in
space and time (Farrell and Ioannou 1993, 1994,
1995). In this work, the climate equilibration implied
by these stochastically determined fluxes will be ob-
tained.

The equilibration problem for either paradigm may
be formulated as follows. Let the nonlinear equations
of motion be written in the form

9¢:

L W1, s b b = W), (D)

where ¢; is the ith component of an N-dimensional
state vector. Assuming the existence of a statistically
stationary state, the equations can be decomposed into
a time-mean component, denoted by a bar, and a de-
viation therefrom, denoted by a prime. If the equations
are at most quadratically nonlinear, as is the case for
the Navier—Stokes equations and for the inviscid prim-
itive equations (in Cartesian coordinates), then the
equations become
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Equilibration theories address the nontrivial case in
which the eddy fluxes balance the mean flow forcing
and dissipation W;(¢). In such cases, the eddy equa-
tion (3) is necessarily nonlinear, and the role of eddy
nonlinearities must be explicitly addressed. Equilibra-
tion theories that do not explicitly include these terms
must advance additional hypotheses to uniquely spec-
ify the equilibrated state. This is especially true of ad-
justment theories since the operator

oW,
L= (2%
( 0¢; )g,

can be stable for a large subspace of three-dimensional
flow configurations.

Stochastic models explicitly parameterize the non-
linear eddy terms in (3) by an effective dissipation and
stochastic excitation. Farrell and Ioannou (1993, 1994,
1995) and DelSole and Farrell (1995) have shown that
reasonable heat fluxes, momentum fluxes, and wave-
number/frequency spectra of geopotential height can
be obtained from stochastic models in the case in which
the operators used to parameterize the nonlinear terms
are assumed to be diagonal in the gridpoint represen-
tation. These models essentially depend on two param-
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FiG. 1. Mean zonal velocity in the upper and lower layers of the
two-layer quasigeostrophic model as a function of meridional loca-
tion for the axisymmetric solution (dash) and the 1200-day average
velocity for the nonlinearly equilibrated flow (solid). The nonlinear
equilibrium jet is thermally relaxed toward the axisymmetric solution
on a 20-day timescale, and the lower-layer velocities are dissipated
on a 5-day timescale. The Phillips criteria for the critical velocity

difference for linear instability is 16 m s™'.
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Fig. 2. Growth rates as a function of zonal wavenumbzr of the
most unstable eigenmodes of the linearized equations associated with
the axisymmetric solution (dashed) and the 1200-day average veloc-
ity (solid) shown in Fig. 1. Both cases include the dissipation due to -
thermal relaxation and lower-layer friction.

eters, which specify the magnitude of the dissipation
and the stochastic excitation due to turbulent eddies.
(The models also require specification of the spatial
scale below which the stochastic excitation is negligi-
ble.) These studies reveal that the stochastic model can
be extraordinarily sensitive to changes in the back-
ground state when the flow is only slightly stable. The
fact that the stochastic model yields realistic eddy
fluxes for realistic basic states makes plausible that a
critical point ¢ exists that can satisfy (2) using the eddy
fluxes generated by the stochastic model. It remains
unclear, however, whether the critical point is stable.
The goal of this work is to show that critical points of
the coupled equation (2) and the stochastic parameter-
ization of (3) are stable and realistic.

We address this problem using a two-layer quasi-
geostrophic model that is thermally forced by Newto-
nian relaxation and dissipated by lower-layer Rayleigh
friction. The three-way mean flow balance among the
thermal forcing, Rayleigh friction, and the stochasti-
cally excited eddy fluxes is called the quasi-linear equi-
librium and is obtained by solving (2) and (3) simul-
taneously for ¢ (when the nonlinear eddy terms have
been parameterized). This procedure is described for
the two-layer quasigeostrophic model in section 2.
Principle oscillation pattern (POP) analysis is applied
in section 3 to a particular nonlinear equilibrium to es-
timate the unspecified parameters in the stochastic
model. Many aspects of the quasi-linear equilibrium are
shown in section 4 to be remarkably insensitive to the
details of the dissipation and stochastic excitation. The
concept of forcing orthogonal functions (FOF’s) is dis-
cussed in section 5 and, in particular, it is shown that
the optimals of Farrell (1989 ) and the FOF’s are math-
ematically related and that this relation provides a basis
for understanding the role of short-lived transient dis-
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F1G. 3. Real part of the dynamic operator M = A, — L;, which represents the empirical effective dissipation.
The operator A, is determined from POP analysis of the 1200-day dataset generated by the nonlinear model
for the parameters k = 6, 7 = 0.25 days. The operator L, is the operator associated with the linearized
equations of motion (4). The statevector to be multiplied with this operator is composed of 128 elements,
the first 64 of which give the gridpoint values of the streamfunction in the upper layer, ordered from south
to north, and the last 64 are the values of the streamfunction in the lower layer, again ordered from south to
north. Thus, the upper-left quadrant of M is the dynamic operator giving the tendency of the upper-layer
streamfunction due to the instantaneous values of the upper-layer streamfunction. Only the matrix elements
my; » corresponding to the upper-left quadrant of M are shown, the elements in the other quadrants were
relatively small. The operator clearly exhibits a tridiagonal structure, indicating that the effective dissipation
due to nonlinear wave-—-wave interactions depends on a low-order meridional gradient of the streamfunction.

turbances in the long-term equilibration. Finally, we
close by summarizing these results and discussing their
implications for understanding transient eddy transport.

2. Parameterizing the nonlinear model

We choose a zonally periodic two-layer channel
model whose zonally symmetric temperature is relaxed
toward an erf function in y (to give a Gaussian baroclinic
jet) with a 20-day time constant and whose lower layer
is damped by Rayleigh friction with a time constant of
5 days. The equations are split into coupled mean and
eddy components (2) and (3) and the nonlinear eddy
terms are parameterized by stochastic excitation and ef-
fective dissipation. The stochastic excitation consists of
independent white noise processes of magnitude g ap-
plied to each Fourier zonal and meridional wavenumber
pair (k, [). In the stochastic model, the effective dissi-

pation is usually assumed to be Rayleigh friction with
magnitude rg in both layers. A combination of implicit
time integration and Newton—Raphson root-finding
techniques are employed to find the stationary state that
satisfies (2) and (3) simultaneously. What follows is a
technical elaboration of this procedure.

The fully nonlinear equations for this model are (cf.
Cehelsky and Tung 1987)

(V) + I, V) + 3 (6, V*0)
+ By = V(P - 0) (5)
(V2 — 2\%0), + J (4, V20 — 2\26) + J(8, V)

+ B8, = V(Y — ) — 2\ °1r(O* — ), (6)
where the Jacobian operator is defined to be
J(A,B)=AB, — A,B, )
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FiG. 4. Diagonal elements (x) of the real part of the operator A,
— L, shown in Fig. 3 expressed as a function of meridional distance
y = jAy, where Ay is the distance between grid points in the merid-
ional direction (j = j' in the notation given in Fig. 3). These elements
provide a measure of the magnitude of effective dissipation due to
nonlinear eddy—eddy interactions. Also shown are the equilibrated
upper-layer zonal velocity (solid) and the upper-layer eddy stream-
function variance associated with zonal wavenumber 6 (dash), both
scaled and sign reversed to fit on the graph. The similarity in profiles
suggests that the effective dissipation is related to the local eddy
variance/mean zonal velocity.

and the barotropic and baroclinic streamfunctions are
given by

d/upper + ‘-!’lower l,/upper - !/’lower
= 0= .
v 2 2

(8)

The boundary conditions are periodicity in the zonal
direction, x, and rigid, free-slip walls at y = 0 and y
= L,. The parameter rp is the lower-layer frictional
damping rate, ry, is the thermal damping rate, 1/\ is the
Rossby radius, and ®* is proportional to the radiative-
equilibrium temperature.

Consider the nonlinear system initialized arbitrarily
and allowed to evolve for a sufficiently long time to
ensure stationary statistics. Anticipating that the time-
mean state is zonally symmetric, ‘‘eddy’’ refers to de-
viations from both time and zonal mean. To model the
system with a stochastic turbulence parameterization,

we first separate the equations into eddy and mean com-.

ponents. Using an overbar and/or uppercase letters to
refer to zonal mean quantities and lowercase letters to
refer to eddy quantities, we first write (5)—(6) in their
zonally averaged form:

¥, + (Ic‘//yy +6.0,,), = —rn(¥,, — 0,,)

(®yy - 2)\26)): + (‘l’xayy + ex(//yy - 2)\2¢x0)y

(%)

= —1p(0,, — T,)) — 2\ (®* — ©) (10)

and then subtract these from (5)—(6) to obtain the
equations governing the zonal deviations
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Vg, + UV ), + H(V),
+ (8 — Uy, — Hyb, = —1p V(¢ ~ )
— J(¢, VA — 1(8, V?8)’
(V20 — 27\%9), + U(V), + H(V3), — 2\2U6,
+ 2MHy, + (8 — U,,)6, — H,, ¢,
= —1pV2(0 — ) + 2\’1g0 + 2\ (s, 6)’
~ I(g, V29)' — J(6, VA)', (12)

where U = — ¥, and H = ~©,. The prime Jacobian
terms refer to the nonlinear eddy components of the
Jacobian,

" J(A,B)' =J(A',B') - I(A',B’).

(1)

(13)

The nonlinear eddy terms are parameterized by an
effective dissipation and stochastic excitation. For a va-
riety of reasons that should become clear later, the pa-
rameters will be constrained to be representable by di-
agonal operators in the Fourier representation. More-
over, the parameters associated with sufficiently small
scales are assumed negligible. To be specific, the sto-
chastic excitation is chosen so that the first 8 zonal
wavenumbers-and the first 40 meridional wavenumbers
are forced equally and independently. In many cases
the excitation of the meridional wavenumbers will be
weighted by g, to be consistent with the meridional
structure found from POP analysis discussed in section
3, but each wavenumber will still be -forced indepen-
dently. In either case the stochastic excitation depends
on one parameter, denoted by g, that can be related to
the total energy injection by the stochastic excitation.
The effective dissipation is assumed to be either Ray-
leigh friction with magnitude 1z or second-order dif-
fusion of potential vorticity with magnitude v. For an
individual experiment, the full parameterization de-
pends on just two parameters, 1g and g, that determine
the stochastic excitation and effective dissipation. Spe-
cifically, the nonlinear terms in (11) and (12) are pa-
rameterized as follows:

=J(, V)" = 1(6, V*8)’
8 40

=q ¥ Y g Re[ei(t)e™ sin(ly)] — eV (14)

I, 2020 — I, V20)' — J(6, Vi)'

8 40
=g X 2 g Releg'(t)e™ sin(ly)] — V0. (15)
k=1 I=1

The stochastic excitation functions €, e’ have the
properties

(eSHOLel M (1)1*) = 6(t — t")babry  (16)
(et (DLes” (#")H)1*)y = 6(t — t" )b (A7)
(eb"()[eX " (¢)]1*) = 0, (18)
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FIG. 5. Real part of the forcing covariance matrix Q, determined from POP analysis using the 1200-day
dataset generated by the nonlinear model using the parameters 7 = 0.25 days and k = 6. The format of the
operator is the same as that of A; — L, shown in Fig. 3—the upper left quadrant gives covariance matrix of
the stochastic excitation applied to the upper layer, zonal wavenumber 6 streamfunction at each meridional
grid point. The matrix elements in the other quadrants are much smaller. The units are km* s>, The result
indicates that the stochastic excitation for this streamfunction is meridionally localized.

where the angle brackets ( ) denote ensemble aver-
ages, asterisks denote the complex conjugate, 6(f — ¢')
denotes the Dirac delta function, and 6., denotes the
Kronecker delta which is unity when k = k' and van-
ishes otherwise. The resulting parameterization of (11)
and (12) yields

Vi, + UV, + H(V?), + (8 — U, )¢, — H,,0,
= -npVi(¢y ~ 0) ~ V%

g Relel/(r)e™ sin(ly)] (19)

(V30 — 27\%9), + U(V?6 — 2\%0), + 2N°Hy,
+ H(VZ(II)X + (ﬁ - Uyy)ex - Hyy¢x
= —'I'DVZ(G - l,b) — rEV29 + 2)\er0

8 40

+49 2 X g Re[ef'(r)e™ sin(ly»)]- (20)

k=1 I=1

Equations (19) and (20) are stochastically excited lin-
ear equations that can be solved by the methods dis-

cussed in appendix A. Explicit solutions are most easily
obtained using a spectral technique, which is discussed
in appendix B. Having specified the magnitude of ef-
fective dissipation and stochastic excitation through ¢,
rg, only the zonal mean velocities U(y) and H(y) re-
main undetermined. We adopt the following iterative
method to find this equilibrium solution. For fixed g
and ¢, the eddy covariances resulting from the sto-
chastic differential equations (19)-(20) are substi-
tuted for the nonlinear eddy terms in (9)-(10) to ob-
tain the tendency of the mean flow. The zonal mean
velocities U(y) and H(y) are advanced to the next time
step and used in the linear, stochastic differential equa-
tions (19) - (20) to update the eddy fluxes. These cal-
culations are repeated until the time derivatives of the
zonal mean velocities U and H in (9)—(10) are suffi-
ciently small that convergence is indicated (a practical
method requires semi-implicit integration as discussed
in appendix C). The final solution is the quasi-linear
equilibrated jet. Two distinct timescales are involved
in this iteration: these are the time step used to advance
the zonal-mean velocities in (9) —(10), which is on the
order of an hour, and the time required for the sto-
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TABLE 1. Quasi-linear equilibration under different dissipations.

Rayleigh Rayleigh Diffusion

uniform y-dep. Diffusion uniform y-dep. W, max
d"h @ (km? s™") (km? s71) @h Kinax Type of jet* Figure .
2.00 0 0 0 —0.1320 1 A (Wide) —
0.20 0 Q 0 —-0.0192 5 A Fig. 6
0.02 0 0 0 —0.0018 6 BEY —
0 2.00 0 0 —0.0028 8 BEWS3 —_
0 0.20 0 0 —0.0063 8 C —
0 0.02 0 0 —0.0008 6 B (Wide) —
0 0. 0.4 0 —0.0167 5 B Fig. 7
0 0 4.0 0 —-0.0888 1 A Fig. 7
0. 0 40.0 0 —0.0327 1 A Fig. 7
0 0 0 0.04 —0.0012 6 BEW —
0 0 0 0.40 —0.0057 5 B. —
0 0 0 4.00 —-0.0310 8 A (Wide) —
0 0 0 40.00 —0.0301 6 B (Wide) —

* The jets were categorized by the number of westerly extremums: type A has 1 extremum and is close to Gaussian, type B has three
extrema with the absolute maximum in the channel center, and type C has 2 maximums near the channel walls and 1 minimum in the channel
center. Here, “‘()®Y"’ means type () plus two strong easterly jets near each channel wall; and ‘‘B*’ means all three extremums were
comparable in magnitude. ‘“Wide’’ means the central jet was much broader than the radiative equilibrium thermal wind.

chastically forced linear equations (19) - (20) to obtain
their ensemble averages from the previous state, which
can be from a day to a few months. These timescales
interact to affect the details of the trajectory of the sys-
tem as it approaches its stationary state but do not affect
the stationary state itself. Since we are only interested
in determining the stationary state, the variation of this
trajectory with the timescales is inconsequential. The
time marching scheme should be viewed as a device
for finding the stationary state, and the resulting trajec-
tory does not necessarily represent the actual trajectory
a nonlinear model would take toward the stationary
state.

Solid=Quasilinear ; Dash=Nonlinear
40 T L) T T T

The thermally forced flow is chosen to be symrmetric
about the midchannel so that the mean flow is antici-
pated to be composed solely of odd meridional wave-
numbers and the even and odd wavenumber perturba-
tion components are decoupled. Furthermore, even
components are incapable of extracting energy from the
symmetric jet and are therefore neglected.

The linear equations are stochastically excited such
that the total input energy is 1.85 W m™2, a choice mo-
tivated by POP analysis to be discussed next. This av-
erage rate is also a reasonable value based on the ob-
servational evidence (as discussed in DelSole and Far-
rell 1995). We minimize the dynamical influence of
the walls by choosing a relatively large domain (12 000
km) and a zonally symmetric radiative-equilibrium
temperature gradient localized in the center of the chan-
nel. In particular, the radiative-equilibrium thermal
wind is chosen to have a Gaussian profile:

- — Ly/2)?
£ —®;*<=Hoexp<—(l——7y—)—), (21)
= b
8
S where b = 1500 km and H, = 20 m s ~'. The remaining
g external parameters are chosen for midlatitude zonal
s mean states. Altogether,
= L, =30000km rz=005d""
"B=16-10"*km" s’
105 20'00 4oloo ao'oo ao'oo 10500 12000 L,=12000km r,=0.2 d! AN=10"3km™.
Y(km)

F1G. 6. Upper- and lower-layer mean zonal velocity of the nonlin-
ear equilibrium jet (dash) and the quasi-linear equilibrium jet (solid)
with 5-day Rayleigh friction modeling the effective dissipation and
temporal white noise forcing with total injection rate of 1.85 W m™>
modeling the stochastic excitation. The Rayleigh friction is uniform
in both layers; the excitation has the fixed meridional profile shown
in Fig. 4 for the eddy streamfunction variance (dash line in Fig. 4)
and is the same magnitude in both layers.

3. POP analysis of nonlinear equilibration

We first integrate the fully nonlinear model (5)--(6)
for 1400 days using an energy and enstrophy conserv-
ing advection scheme ( Arakawa 1966) and a third-or-
der Adams—Bashforth time integration scheme (Dur-
ran 1991). The zonal direction is discretized with 32
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FiG. 7. Upper-layer mean zonal velocity of the quasi-linear solution
for four different choices of spatially uniform diffusion coefficient
representing the effective dissipation. These profiles should be com-
pared to the nonlinearly equilibrated upper-layer velocity shown in
Fig. 1. The stochastic excitation is assumed to have the same merid-
ional profile shown in Fig. 4 for the eddy streamfunction variance
and injects 1.85 W m™2. The units of diffusion coefficient are
km? s~!, For comparison, the diffusion coefficient implied by dissi-
pation shown in Fig. 3 is around 0.4 km? s™".

points, the meridional direction with 64 points. The re-
sulting mean zonal flow is shown in Fig. 1. A routine
eigenanalysis of this flow reveals that zonal wavenum-
bers 5 and 6 have comparable growth rates (Fig. 2).
Principal oscillation pattern analysis is a procedure
for processing a multivariate time series (from what-
ever source) to empirically determine the first-order
Markov model producing the same second-order mo-
ments (Penland 1989; von Storch et al. 1995). Under
zonally symmetric forcing and boundary conditions,
the statistically steady eddy covariances between quan-
tities of differing zonal wavenumber will vanish. It fol-
lows that the Markov model governing the statevector
¢, associated with the kth zonal wavenumber will be
explicitly uncoupled from the statevector associated
with a different zonal wavenumber. There will exist an
implicit coupling, however, in that the dynamic oper-
ator and stochastic excitation must correctly model the
eddy—eddy interactions between all zonal wavenum-
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FIG. 8. Upper-layer mean zonal velocity of the quasi-linear equi-
librium jet for four different magnitudes of white noise stochastic
excitation. These profiles should be compared to the nonlinearly
equilibrated upper-layer velocity shown in Fig. 1. Both the stochastic
excitation and the diffusion coefficient are assumed to have the same
meridional profile shown in Fig. 4 for the eddy streamfunction vari-
ance (dash line) and are of the same magnitude in both layers. The
units of white noise are in W m™ total injection rate. Note that the
excitation changes by a factor of 40, while the upper-layer velocities
in the midchannel change by 5%.

bers. Remarkably, POP analysis allows the dynamic
operator for each zonal wavenumber to be estimated
independently of the other zonal wavenumbers. Let ¢,
be a vector whose elements are the meridional grid-
point values of the two-layer streamfunction associated
with the kth zonal wavenumber. Moreover, let the el-
ements be ordered so that the first 64 elements corre-
spond to the upper-layer meridional gridpoint values
from south to north, while the second 64 elements cor-
respond to those for the lower layer. The Markov model
for each zonal wavenumber has the form

ocb,
P A + 1),

where the forcing term ; is white noise with forcing

22
Y (22)
covariance matrix Q:

1 T
?J" Gt + TR (D)dt = Qb(T)6epr. (23)
0

TABLE 2. Quasi-linear equilibration under different forcing.

Injection rate

Wiax
Wm?) Meridional structure Vertical structure @h Kinax Type of jet Figure
0.5 standard barotropic —0.0040 5 B Fig. 8
1.0 standard barotropic —0.0087 5 B Fig. 8
5.0 standard barotropic —0.0628 6 A Fig. 8
20.0 standard barotropic —0.0729 1 ARV Fig. 8
5.0 standard upper only —0.0471 5 A -—
5.0 standard lower only —0.0703 1 B —
5.0 uniform barotropic —0.0580 5 A —
5.0 sin(1) barotropic —0.0546 6 AEY —
5.0 sin(1 + 3) barotropic -0.0661 5 A —
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FI1G. 9. Vertically averaged, northward momentum flux (a) and heat
flux (b) obtained from the nonlinear model and from the stochastic
model for four different magnitudes of Rayleigh friction representing
the effective dissipation. Note that all profiles correspond to upgra-
dient momentum transfer. The Rayleigh friction is uniform in both
layers and is in units of days™'. The stochastic excitation, which in-
jects 1.85 W m~? into zonal wavenumbers 1-8 and odd meridional
wavenumbers 1-19, has the same magnitude in both layers and has
the fixed meridional profile shown in Fig. 4 for the eddy stream-
function variance (dashed line in Fig. 4).

The superscript H denotes the conjugate transpose.
Note that the forcing is allowed to be spatially corre-
lated since Q; is not restricted to be diagonal.

The mean response is represented by the statevec-
tor’s time-lagged covariance matrix

1 (" |
Cu(r) = ;"J; it + T)PL (D)dt, (24)

which is estimated from data using the last 1200 days

of the 1400-day dataset. It can be shown for a model

of the form (22) that this covariance matrix should sat-
isfy the equalities

Ci(7) = exp(A;7)Ci(0) (25)

Aka + CkAH = ‘_Qk. (26)

The stochastic model (19) and (20) must satisfy ad-

of Ay — L, [where L, is (4)], the top left quadrant of
which is shown in Fig. 3 for £ = 6 (the elements in the
other quadrants were small). Although the interpreta-
tion of this result is subtle due to data filtering, the result

10 r ——— =

Nonlinear

Eddy Kinetic Energy (m2 )
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FiG. 11. Eddy kinetic energy as a function of zonal wavenumber
derived from the 1200-day average nonlinear equilibrium (dash) and
the quasi-linear equilibrium (solids) for three different magnitudes of
Rayleigh friction representing effective dissipation. The units of dis-
sipation are per day. The equilibrium jet represented in Fig. 6 cor-
responds to damping rate 0.2 d~!, and the spatial structure of the
effective dissipation and stochastic excitation are unchanged between
the two cases.
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TABLE 3a. Quasi-linear eddy energetics.
C(KM-E) C(PM—E) GE DE DE-EFF SE

k W m™? W m™? W m™? W m™ W m™2 Wm™?
1 0.027 0.029 -0.051 —-0.224 —0.525 0.744
2 0.020 0.031 —-0.036 -0.109 —0.291 0.385
3 0.005 0.048 -0.027 —0.062 -0.195 0.231
4 -0.032 0.120 -0.026 —0.041 —-0.178 0.157
5 -0.232 0.662 -0.052 —0.05%9 —0.435 0.115
6 -0.077 0.171 —-0.008 —0.036 -0.140 0.089
7 —0.021 0.024 -0.002 —-0.019 —-0.052 0.071
8 —0.013 0.007 -0.001 —-0.014 -0.035 0.057

Total -0.322 1.092 —0.203 —0.564 —1.852 1.850

suggests that the dissipation depends on a low-order
meridional gradient of the streamfunction. Moreover, a
strong correlation exists between the diagonal elements
and the local velocity and eddy variance (see Fig. 4).
Based on ‘these empirical results of POP analysis, we
assume that the effective dissipation is Rayleigh fric-
tion and/or second-order diffusion for all zonal wave-
numbers and for all parameter regimes examined in this
work.

The real part of the forcing covariance matrix, Q, for
k = 6, is shown in Fig. 5. As found by DelSole (1996),
the forcing also appears to be localized in the meridi-
onal direction. Furthermore, a plot of the real diagonal
elements of Q. with the local mean velocity and eddy
variance (not shown) suggests that the forcing also
tends to be correlated with the local zonal velocity and
eddy variance. The energy injected into zonal wave-
number 6 by this forcing is determined by

g Trace (B.Qx)

= 0.1 Wm™
< 2N e

(27)
where AP/g is mass per horizontal area of the atmo-
sphere, B, is the potential vorticity operator corre-
sponding to zonal wavenumber 4, and N is the dimen-
sion of the model (see appendix A). The sum of the
forcing for zonal waves 1-8 is found to be about 2
W m™2. It will turn out that choosing g so as to give a
total energy injection rate of 1.85 W m™ yields a con-
sistent eddy energy budget (discussed in section 5).

4. Quasi-linear equilibration

In this section we examine the quasi-linear equili-
brated flow under a few choices for the effective dis-
sipation and stochastic excitation suggested by the POP
analysis of the previous section. A few representative
examples are summarized in Table 1 and illustrated in
Figs. 6—-8. By “‘y-dep.”” we mean that the dissipation
has the meridional structure derived from the POP anal-

ysis of the nonlinear equilibrium shown in Fig. 4; “‘uni- -

form™ denotes a dissipation that is constant in space
and time. The forcing is maintained at 1.85 W m™2 in
these examples with the meridional structure illustrated
in Fig. 4. The quasi-linear equilibrium for ry = 0.2d ™!

is illustrated in Fig. 6, which shows that the quasi-linear
model gives a good approximation to the nonlinear
equilibrium. Essentially, the same jet is obtained for 1g
between 0.1 and 0.5 d'. As Rayleigh friction increases
from its nominal value of ry = 0.2 d~', the primary
change in equilibrated state is a reduction of lower-
layer velocities; as the friction decreases from rg = 0.2
d~', the primary change is the appearance of weak sec-
ondary jets along the flanks of the primary jet.
Consider the quasi-linear equilibrated jet in the case
of y-dependent diffusion, illustrated in Fig. 7 over three
orders of magnitude for the diffusion coefficient. Re-
sults from the POP analysis immediately suggests that
the effective dissipation is second-order diffusion with
magnitudes from 0.03 to 0.3 km? s~'. It is clear from
comparing Fig. 7 to Fig. 1 that this range does indeed
yield an equilibrated upper-layer flow very similar to
the nonlinearly equilibrated flow. Adding uniform Ray-
leigh friction of 1, = 0.05 d ™ renders the equilibrated
jet virtually indistinguishable from the nonlinearly
equilibrated jet for diffusion coefficients between 0.03
and 0.3 km® s~'. The case of Rayleigh friction maxi-
mizing in the midchannel was found to fail in simulat-
ing the nonlinearly equilibrated jet except when ex-
tremely small values of Rayleigh friction were used
(max values 0.002 d™'). The difficulty is that using
Rayleigh friction that maximizes in the center of the
flow damps the eddies in the center, causing the eddies
and the associated fluxes to concentrate near the walls.

TABLE 3b. Nonlinear eddy energetics.

C(KM—E) C(PM—E) GE DE Transfer

k W m? W m™2 Wm? Wm? Wm?
i —0.015 0.006 —-0.026 —0.042 0.076
2 -0.016 0.019 -0.026 —0.036 0.059
3 -0.012 0.037 -0.026 —0.035 0.036
4 —0.004 0.078 -0.034 —0.038 —0.003
5 -0.125 0.380 -0.062 -0.052 —-0.141
6 —0.143 0.409 -0.043 —0.051 —0.172
7 -0.051 0.171 -0.026 —0.029 —-0.064
8 —-0.024 0.054 -0.017 -0.014 0.001
Total —0.390 1.154 -0.260 —-0.297 —0.208
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FiG. 12. Total energy budget for zonal wavenumber 1 -8 associated
with the quasi-linear (left) and nonlinear (right) statistically station-
ary state shown in Fig. 6. Here, PM denotes the mean potential en-
ergy, KM denotes the mean kinetic energy, GE denotes the genera-
tion of energy due to thermal relaxation, DE denotes the dissipation
of energy due to lower-layer friction, and SE and DEgg: denote the
stochastic excitation and effective dissipation, respectively, due to
nonlinear eddy interactions. All numbers associated with the arrows
are in units of W m™2 Note that the stochastically excited eddies
extract energy from the available potential energy and inject energy
into the mean kinetic energy. The magnitude of the equal but opposite
transfers SE and DE,; are indeterminate from observations.

Next, we fixed the Rayleigh friction and varied the
stochastic excitation. A representative collection of our
results is given in Table 2 and shown in Fig. 8. The
quasi-linear equilibrium approximates the nonlinear so-
lution as long as the excitation is applied to the upper
layer and has magnitudes in the range 2—-10 W m™2.
This indicates that the quasi-linear equilibrium is
largely independent of the details of the excitation
when the latter is ‘‘reasonable,’’ that is, when the ex-
citation is largest where the eddy variance is largest.
Note that the excitation has changed by a factor of 40
yet the equilibrated flow shown in Fig. 8 has changed
relatively little. This implies that the underlying eddy

fluxes have also changed relatively little. This is in

BT

R
1.6} ‘0.2 1.8 0.4

94 Enstrophy Enstrophy

02

FiG. 13. Total enstrophy budget for zonal wavenumbers 1-8 as-
sociated with the quasi-linear (left) and nonlinear (right) statistically
steady states shown in Fig. 6. All numbers are in units of 0.1 day™.
The symbols in boxes are explicitly defined in the text and are anal-
ogous to the terms found in the energy budget equations. The mag-
nitude of the equal but opposite transfers SZ and DZ,; and indeter-
minate from observations.
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sharp contrast to the purely linear results discussed in
Farrell and Ioannou (1994) and DelSole and Farrell
(1995) in which the fluxes are directly proportional to
the excitation magnitude. The reduction in sensitivity
is due to the nonlinear feedback with the background
state—because the flow is nearly neutral (with the in-

“clusion of effective dissipation), small changes in the

equilibrated state lead to significant changes in the lin-
ear response to stochastic excitation. The equilibration
near neutral basic states (in which the definition of neu-
trality includes the effective dissipation) thus allows
the equilibrated flow to maintain its basic structure: even
when the stochastic excitation increases dramatically.

The momentum and heat fluxes for different choices
of Rayleigh friction are shown in Figs. 9a,b. First note
that all choices lead to upgradient momentum fluxes,
in agreement with the nonlinear mean fluxes. Second,
comparison with the nonlinear results suggest that the
correct magnitude of dissipation is 1-5 d ~'. The same
conclusion holds for heat fluxes. It thus appears that the
quasi-linear system models the nonlinear equilibration
in a consistent manner.

5. Further aspects of the equilibration

The quasi-linear model is consistent with baroclinic
adjustment in the sense that as the thermal gradient is
varied, the heat flux increases abruptly when the gra-
dient exceeds a critical value. The result of such eddy
behavior is to yield an equilibrated flow near this crit-
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FiG. 14. First, upper-layer streamfunction EOF associated with the
nonlinear equilibration shown in Fig. 6. The figure shows only a
portion of the channel corresponding to one zonal wavelength of
wavenumber 5. The zonal phase and amplitude are arbitrary.
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FiGg. 15. Upper-layer streamfunction EOF associated with the
quasi-linear equilibration shown in Fig. 6. This EOF is to be com-
pared with the corresponding EOF derived from the nonlinear solu-
tion shown in Fig. 14. The figure shows only a portion of the channel
corresponding to one zonal wavelength of wavenumber S. The zonal
phase and amplitude are arbitrary.

ical gradient that is robust against increases in thermal
forcing (Stone 1978; Held 1978). This behavior is
shown to occur in Fig. 10 in which the zonal time-mean
vertical shear Uypper — Ulower at the center of the channel,
which is proportional to the temperature gradient at the
center of the channel, is used to measure the mean-flow
adjustment. Remarkably, the quasi-linear equilibrium
approximates the nonlinear solution with constant tur-
bulence parameters ¢ and rg. The reason the quasi-lin-
ear model produces robust equilibrations at strong ther-
mal forcing is that stochastic models tend toward un-
bounded responses as the state is driven toward
neutrality. In nearly neutral states, small adjustments in
the basic state induce large changes in the eddy re-
sponse of stochastic models. The reduced sensitivity of
the equilibrated temperature gradient with strong ther-
mal forcing is observed in the atmosphere and is the
basis of baroclinic adjustment (Stone 1978), but this
observational fact is explained from our quasi-linear
model in a fundamentally different manner than in the
manner usually associated with normal mode instability
theory. In particular, the equilibration is not accom-
plished by a single, marginally unstable normal mode,
it is accomplished by the cumulative effect of stochas-
tically excited, transient eddies. Additionally, in con-
trast to baroclinic adjustment, the state of neutrality in
the stochastic model is approached from the stable re-
gion, and the system is never unstable.

The curve associated with the quasi-linear model in
Fig. 10 does not pass through the origin, having in this
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case an intercept at positive shear at u; — u, = 0.5,
indicating that the stochastic model produces a baro-
clinic jet even when the thermal forcing relaxes the
mean flow toward vanishing shear. Although the pa-
rameterization is not likely to hold for such weak
shears, the result may be relevant to understanding the
spontaneous formation of jets from stochastic excita-
tion supplied by external mechanisms. A further inter-
esting result is that the thermally forced state in the
absence of eddies becomes linearly stable for U§
— U¥ < 17 m s™!, yet turbulent eddies still adjust the
flow in the quasi- and nonlinear models. Lee and Held
(1991) found that eddy kinetic energy can be main-
tained in a similar regime even when the state to which
the flow is relaxed is stable. It is interesting that the
quasi-linear model is consistent with this behavior
without invoking disturbances that destabilize the flow.

The fact that our iteration scheme converges indi-
cates that the quasi-linear equilibrium is a stable point
of the implicitly nonlinear equations. This means that
zonally symmetric perturbations to the quasi-linear
equilibrated mean flow will tend to decay. Furthermore,
when an external transport mechanism is introduced
into the system, the shift toward a new configuration
will be opposed by the eddies. This situation is consis-
tent with the observed negative correlation between sta-
tionary and transient eddy heat fluxes (van Loon 1979;
Stone and Miller 1980).

The decomposition of eddy kinetic energy into zonal
wavenumbers for the quasi- and nonlinear equilibra-
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F1G. 16. Upper-layer streamfunction of the most unstable mode
corresponding to the 1200-day average nonlinearly equilibrated flow.
The zonal phase and amplitude are arbitrary. The similarity of this
streamfunction to Figs. 14 and 15 suggests that this mode plays an
important role in the response of both the nonlinear and quasi-linear
equilibration.
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FiG. 17. Fractional variance excited by the FOFs in descending
order for the quasi-linear equilibrium jet represented in Fig. 6. The
magnitude of the variance excited by the first FOF exceeds by a factor
of 6 that excited by the second.

tions is shown in Fig. 11. The result reveals that the
energy spectra is sensitive to the magnitude of dissi-
pation, which contrasts with the relatively smaller
changes in the fluxes for the same parameter changes
(Fig. 9). The reason for this contrast will be discussed
in the next section.

To obtain the sources and sinks of eddy energy, we
multiply (11) by —¢ and (12) by — 6 and integrate the
sum of the resulting two equations over the entire re-
gion, invoking boundary conditions as needed. This
gives an equation for the time rate of change of the
eddy kinetic and potential energy E:

%f— = C(KM > E) + C(PM - E) + GE
+ DE + SE + DEg, (28)
where

C(KM—E) = Uy, + gxayy)
- H(‘l’xayy + 9x¢yy) (29)

C(PM — E) = 2\*Hy,0 (30)
GE = —2\’10? (31)

DE = —1p (4% + ¢3 + 67 + 63) (32).
SE = e, + 05, (33)

DEge = —1:E (34)

()7 + (8,7 + (Y7 + (607 + A2 (87).
(35)

The energy transfer among the eddies, mean flow, ex-
ternal dissipation, effective dissipation, and stochastic
excitation are compiled in Table 3 for the first eight

E =

N =
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zonal wavenumbers. The overall balance is shown in
Fig. 12a and indicates, as noted in the previous section,
that eddies tend to extract energy from the mean avail-
able potential energy and inject energy into the mean
kinetic energy. Moreover, the energy transfer implied
by the forcing and dissipation associated with the pa-
rameterization balance each other, as is required for a
consistent parameterization for the nonlinear terms.
This balance was relatively easy to obtain by tuning the
parameter g in (19) and (20), which does little harm
to the equilibrated state. There are a wide variety of
consistencies and inconsistencies between the two
models, but it is unclear which inconsistencies are in
most need of improvement in future models.

The corresponding energy budget for the nonlinear
model is given in Table 3b and illustrated in Fig. 12b.
Except for the excessive frictional dissipation (DE),
the quasi-linear energy cycle is remarkably consistent
with the nonlinear solution. The quasi-linear model’s
enhancement of the frictional dissipation appears to be
due to its overestimate -of the eddy kinetic energy to
which the dissipation is proportional. Importantly, the
parameterized terms in the quasi-linear model can be
strongly imbalanced and still give a realistic equilib-
rium. For instance, when g is adjusted to inject 5
W m™?, the effective dissipation that parameterizes the
nonlinear scrambling damps just 4 W m™2. Virtually
the only difference between the respective equilibria is
that the additional energy goes into barotropic eddy
kinetic energy; the conversion terms and the eddy
‘‘generation’’ terms are hardly affected (and conse-
quently, the equilibrated state is hardly affected). It is
interesting that a reasonable equilibrated state can be
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FiG. 18. Upper-layer streamfunction of the leading FOF for the
quasi-linear equilibrium shown in Fig. 6. The figure shows only a
portion of the channel corresponding to one zonal wavelength of
wavenumber 5. The zonal phase and amplitude are arbitrary.
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obtained even if the parameterization for the nonlinear
terms do not consistently balance energy, suggesting
that excitation of disturbances not significantly partic-
ipating in wave—mean flow interactions can alter the
energy balance without affecting the equilibrium state.

Quasigeostrophic nonlinear interactions also con-
serve enstrophy, but this constraint was not enforced
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by our methodology. The enstrophy budget equations
can be derived in analogy with the energy budget equa-
tions by multiplying (11) by V?*J and (12) by V%
— 2\?*@, and integrating the sum of the resulting equa-
tions over the domain. We make the following identi-
fications:

C(BT = Z) = U,,(Yihy, + 0.0,,) + (Hyy — 2NH) (1,0, + 1.6,,) (36)

C(BC - Z) = —(H,, — 2\*H) (2\%0) (37)

GZ = —2\rx (2 + 62 + 2)297) (38)

DZ = —1p {($x + $,,)° + (Bux + 0,))% = 2(0x + 0,,) (Y + ) + 2N2(07 + 05 + O + O4,,) ) (39)
SZ = (Yex + Uy, )65 + (Oux + B, — 22065 (40)

DZger = —1e{ ((Yux + Py,)* + (Ox + 6,,)> + 2X%(0% + 63)) }. (41)

The enstrophy budget for both the quasi-linear and non-
linear models is shown in Figs. 13a,b. There is a fairly
large imbalance in the quasi-linear model between the
conversions ‘‘SE’’ and ‘‘Dgge.”” The other major dif-
ference is that the dissipation by the generation terms
is underestimated by the quasi-linear model.

Interestingly, the sums of SZ + DZ,yand SE + DE,
for wavenumbers 5 and 6 are negative, indicating that
the net explicit effect of the parameterization is to damp
enstrophy and energy at these scales. This behavior is
consistent with the nonlinear solution. While the net
explicit effect of the parameterization for the nonlinear
interactions is to damp these disturbances, stochastic
injection is implicitly required to induce these distur-
bances to extract enstrophy and energy to maintain the
equilibrated state.

6. Spatial structure of equilibrated eddies

We have so far considered the ensemble average sta-
tistics associated with the quasi-linear equilibrium
without explicitly calculating the dominant spatial
structures associated with these statistics. The follow-
ing discussion focuses specifically on the quasi-linear
equilibrium represented in Fig. 6, but applies generally
to other cases. The first EOF (based on streamfunction)
for both the fully nonlinear solution and the quasi-lin-

ear equilibrium are shown in Figs. 14 and 15, respec--

tively. Both of these structures are similar to the most
unstable mode of the linearized equations, shown in
Fig. 16. The quasi-linear model itself does not require
that the dominant EOF be similar to the most unstable
mode, but in most cases they turn out to be similar.
Let us now consider the forcing structures that pro-
duce the maximum variance. This problem can be for-
mulated in a way that is analogous to the way optimal
disturbances for the initial value problem are derived

(Farrell 1989). The optimal initial condition for the
initial value problem can be formulated as the vector e
giving the maximum norm response at time 7 when
impulsely introduced into a dynamical equation of the
form

o¢

o Ad + ed(t)

$(0) =0, (43)

where e is normalized to efe = 1. It follows that the
square Euclidean norm response at time 7 is given by

lpll> = e" {exp(APT) exp(AT)}e,  (44)

where ||@]| is the L, norm of ¢. From the Rayleigh quo-
tient theorem, the optimum form of e maximizing ||¢||
is the eigenvector of the matrix (exp(A¥7) exp(AT))
associated with the largest eigenvalue. The optimal
forcing structures for the stochastic model, on the other
hand, solves the problem of determining a vector f
maximizing the time-averaged norm response under
random excitation. These disturbances are called the
forcing orthogonal functions. In this problem, the basic
equation is one in which the delta function in (42) is
replaced by a stochastic process and the optimizing
time is dispensed with since only the ensemble average
response is desired. For white noise forcing, the re-
sponse can be shown to be

(42)

(lll*) = limer exp(A"(t — 5))
om 0

X exp(A(t — s))dse. (45)

Comparison with (44) shows that the matrix giving the
FOF is related to the integral of the matrix giving the
optimal impulse. It follows that the response of a sto-
chastically excited system is determined not only by
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the maximum transient amplification but also by the
length of time transient disturbances persist.

The fractional variance associated with each FOF for
zonal wavenumber 6 is shown in Fig. 17. We see that
the first FOF excites a factor of 6 more variance than
the second and a factor of 10 more than the third. The
steepness of this FOF spectrum has the following im-
portant consequence: if each FOF were forced at com-
parable amplitudes, the first few FOFs would dominate
the response at this wavenumber. Although the defi-
nition of an FOF implicitly includes the effective dis-
sipation due to nonlinear scrambling, experimentation
with Rayleigh friction and second-order diffusion, two
significantly different but localized dissipations, were
found to give essentially the same dominant FOF’s.
That effective dissipation is localized was indepen-

dently suggested by the POP analysis of the nonlinearly .

equilibrated flow. It is plausible that the quasi-linear
equilibrium is robust precisely because the leading
FOFs are robust: the effect of dissipation on the sub-
dominant FOFs is irrelevant because these FOF’s have
negligible impact on the eddy response.

The concept of FOF’s clarifies why the eddy kinetic
energy and the balance of stochastic energy injection
and the dissipation can differ from that found in the
nonlinear calculation. In particular, our approach of
randomly exciting disturbances injects energy into dis-
turbances that would presumably receive little energy
from either nonlinear interactions or the mean flow.
These disturbances are identified by the ‘‘weak’” FOFs
that negligibly interact with the basic state. As passive
disturbances, they play little role in the equilibration
even when they have large amplitudes, but they can
affect the balance of terms in a budget equation.

It is well known that transient growth arises from the
nonnormality of the underlying dynamical operator.
Because the FOFs follow from integration of these
transient disturbances, dominance of the leading FOF
is also due to the nonnormality of the dynamical op-
erator and the success of the quasi-linear model is in
part a consequence of the high degree of nonnormality
associated with the dynamical operator.

These results provide a way to understand the rela-
tion between optimal initial perturbations, usually stud-
ied in connection with the prediction of deterministic
forecasts, and the FOFs that are the excitations more
closely associated with the long-term climate. The con-
nection is that the equilibrium climate results from the
long-term average of a random series of transient de-
velopments excited by nonlinear eddy interactions.

The upper-layer structure of the first FOF for the
quasi-linear equilibrium represented in Fig. 6 and
shown in Fig. 18 exhibits the well-known phase tilt for
developing disturbances in barotropic shear (it also tilts
with respect to height so as to grow baroclinically).
Although we have concentrated on the structure of dis-
turbances in the upper-layer only, it should be recog-
nized that similar structures exist in the lower layer. It
should not be concluded that because the FOFs tilt
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against the horizontal and vertical shears that the equil-
ibrated eddies will extract net energy from the baro-
tropic and baroclinic components. The structure of the
EOF determined from the quasi-linear model (Fig. 15)
clearly indicates that the mean effect of the eddies is to
transport momentum upgradient.

7. Discussion

The goal of this paper was to determine whether a
model for quasigeostrophic turbulence in which non-
linear eddy terms are parameterized by stochastic ex-
citation and Rayleigh friction can produce a realistic
equilibrium jet structure. The parameterizations can be
made to conserve the same quantities (on average) as
the nonlinear terms they replace (Herring and Kraich-
nan 1972), but the usual techniques used to accom-
modate these constraints cannot easily be applied to
cases involving baroclinic jets. DelSole (1996) has
pointed out that principal oscillation pattern analysis
can determine, in principle, the nth order Markov
model with energy and enstrophy conserving parame-
terization for the eddy—eddy interactions, which yields
the second-order (single time) moments of any realis-
tic, turbulent equilibrium. Clearly then, a stochastic
model can be contrived that exactly models the eddy
fluxes. What is unclear is whether a stochastic model
can be useful under simple parameter assumptions and
in parameter regimes outside those for which the model
has been tested.

In this study, the effective dissipation was assumed
to be Rayleigh friction of equal magnitude in both lay-
ers and the stochastic excitation was assumed to be
delta- correlated between zonal and meridional wave-
numbers, with meridional amplitudes weighted to pro-
duce a near Gaussian meridional structure. The result-
ing quasi-linear model was found to yield equilibrated
heat fluxes, momentum fluxes, and mean states that
were in remarkable agreement with the nonlinear
model results over a wide range of parameter values
despite energy and enstrophy imbalances asscciated
with the parameterization for eddy—eddy interactions.
Certain other choices of dissipation and stochastic ex-
citation were also found to yield comparable agree-
ment. The most obvious discrepancies between the
quasi-linear and nonlinear solutions are the overesti-
mate of eddy kinetic energy and the unbalanced
enstrophy budget associated with the parameterization
for eddy—eddy interactions, although these discrepan-
cies appear to be correctable by restricting the excita-
tion to a subset of disturbances that are dominantly ac-
tive in producing wave—mean flow interaction.

The quasi-linear equilibration is consistent with
baroclinic adjustment but the equilibration is accom-
plished in a fundamentally different manner than baro-
clinic adjustment as normally associated with linear,
normal mode theory (Stone 1978; Stone and Brans-
come 1992). The conventional picture is based on the
assumption that a rapid transition exists betweer con-
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ditions in which the unstable eddy fluxes are relatively
inefficient to conditions in which they are highly effi-
cient (Stone 1978; Held 1978). The stochastic model,
however, assumes disturbances have already been sta-
bilized by the action of turbulent eddies even if the time
mean flow happens to be linearly unstable. Neverthe-
less, the stochastic model does produce an enhanced
response for small changes in mean temperature gra-
dient (all other parameters held constant). This en-
hanced response can be understood in the stochastic
model as a nonnormal resonance phenomenon in which
the stochastic excitation excites a disturbance that is
only slightly stable. However, the definition of neu-
trality in the stochastic model needs to include not only
the effective dissipation due to turbulent eddies, but
also the full three-dimensional structure of the mean
flow. The latter component can introduce subtleties.
For instance, the mean vertical shear slowly increases
with thermal forcing in Fig. 10 because the barotropic
component of the flow grows stronger and stabilizes
the flow through the barotropic governor mechanism
(James 1987), thereby allowing equilibration at larger
shears.

The fact that the dissipation was chosen to be con-
stant in this study should not be taken to suggest that
the effective dissipation in the atmosphere must be con-
stant. A physically motivated theory for the effective
dissipation probably would have the damping increase
with some measure of eddy activity.

The concept of FOFs can be used to clarify the quasi-
linear dynamics in a variety of ways. The FOFs form
an orthogonal set of spatial structures that maximize
the linear, time-averaged (suitably defined) variance
when the flow is stochastically forced with the structure
of the FOFs (Farrell and Ioannou 1994). In many prob-
lems of interest, the spectra of the response is domi-
nated by a small number of FOFs that are dominantly
active in producing wave—mean flow interaction. In the
particular case examined, the structure of the FOFs was
not significantly altered when the effective dissipation
was changed by an order of magnitude or when it was
changed from Rayleigh friction to second-order diffu-
sion. This explains how the quasi-linear equilibrium
could remain the same for fundamentally different
choices of effective dissipation. The remaining FOFs
do not produce an appreciable interaction with the
mean flow even when they are of large amplitude. This
explains why the eddy kinetic energy of the quasi-lin-
ear equilibrium can be in error even when the equili-
brated fluxes are accurate.

The concept of FOFs also clarifies certain limitations
of the parameterization. In particular, the parameteriza-
tion is not likely to work in a system characterized by
a normal, linearized dynamical operator in which no
transient growth is possible. As the degree of nonnor-
mality decreases, the response spectrum of the FOFs
typically becomes less peaked, and no single FOF can
be guaranteed to dominate the response. Thus, the pa-
rameterization in this case would require more detailed
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specification of the excitation and dissipation to prop-
erly recover the response. In the limit of homogeneous
turbulence in which the governing operator is normal,
the details of the excitation and dissipation become par-
amount, as was found by Kraichnan (1959).

As an eddy transport parameterization, the approach
outlined here has some advantages compared to other
parameterizations. One advantage is that the heat and
momentum fluxes are consistently derived from the
complete dynamical operator associated with the lin-
earized equations rather than from a single normal
mode. Moreover, the precise statistical nature of the
nonlinear interactions are directly specified allowing a
clearer interpretation of the eddy dynamics. As a cli-
mate model, the quasi-linear model suffers from severe
deficiencies compared to a general circulation model.
In particular, there is no a priori theory for choosing
the effective dissipation and stochastic excitation. The
robustness of the quasi-linear equilibrium with respect
to parameter changes suggests that the model can still
be useful in cases in which the parameters are only
approximately known. In such cases, the quasi-linear
model can be a powerful tool for addressing climate
equilibration problems since it can be solved much
faster than the nonlinear model.

We stress that the quasi-linear approach developed
here is not restricted to the two-layer quasigeo-
strophic model and should, we believe, apply to vir-
tually any nonlinear turbulent system characterized
by a highly nonnormal linearized dynamical opera-
tor. In studies not reported here, we found that the
quasi-linear equilibration of a barotropically unstable
mean flow [achieved by setting b = 600 km in (21)]
gave a remarkably similar jet to that of the corre-
sponding nonlinear solution for the same effective
dissipation and stochastic excitation used in the baro-
clinic case. The approach outlined in this study there-
fore appears to offer a general and fundamentally
new way of understanding the role of transient eddies
in climate.
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APPENDIX A
Calculation of Covariances

Suppose the linear stochastically forced equations to
be solved are written in matrix form as

¢ = Ad + {(1). (A1)
Standard techniques give the solution
(1) = f exp(A(r = ))G(s)ds.  (A2)

Assuming the excitation { is white noise such that

(G(s)LH(s")) = Qé(s = 5"), (A3)

the covariance matrix is found to be
C(1) =(d()p" (1)) = L exp(A(r - 5))Q

X exp(AR(t — 5))ds. (A4)
Differentiating this with respect to time yields
0 =AC + CAY + Q, (AS)

where dC/dt = 0 due to stationarity. This equation is
called the Lyapunov equation and standard matrix tech-
niques can be applied to solve this equation for C (Gar-
diner 1990). The energy of the response is —3¢" B¢,
where B is the Hermitian potential vorticity operator
such that q = B¢. The energy tendency is found by
evaluating d¥"B¥ (A1) + (A1)"Bo:

- 3 ($"Bg), = — %Trace(B(AC + CAH + Q).

The term —1/2 Trace(BQ) represents the total energy
injection by stochastic forcing and is positive.
APPENDIX B
Spectral Solution

The solution of the stochastically forced linear equa-
tions is most easily obtained using a spectral technique
in which the mean velocities are represented as

U(y) = =¥, = Y U, sin(mmy/L,)
H(y) = =@, = 3 H, sin(mmy/L,)

H*(y) = —0@F = 3 HX sin(wmy/L,) (B1)
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and the perturbation quantities as
P(x,y, t))
0(x,y, 1)
- Re<2 y ("'*”(‘)) sin('rrly/Ly)e""") . (B2)
o\ Ou(0)

[See Cehelsky and Tung (1987) for justification of this
orthogonal basis set.] The ensemble average covari-
ances of the stochastically forced linear equations are
substituted in (9) and (10). For a fixed zonal wave-
number and after eliminating w, the mean equations -
(9) and (10) can be written as

du,,
= Dp— (U, — H,)mp (B3)
dt !
de =E — (Hm - Um)mzrD (H,ﬁ - H,,,)2);2rk
da " m? + 2\? m? + 2\
(B4)
where

Ji

E, = X kIm[{y;0/)]
i

G = j2 + 2N + j)djm — 2jlejm)

m? + 2\%" (B6)
d = —8jlm s
(R = P ) (= (2= mty) T
(BT)

. = dm(m® = I* + j*) s :
(R = (2 m)(R - (1P = m?)) T
| (B8)

in which 8, is 1 if the statement L is true and is O if L
is false.

APPENDIX C -
Semi-Implicit Integration

We wish to solve the set of equations (A3) and
(A4). Suppose these equations are written in the form

dM

dr GIM]. .
This is generally a nonlinear equation because the ve-
locities, denoted by M, depend nonlinearly on C, the
covariance matrix. Because dM/dt varies by orders of
magnitude for different waves, the set of equations
(C1) are “‘stiff >’ and are difficult to solve with explicit
integration techniques such as Runge—Kutta (Press et
al. 1992). To overcome this difficulty, we have devel-
oped the following implicit iterative method. Let % be

(C1)
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the time step and M" refer to the value of M at the nth
time step. Implicit differencing yields

M™! = M" + hG[M"*']. (C2)

Since B is a highly nonlinear function of M™*! and
cannot be inverted, we proceed by linearizing the equa-
tion

G
ntl o n n n+l _ n
M M+h{B[M]+a (M M)}.

(C3)

Here, 0G/0M is the Jacobian matrix of the partial de-
rivatives. The Jacobian matrix can be obtained directly
from the covariance matrix. By rearranging (C3), we
obtain an equation suitable for iteration:

-1
M™! = M" + h(l —h Z—g—) G[M"]. (C4)

Although (C4) requires inverting a matrix at each it-
eration, the solution is now stable for most values of
the time step 4. Unfortunately, the covariance matrix
cannot be evaluated for unstable flows, so the timestep
must be sufficiently small to avoid inadvertently
crossing the stability boundary during the iteration.

Evaluating the Jacobian matrix requires finding the
derivative of the covariance matrix with respect to the
velocity. The result is a third-order tensor that requires
order N* calculations for its evaluation. However, Far-
rell and Ioannou (1993) show that the covariance ma-
trix solves a Lyapunov equation, therefore the deriva-
tives of the covariance matrix are found by differenti-
ating the Lyapunov equation with respect to velocities.
This differentiation yields another Lyapunov equation
that can be solved by standard methods.
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