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The three-dimensional perturbations to viscous constant shear flow that increase maximally in 
energy over a chosen time interval are obtained by optimizing over the complete set of analytic 
solutions. These optimal perturbations are intrinsically three dimensional, of restricted 
morphology, and exhibit large energy growth on the advective time scale, despite the absence of 
exponential normal modal instability in constant shear flow. The optimal structures can be 
interpreted as combinations of two fundamental types of motion associated with two 
distinguishable growth mechanisms: streamwise vortices growing by ‘advection of mean 
streamwise velocity to form streamwise streaks, and upstream tilting waves growing by the down 
gradient Reynolds stress mechanism of two-dimensional shear instability. The optimal 
excitation over a chosen interval of time comprises a combination of these two mechanisms, 
characteristically giving rise to tilted roll vortices with greatly amplified perturbation energy. It 
is suggested that these disturbances provide the initial growth leading to transition to turbulence, 
in addition to providing an explanation for coherent structures in a wide variety of turbulent 
shear flows. 

I. INTRODUCTION 

Transition from laminar to turbulent flow in experi- 
ments with sheared mean velocity profiles occurs for Rey- 
nolds numbers characteristically ranging from R z 1000’ to 
R ~8000,~ depending on the level of noise in the experi- 
ment. With care to reduce background disturbances the 
transition Reynolds number can be greatly increased, 
reaching values as high as R= 10’ in pipe Poiseuille flo~.~ 
This observation and the fact that the behavior of small 
perturbations is described accurately by the linearized 
Navier-Stokes equations suggests that linear analysis 
should be sufficient to describe at least the early stages of 
the transition process in flows with sufficiently small initial 
perturbations. However, the search for an explanation of 
transition based on linear theory has been frustrated by the 
lack of an exponential modal instability in Couette, pipe 
Poiseuille, and in plane Poiseuille flow below R=5772. 
This difficulty has led to extensive work on secondary in- 
stabilities of fmite-amplitude perturbations to these canon- 
ical shear profiles.4 However, it has been appreciated more 
fully recently that the linear equations associated with 
these shear flows support ‘a set of optimal perturbations 
that produce large transient growth with growth rates typ- 
ically on the same advective time scale as intlectional 
instabilities.5,6 One subset of these optimal perturbations is 
related to the transient wave development first identified by 
Orr,’ while another is related to the transient streamwise 
streak growth extensively discussed by Landahl,* although 
these mechanisms typically occur in combination in the 
3-D optimals. When analyzed by expansion in normal 
modes of the linearized equations the growth of optimal 
perturbations is seen to occur despite the decay of all in- 

dividual normal modes. In such a normal mode expansion 
growth arises from nonorthogonality of these modes due to 
non-normality of the associated dynamical operator.5’6*g 

Recent experiments conducted by Klingmanni” indi- ’ 
cate that the initiating mechanism of transition is consis- 
tent with linear dynamics. Linear growth or decay in the 
asymptotic limit of long time is controlled by the largest 
real eigenvalue of the dynamical operator, which is often 
negative for Reynolds numbers at which transition is ob- 
served. However, because the level of background distur- 
bance cannot be reduced to zero either in transitional or in 
turbulent flows, this asymptotic limit may not be determi- 
native of stability for real problems. If a subset of pertur- 
bations grows by as much as three orders of magnitude, as 
has been shown to be the case for an exponentially stable 
shear flow at moderate Reynolds number,6 then an alter- 
native mechanism underlying turbulence transition and 
maintenance based on amplification of stochastic perturba- 
tions is suggested. In application of this linear theory to 
turbulent flow account must be taken of the disruption of 
the perturbations and the modification of the shear profile 
by the small-scale and uncorrelated disturbances; a mean 
field theory of this kind for streak production in boundary 
layer flow has been advanced recently. * i 

While fully developed turbulence has traditionally 
been characterized as disordered, it is now widely recog- 
nized that a limited set of disturbances impart a consider- 
able degree of order to the larger scales. One structure 
often associated with coherent motion in shear flow con- 
sists of inclined vortices described by Townsend” as dou- 
ble roller eddies. Related structures observed in channel 
flows, called hairpin vortices by Klebanoff et &,I3 can be 
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described as consisting of inclined streamwise vortices sim- 
ilar to those of Townsend’s rollers but connected by a span- 
wise oriented head region. Numerical simulations of ho- 
mogeneous turbulent shear flo~‘~,‘~ confirmed the 
presence of hairpin vortices and demonstrated the rapid 
emergence of these characteristic structures from uncorre- 
lated forcing, strongly suggesting that these structures are 
characteristic of turbulent shear flows in general, and that 
they originate from a universal process not qualitatively 
dependent on the particular shear flow chosen. A 
Karhunen-Loeve decomposition of a direct simulation of 
turbulent Poiseuille flow revealed the dominant coherent 
structures to consist of streamwise rolls and f 71.5” ob- 
lique waves. I6 

While numerical and laboratory experiments have pro- 
duced increasingly accurate depictions of the coherent 
structures responsible for observed spatial and temporal 
correlations, understanding the dynamic origin of coherent 
structures remains a challenge. A theory of the origin of 
coherent structures must account for the observations that 
they are similar in all shear flows, and that they arise rap- 
idly and spontaneously from small random initial 
perturbations.14 This advective time scale development 
from small initial conditions implies the validity of linear 
theory, while the universality of structure implies a com- 
mon instability mode, a mode that analysis of the normal 
mode spectrum fails to identify. Townsend” attempted to 
comprehend these facts using rapid distortion theory, 
which consists of an application of linear theory to obtain 
an approximation to the initial distortion of perturbations 
in strong shear (it should be noted that the dynamical 
equations we will employ are identical to those of rapid 
distortion theory). Remarkably, the two-point velocity 
correlation functions associated with coherent structures 
observed in shear turbulence’8 were quite accurately repro- 
duced by this linear theory, thus providing further evi- 
dence for the approximate validity of linear theory in 
strong shear. 

The general solution to the linear initial value problem 
in shear can be obtained using optimal excitation theory in 
which a complete set of perturbations ordered by energy 
growth is found as a solution to the variational problem for 
maximizing growth over a chosen interval of time.5’6’g This 
theory systematically identifies the dangerous perturba- 
tions in a flow and their growth with time and proves 
constructively that the canonical shear flow problems sup- 
port perturbations with robust growth for sufficiently high 
Reynolds number, despite the absence of modal instability. 
While application of Squire’s theorem might suggest that a 
search for optimal perturbations could be restricted to 2-D 
disturbances in the streamwise, cross-stream plane, this im- 
plication arises from a misinterpretation of the theorem, 
which is strictly valid only for single modal solutions. In 
fact, solution of the optimal excitation problem reveals the 
dominance of 3-D structures in the set of growing pertur- 
bations. 

In light of the implication from observation and nu- 
merical experiment that development in shear flow is ap- 
proximately universal and linear, it follows that solution of 

the optimal excitation problem for the most simple exam- 
ple of shear flow, constant unbounded shear, should yield 
insight into the growth mechanism. In addition to the con- 
ceptual simplicity of the uniform shear problem, there is 
the additional great advantage that the problem has a com- 
plete set of orthogonal and analytic solutions7”9-21 with the 
aid of which the optimal perturbations can be found by a 
descent algorithm on the energy as a function of the pa- 
rameters of this analytic solution. We find that the optimal 
perturbations obtained by this method can produce energy 
growth of two to four orders of magnitude over intervals of 
time appropriate to development in turbulent shear flow. 
Remarkably, this growth arises in conjunction with distur- 
bances bearing a striking resemblance to observed coherent 
structures. 

We first express the linear solution for perturbations of 
plane wave form in constant shear in terms of the cross- 
stream velocity and vorticity and discuss the mechanisms 
of their growth and decay. The optimization procedure is 
then applied and the optimals obtained. We conclude with 
a discussion of the optimal structures and their dynamics 
and some implications of these results. 

II. THE PLANE WAVE SOLUTION 

The linearized equations governing evolution of distur- 
bances on an unbounded constant shear Row are 

L Av=O, (la) 

LW,= ---CL a,4 (lb) 

L=(a,+olyd,. -VA, (lc) 
where U= cyy is the background velocity in the x direction, 
(u,v,w) denote the perturbation velocities in the x, y, z 
directions, respectively, w,~~,~--~,w is the cross-stream 
component of vorticity, Y is the coefficient of viscosity, and 
A = 6’: + a; + 8:. The continuity equation, 

a,~+a,~+ a,w=o, (2) 

has been used in the derivation of ( 1). 
Trial form solutions of the form 

v=~(t)eXp{jtK,(t>X+K~(t>Y+K3(t>z]}, (3a) 

w,=cjy(t)exPCj[K1(t)x+K,(t)Y+K3(t)Zl}, (3b) 
satisfy ( 1) for all x, y, 2 if 

KI=KoI, K~=K~~-CY~KO~, Kz--Ko3, (4) 
with the subscript “0” denoting the value at the initial 
instant.19-21 The complex representation in (3) is used 
with the understanding that only the real parts are consid- 
ered physical. According to (4) the planes of constant 
phase, which are perpendicular to the wave number vector 
(K~,K~,K~), rotate clockwise under the influence of the 
mean shear, which is assumed to be positive. When 
K~K~~> 0 the phase planes become vertical at time 
tu=~02/~~1, while as t+ CO the phase planes become nearly 
horizontal. Note that the continuity equation (2) con- 
strains the velocity components to lie along planes of con- 
stant phase implying vanishing cross-stream velocity as 
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t-r CO and the phase planes become horizontal. Also, the 
continuity equation implies that for each of these plane 
waves the nonlinear terms that have been neglected in ( 1) 
vanish identically. Unfortunately, a superposition of plane 
wave solutions does not retain this property so that our 
analysis is restricted to linear validity when a superposition 
of waves is considered. 

Solving for the time development of a plane wave per- 
turbation requires specifying the initial cross-stream vor- 
ticity, cjlo, and cross-stream velocity, Cc from which the 
initial horizontal velocities Co, & can be recovered with 
the aid of the continuity equation (2) and the definition 
6,,~iK3uL--i~l~. The solution of ( 1) can be considered as 
the sum of the solution of the homogeneous equations: 

L hv=O; Loyj+l, (54 

axUh+ayv+drWh=O, (5b) 

with complex initial amplitudes: 

C(O) =?&io; cjyh(O) =o,, (5c) 

and the solution of the inhomogeneous equation driven by 
u and with zero initial conditions: 

Lo+ hh = -a i$v, (64 

&w~+apj”h=O. (6b) 

The significance of separating the homogeneous and inho- 
mogeneous solutions will be discussed in the sequel. The 
time-dependent cross-stream velocity, v, and cross-stream 
vorticity, wu, as given by the sum of the homogeneous and 
the inhomogeneous solutions is 

cj,Ct> =dy/t(t> +cjy i&(t), 
with 

(84 

Cjyh(t) =Gfle-g, 
K3G Gy &t) = -go - K,A [ele-g, (8b) 

where K’(t)r~f+d+d is the total instantaneous wave 
number, A’=d+d is the total horizontal wave number, 
g_=ys$2(r)dT is the cumulative dissipation factor, 
0=tan-‘(;1/K2), and [f(t)]=$(t) -f(O) for any func- 
tion of time f(t). 

It is instructive to consider the 2-D limits of (5) and 
(6). First, consider motion with no spanwise variation 
(K~ =0) . In that case- the inhomogeneous solution vanishes 
and the homogeneous solution alone describes the evolu- 
tion of the 2-D perturbation. The inviscid dynamics of this 
perturbation can be understood by noticing that it con- 
serves spanwise vorticity, w,=J,v--dYu, leading, due to 
kinematic deformation by the shear flow, to transient 
growth of the cross-stream and streamwise velocity fields 
for waves that are initially inclined with constant phase 
surfaces oriented against the mean shearZ2 (for ~~~~~ > 0). 
This is the mechanism of growth in 2-D shear discussed by 
Orr7 associated with conservation in a straining field of 
spanwise perturbation vorticity, IX,, and it will be referred 
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FIG. 1. The inviscid time development of the velocity fields of a single 
plane wave with initial conditions: $= 1, &,=O, /cOi= 1, qs= 10. Curve 
1 is for spanwise wave number K~)=O, curve 2 for ~,,~=0.3, and curve 3 
for rco3=1. The background constant shear is a=l. The velocities are 
normalized by their initial values. The cross-stream velocity is denoted by 
0 (dashed line), the streamwise velocity by z2 (continuous line), and the 
spanwise velocity by ~5 (dotted line). 

to as the Orr mechanism. The homogeneous solution of 
(5) is the 3-D extension of this 2-D Orr mechanism. Ac- 
cording to (5) the homogeneous solution conserves cross- 
stream vorticity in the inviscid limit. When the planes of 
constant phase are parallel to the cross-stream axis, the 
cross-stream velocity reaches its maximum, while at later 
times the velocity fields decay, ultimately vanishing in the 
limit t+ CO. An example of a typical inviscid evolution of 
the vertical velocity for the 3-D Orr mechanism with 
K~ = 1, Key== 10, and various K~ is shown in Fig. 1. 

The case of no streamwise variation (K,=O) is the 
other 2-D limit. In the absence of viscosity the homoge- 
neous components of the solution remains constant and 
equal to their initial values as there is no time variation of 
the wave numbers as is. On the other hand, the inhomo- 
geneous equation (6) is continually forced by tilting of the 
background spanwise vorticity by the spanwise varying 
cross-stream velocity producing linear growth in time of 
the cross-stream vorticity, &,,, as can be easily verified by 
taking K~-+O in (8b). Equivalently, the spanwise varying 
cross-stream velocity can be regarded as lifting and de- 
pressing material parcels in the constant shear background 
flow producing velocity fields dominated by streamwise 
perturbation streaks, which are given by 

(gal 

C(t) =Ooeeg; d(t) =Goeeg. (9b) 

While a single wave of the form (9) is a nonlinear solution 
of the Navier-Stokes equations in an unbounded constant 
shear flow, to obtain a streamwise roll vortex, of the form 
discussed by Ellingsen and Palm23 and Landahl,8 four 
plane wave solutions must be summed, leading to a solu- 
tion strictly valid only in the linear limit. Again Eqs. (6) 
provide the 3-D extension of the 2-D streamwise roll case 
(Kl’o). 
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In the general 3-D case in which both the Orr and 
tilting mechanism are operating, the expressions for the 
streamwise and spanwise velocities fields are 

zi(t)=U^h+U^i*hy ti(t)=ti*+l2i)inh, (104 

where 

(lob) 

(1Oc) 

Clod) 

A typical evolution of the horizontal velocity components 
in the inviscid limit is also shown in Fig. 1 for the 3-D 
perturbation with initial wave numbers ~~ = 1, ~~~ = 10, and 
various K~. The velocities induced by the inhomogeneous 
solution due to the tilting mechanism can be seen to as- 
ymptote to a constant in this inviscid limit, although with 
nonvanishing viscosity all perturbations would eventually 
decay to zero. 

The interplay between the Orr mechanism and the tilt- 
ing mechanism depends on the ratio r=K3/KI. As we have 
discussed, when r=O only the Orr mechanism is present, 
while when r-+ cu only the tilting mechanism is at work. 
For intermediate values of r the induction of strong cross- 
stream velocities by the Orr mechanism produces greatly 
increased streamwise velocity. The maximum cross-stream 
VdOCity, attained at tu=Ko2/aK1, iS giVen by 

&,, = $0 1+12+&/d 
l-l-3 ’ (11) 

which for K~~/K* = 10 and r= 1 produces a 52-fold increase 
of the vertical velocity from its initial value. This large 
increase in cross-stream velocity leads through the tilting 
mechanism to rapid development of streamwise velocity. 
In order to quantify this mechanism, consider a perturba- 
tion with initial conditions: tie = 1, (3,,=0, ~~~~ 10, K~= 1, 
and the two choices K~=O and K~= 10. For the roll 
(K~=O), at at= 10, the streamwise velocity is u^= 10. On 
the other hand, for K] = 1, for which the Orr mechanism is 
operating, at the same time the streamwise velocity has 
reached u^ =: 25. This synergism of the tilting and Orr mech- 
anism underlies the rapid growth of streamwise streaks in 
viscous shear flows. 

The mean perturbation energy density, E(t), is defined 
as the mean perturbation kinetic energy per unit mass per 
unit fluid volume: 

1 
E(t) =tTm 2~ s 

L (u2+u2+w2) 
-L 2 dy, (12) 

where the overbar denotes the average over a wave period 
in the x and z direction. The perturbation energy density 

4800 ~~‘~~~-uJ’~~~.~’ 
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 

t 

FIG. 2. The inviscid development of the Reynolds stress - (u with time. 
The initial conditions and the value of the shear are the same as in Fig. 1 
(Es== 1, cjoY=O, ~~,=l, rq,s= 10). The dotted curves Al, A2, A3 are the 
values of the Reynolds stress for different spanwise wave numbers aos due 
to the Orr mechanism [cf. (Isa)]. The continuous lines B2, B3 are the 
corresponding Reynolds stress due to the inhomogeneous solution [cf. 
(15b)]; the curve Bl corresponding to qn=O is not shown because it is 
zero. The total Reynolds is the sum of the corresponding A and B curves. 

equation can be derived by multiplying each component of 
the momentum equation by its corresponding velocity and 
integrating over space to obtain 

dE 
z=- lim -L 

s 

L 

Lm2L -L 
(az+vm)dy, (13) 

where the summation convention is used with the indices 
i,j denoting the coordinate components. Note that, as in 
the familiar 2-D case, the perturbation energy density 
waxes by upgradient Reynolds stresses, which can be rec- 
ognized by the orientation of the planes of constant phase 
against the mean shear (for ~~~~~ > 0). For a single plane 
wave the Reynolds stress is given by 

--- 
UV = UhU + UinhV, (14) 

- KIKZ o f? K& 
-uhv=m 1~o12e-b+U2K2(t) Im(&$$o)e-2g, 

A (15a) 

&e 
- %rhv=2Kl~3~2(f) LoI 1~01 2e-2g9 

in which * denotes a complex conjugation. There are two 
sources for the Reynolds stress: the stress due to the ho- 
mogeneous term ( 15a), which reduces in the 2-D case to 
the term (A), and that due to the inhomogeneous term 
( 15b), which reduces in the limit K~ -0 to the lift-up mech- 
anism associated with the streamwise rolls. The time evo- 
lution of the two contributions in the inviscid limit for 
various ~~ is shown in Fig. 2. The Reynolds stress due to 
the homogeneous contribution, given in ( 15a), is downgra- 
dient initially, at tv=Ko2/aK1 it is zero, and for t> tv it is 
upgradient. If this mechanism were operating alone, max- 
imum energy density would occur at t,. Note that for 
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FIG. 3. An example of inviscid energy density amplification at t=lO 
(dashed line) and in the limit i+ CO (solid line) as a function of the 
spanwise wave number K,,~. The initial conditions and the value of the 
shear are the same as in Fig. 1 (Cc= 1, &er=O, K,,,= 1, ~cs= IO). Note that 
rro3 =0 corresponds to the 2-D Orr case for which the energy maximum is 
reached at t= 10. For any K,&O the energy eventually asymptotes in the 
inviscid limit to a &rite constant. As rcc3+ CO the energy as t-~ m  diverges 
if viscosity is disregarded. In the presence of viscosity the energy as t-+ m  
vanishes. 

K&O the Reynolds stress due to the inhomogeneous con- 
tribution, given in ( 15b), is always downgradient, produc- 
ing in the inviscid limit constant energy density at large 
times, as can be seen from integration of (13). For Kl=O, 

K~#O (streamwise rolls) UinhU is constant leading, in the 
inviscid limit, to energy density growth quadratic in time.’ 
For the general case the energy density growth of a single 
plane wave is given by 

E(t) 1ily12+(~~20)~l~~e~2g 
-= I&fl12+K;lq2 Eo ’ (16) 

where E. is the initial energy density. This energy density 
growth is shown as a function of ~~ in Fig. 3 for the inviscid 
case. We note that as the lift-up mechanism associated with 
the inhomogeneous contribution to the Reynolds stress be- 
comes important the energy density growth at large times 
is significantly larger than the energy density growth aris- 
ing from the Orr mechanism operating alone. 

III. DETERMINATION OF THE OPTIMAL 
PERTURBATIONS 

We have described the evolution of a plane wave per- 
turbation in an infinite shear flow. Development was found 
to depend on the initial cross-stream velocity and vorticity. 
In a stochastically forced flow it is likely that for a given 
initial energy density all initial conditions are sampled, and 
consequently it is of interest to determine which of these 
initial conditions yield greatest energy growth in a specified 
time. The initial perturbations that maximize energy 
growth at a specific time, T,,,, , and perhaps under specified 
additional constraints such as on the shape or the wave- 
length of the perturbation, will be called optimal perturba- 
tions. These optimal perturbations are the primary contrib- 
utors to the perturbation growth in the linear limit. The 
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FIG. 4. Energy density amplification at r,,, for the optimal initial con- 
ditions as a function of optimizing time r,,, . The continuous line is for 
single wave initial conditions. The dashed curve shows the optimal 
growth for single wave initial perturbations constrained to have either 
K, = 0 or K~ = 0 (the curves coincide). The dot-dashed curve is for check- 
erboard initial conditions, and the dot-clot-dot-dashed curve is for check- 
erboard initial conditions constrained to have the same initial spanwise 
and streamwise extent. Note that the wavelengths for these calculations 
have not been constrained, and consequently the viscous and inviscid 
optimal growth coincide. 

success of rapid distortion theory in fully turbulent flo~~~ 
suggests that the linear approximation retains validity in 
turbulent flow. 

The plane wave solutions are orthogonal in the inner 
product associated with either the L, or the energy norm. 
This orthogonality of the nonseparable plane waves should 
not be confused with the nonorthogonality of the normal 
mode solutions, which is necessary for the modal solutions 
to produce transient growth.5r25 A general initial perturba- 
tion can be considered as a Fourier synthesis of plane 
waves, and, because of the orthogonality property, deter- 
mination of the optimal perturbation reduces to a search 
for the optimal plane wave. This optimal will be called the 
general optimal. 

Note that the uniform shear flow has no intrinsic space 
scale in the inviscid limit. The expression for the energy 
growth (16) in this limit is therefore scale invariant. Con- 
sequently, if we do not limit the size of the perturbations, it 
can be verified that the optimal plane wave in the presence 
of viscosity will assume a large enough scale that the effects 
of viscosity can be disregarded for finite Topt . We will start 
by confining our search to finding the inviscid optimals 
recognizing that viscosity will lead to the eventual decay of 
the perturbation. 

The optimal plane wave was found by means of a 
downhill simplex method on the initial wave numbers, vor- 
ticity, and vertical velocity, i.e., given To,, find ~~~~ ~~~~ 

~~~~ Co, Go, so that 

is maxitnized. The resulting energy density growth as a 
function of optimization time is shown in Fig. 4. Also, the 
initial orientation of the wave as a function of optimizing 
time is shown in Figs. 5 and 6. Note the monotonic in- 
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FIG. 5. Initial ratio K~~/K,,, for the optimal checkerboard perturbation as 
a function of TO,, . The results are inviscid. 

crease of the energy amplification with Topt shown in Fig. 
4. The ratio of the spanwise to streamwise wave number, 
~as/~ei ~2, indicates that the optimal initial perturbations 
are elongated in the streamwise direction by this factor. 
The cross-stream inclination of the plane wave is defined as 
the angle between the direction of the mean flow and the 
line of constant phase projected on the (x,y> plane, i.e., 
f#=tan-’ K~~/K~~. The initial cross-stream wave number, 
~~~~ that corresponds to the optimal perturbations is such 
that the plane wave assumes a cross-stream orientation 
(4 =CQ-/2) at a time tU < Topt in order to benefit from the 
Orr intensification of the cross-stream velocity. This value 
of optimal ~~~ arises because of the synergism between the 
tilting and the Orr mechanism, which is a general charac- 
teristic of the 3-D optimals. By contrast, in the 2-D case, 
where intensification of streamwise velocity by the tilting 
mechanism is absent and the Orr mechanism alone pro- 
duces growth, tU > Topt . 

It is of interest to further compare the full 3-D optima, 
for which both the tilting and the Orr mechanism operate 
in combination, with the 2-D optima, for which only one 
mechanism is operating. The optimal energy amplification 
of such purely 2-D cases is also presented in Fig. 4: for 

100 I..~IllllJI~~.,.ll~,l..IIIII1,I~.II1.II1.I.II~IL 
r' 

90 

FIG. 6. Initial ratio K~~/K~, as a function of TO,, for optimal checkerboard 
perturbations. The results are inviscid. The dashed line corresponds to a 
ratio equal to the nondimensional optimizing time. 

ko3=0, for which the tilting mechanism does not operate, 
and for kol=O, the streamwise rolls for which the Orr 
mechanism does not operate. For both, due to algebraic 
coincidence, the energy density amplification of the opti- 
mals at Topt is 

Et Topt) 2( 1+ T34) 1’2+ To,, 
~=2(1+T&,t/4)“2-To,,’ E(O) 

(17) 

which for large optimizing times gives energy density am- 
plification: E( T,,,)/E( 0) z r$. This relation is a conse- 
quence of the unboundedness of the flow that allows the 
perturbations for every ‘Topt to assume large enough scale 
to evolve inviscidly during the growth stage. In contrast, 
the presence of boundaries sets a limit on the scale of the 
perturbations leading to a splitting for large T,,, of the 
maximum growth attained by the Orr perturbations, con- 
strained to K~~=O, and that attained by the streamwise 
rolls with K~~=O. To understand this splitting of the max- 
imum growth attained by the structures in the presence of 
boundaries, consider the characteristics of the initial opti- 
mal configuration in the unbounded flow in these limits. 

When ~~~‘0 the optimal plane wave has initial orien- 
tation: 

(18) 

under the assumption that (d2+~&) 1’2 is sufficiently 
small so that the cumulative dissipation factor g in (7) can 
be neglected up to times t= 0( To,,). This condition can 
certainly be satisfied when the flow is unbounded, but not 
when ~~~ > r/D is enforced by the presence of boundaries 
D units of distance apart. The maximum growth attained 
under this circumstance is consequently reduced. 

The optimal initial excitation of the streamwise rolls 
occurs for 

) (19) 

and K~~=O in the absence of boundaries. We  find that this 
initial condition leads to reduced dissipation when bound- 
ary constraints are introduced compared to its counterpart 
in ( 18 ) . Consequently, the streamwise rolls dominate the 
growth for large To,, in the presence of boundaries consis- 
tently with the numerical results of Butler and Farrell6 
Note in Fig. 4 that the energy growth attained by the 3-D 
optimal is always larger than the growth of the 2-D opti- 
mals, this difference increasing with To,, . This is also con- 
sistent with the channel flow results of Butler and Farrell,’ 
who find that the global optima are associated with general 
3-D disturbances. 

These single plane waves, although general optimals, 
suffer from the disadvantage that they assume spatially 
unbounded initial excitation. To study the affect of limited 
spatial excitation we consider, with Taylor and Green,26 
optimals constrained to be initially of the checkerboard 
form: cos (K~~x) cos (~~2y) cos (K~~z). The energy density 
amplification as a function of Topt for these bounded per- 
turbations is shown in Fig. 4. Note that, in general, the 
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FIG. 7. Evolution of energy density with viscosity for optimal checker- 
board initial conditions. The optimizing times, Tart, shown yield the 
maximal energy growth for the specific Reynolds number, R, where the 
Reynolds number is evaluated based on the streamwise wave number 
K,,, = 1. For R= 100 maximal growth is attained for T,r,=7. For R = 1000 
maximal growth is attained for Tort= 15, and for R = 10 000 maximal 
growth is attained for r,,,= 30. The corresponding energy density growth 
is 12.5, 109, and 707, respectively. 

energy amplification of the checkerboard excitation is 
larger than that of 2-D single wave optimals but less than 
that of the general optimals. Again the energy growth in- 
creases with Topt. 

W ith viscosity introduced we can define a Reynolds 
number, R=af/v, based on the scale, I, of the initial per- 
turbation. In the presence of viscosity the monotonic in- 
crease of optimal energy growth with Topt (cf. Fig. 4) does 
not persist for large values of To,, because for large optimal 
times viscosity eventually damps the perturbation. Conse- 
quently, there will be an initial optimal perturbation and a 
T  FT for which maximum growth is attained for each R. 
This Tg; and the associated energy growth is a measure of 
the greatest possible growth for any perturbation for the 
specific R. For checkerboard initial perturbations with 
R= 100, 1000, 10 000, maximum growth is achieved at 
T  :;=7, 15, 30 advective units, respectively, with corre- 
sponding maximum energy growth of 
E( T&/E(O) = 12.5, 109, 707 (Fig. 7), approximately in- 
creasing as R2. However, it can be shown using the above 
definition of R, that the minimum R for which some per- 
turbation growth can occur in the unbounded constant 
shear flow is R = 19.7. This result is interesting because it 
identifies the lowest Reynolds number for which growth 
can occur in the absence of boundary constraints (Appen- 
dix A). 

In real flows ambient turbulent fluctuations provide a 
time scale that intercepts the growth of the perturbations 
by disrupting their coherent motion. This time scale is the 
eddy turnover time, Ted,,. Because of the monotonic in- 
crease of energy growth for small Topt, the maximal 
growth of perturbations is attained for To,,+ T,,, , which 
may be considerably smaller than T,!$y . Dimensional 
analysis2’ provides an estimate of Teddy in the inertial su- 
brange. An eddy of characteristic size I has Teddy 
ZE -“3 1213 (with E the rate of eddy energy dissipation), 
indicating the choice of a smaller To,, for smaller eddy 
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FIG. 8. Contour plot of energy growth of checkerboard optimal pertur- 
bations as a function of the streamwise and spanwise wave number for 
r,,,= 10 and R= 1000 based on a disturbance with /1= 1. The abscissa is 
/2=(K&+&)1’2 and the ordinate is O=tan-’ K~~/K,,, . Note that the 
maximal growth occurs for @z-63”, that for small wave numbers viscosity 
does not affect the growth attained, and that for larger wave numbers 
viscosity affects least the structures neighboring the streamwise rolls (0 
=907. 

scales I. When the inertial subrange comprises three de- 
cades of wave numbers, the expected To,, varies by a factor 
of 100 over the subrange, thus allowing for a range of 
optimal energy amplification of the order of IO4 between 
the small- and large-scale structures. In general, we do not 
have a priori knowledge of Teddy, so that it has to be de- 
termined from observation. Typical of many experimental 
and numerical simulations is an eddy turnover time 
O( 10)24Js advective time units; consequently, we will 
choose To,, = 10 for the examples to follow. The checker- 
board optimal energy density growth as a function of ~~ 

and ~~ for R = 1000 and Topt= 10 is shown in Fig. 8. Note 
that R is based on a disturbance with il= 1, and that higher 
wave numbers correspond to smaller R. Conversely, small 
il correspond to more nearly inviscid flow. Inspection of 
Fig. 8 reveals the independence of the growth maximum on 
the total horizontal wave number, a result anticipated from 
the scale invariance of the inviscid equations that gives rise 
to the inertial subrange. The features of this plot are similar 
for the optimals with single wave initial conditions, a small 
difference being that for the plane wave the ~~~ =0 and the 
K~~---O axes yield exactly the same growth in the inertial 
subrange. Relative insensitivity of optimal growth to the 
choice of initial spanwise and streamwise wave number is 
revealed in Fig. 8. The maximum growth occurs when the 
ratio of streamwise to spanwise extent is K~/K, z 2, which 
produces perturbations benefiting maximally from the syn- 
ergism of the Orr and tilting mechanisms already de- 
scribed. It is interesting that this streamwise to spanwise 
ratio is commonly observed in experimental measurements 



(4 

FIG. 9. Evolution of the checkerboard optimal perturbation for r,,,= 10 and R= 1000. The volume containing perturbation energy greater than 75% 
of the maximum energy is displayed for different times. The fluid volume presented is one wavelength long in the streamwise direction (x), one 
wavelength in the spanwise direction (z), and the length of the cross-stream axis (v) is equal to the that of the streamwise. The initial wave numbers 
of the optimal perturbation are ~a, = 0.44, ~,,=3.55, ~cs=O.9. Panel (a) is for t=O, the maximum pointwise energy is normalized to 1. Panel (b) is for 
t=5, the maximum pointwise energy is 6.3. Panel (c) is for t= 10, the maximum pointwise energy is 110. Panel (d) is for t= 15, the maximum pointwise 
energy is 164. The disturbance decays for t> 15. 

of velocity correlations. 12,24 Also note that viscosity damps 
least the roll-type solutions (K~/K~ --t CO ), consistent with 
the observation that in the viscous sublayer the coherent 
structures preferentially assume the form of streamwise 
rolls.” Recently, Farrell and Ioannou”9 compared this 
maximum growth achieved in the unbounded flow as a 
function of the spanwise and cross-stream wave number to 
that found by numerical solution in channel flows. It was 
found that the maximum growth spectra are similar. 

While there is a large subspace of substantially grow- 
ing perturbations, the morphology of their evolution is 
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quite restricted. The evolution of a typical perturbation is 
shown in Fig. 9, where the volume containing perturbation 
energy greater than 75% of the maximum energy at each 
time is displayed. Note that the initially localized energy is 
sheared to produce structures of a double roller orienta- 
tion. This structure is verified in the x=0 plane vector 
velocity field shown at Topt== 10 in Fig. 10. These double 
rollers generate energetic localized streamwise streaks that 
only slowly decay. This universal morphology, commonly 
observed in turbulent flows, is shown here to arise from the 
3-D evolution of optimal perturbations. 
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FIG. 10. A snapshot of the checkerboard optimal for T,,,,=lO and 
R= 1000 at t= 10. The vector plot shows a (JJ,Z) section of panel (c) in 
Fig. 9 at x=0, displaying the vectors of the spanwise and cross-stream 
velocity. 

IV. DISCUSSION 

The observation that transition to turbulence in shear 
flow can occur with very small perturbations and that the 
critical Reynolds number for transition increases monoton- 
ically with perturbation variance argues for a linear mech- 
anism, underlying at least the initial stage of the transition 
process. lo Similarly, the fact that rapid distortion theory 
accurately produces the velocity correlation functions ob- 
served in shear turbulence, which reveal the underlying 
coherent structures, also suggests the first-order validity of 
linear theory in that problem. However, absence of modal 
instability in the canonical channel flow problems (except- 
ing plane Poiseuille for R > 5772) has discouraged appli- 
cation of linear theory and encouraged development of al- 
ternative nonlinear and secondary instability theories.4 
Nevertheless, reanalysis of the linear problem demon- 
strated the potential for large transient growth of appro- 
priately configured perturbations. 

Because naturally occurring disturbances are not likely 
to assume the form of a single eigenmode, assessment of 
the growth potential of ageneral perturbation is important. 
The least stable mode growth rate determines stability in 
the limit td M) for the linear problem, but this limit is not 
necessarily appropriate to many physical situations, even 
for flows that support modal instabilities because of ne- 
glected effects such as disruption of the eigenfunction on an 
eddy turnover time scale or limitations on the physical size 
of an experimental apparatus, which require that the mode 
also be absolutely unstable (have zero group velocity), in 
addition to being temporally unstable.5,30 On the other 
hand, initial growth as determined by energy methods,31 or 
equivalently by the method of this work in the limit 
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T apt-+0, reveals only the instantaneous initial tendency 
without determining the potential for flnite growth. The 
method of optimal growth includes both these limits, but, 
in addition, determines the potential for transient develop- 
ment and also the set of perturbations that accomplish this 
growth, given an appropriate development time and space 
scale from physical considerations for a given problem. 

Previous work on optimal growth made use of the 
modal decomposition of the dynamical operator, A, for the 
associated dynamical system, d$/dt=A$, in which the 
possibility for transient growth depends on the non- 
normality of A and the nonorthogonality of its eigenvectors 
in an appropriate inner product, generally that associated 
with energy. 5*6,9,32 While this method of analysis is general 
to all dynamical systems of the above form, in light of the 
universality of transition at subcritical Reynolds numbers 
and of the generality of coherent structures across shear 
tlow problems we have chosen to adopt the unbounded 
constant shear problem for which analytic solutions exist. 

An important result of previous work,6 verified here, is 
that the growth of 3-D optimals greatly exceeds the growth 
of 2-D optimals. This serves to explain the observed much 
greater instability of 3-D shear flows. 

We find that in limiting cases the optimal perturba- 
tions consist of either the Orr structure or the streamwise 
roll structure previously identified.7*8 However, in general, 
the optimal perturbation combines these mechanisms in a 
synergistic manner in which the cross-stream velocity pro- 
duced by the Orr mechanism enhances the streamwise rolls 
associated with streak production. The resulting optimal 
structures are found to resemble the double roller eddies 
observed by Townsend. 

There is no intrinsic scale imposed on the optimal 
structures in the limit of large Reynolds number based on 
the size of the perturbations and the shear and as a result 
the structures are scale invariant-the same intrinsic struc- 
ture can undergo development at any scale between that 
effected by viscosity and the largest scale excited, or alter- 
natively the largest scale not strongly disrupted by the 
background turbulent field over its growth.” It- follows 
that the set of optimals is densely distributed in the field of 
perturbations, unlike the case of inflectional instabilities 
that select a restricted subset of unstable modes typically 
forming a highly restricted growing subspace of the per- 
turbation field. 

While modal instability proceeds from arbitrarily small 
initial perturbations, transient growth, in general, produces 
large but ultimately bounded growth. It follows that the 
nature of the perturbation field has a more central role in 
transient development of optimal perturbations than it 
does in modal instability. However, the optimal perturba- 
tions form a complete orthogonal set so that any pertur- 
bation field can be decomposed into contributions from 
optimal elements. It follows that optimal growth structures 
dominate development from any perturbation field not 
contrived to exclude these growing perturbations and that 
optimal structures are likely to be universal features in 
observations of perturbed flows. 

It is clear in the case of transition to turbulence in 
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shear flows that the perturbation field is essentially exoge- 
nous to the flow because the level of background pertur- 
bation controls the transition Reynolds number.3933 How- 
ever, in the case of fully developed shear turbulence, 
excitation of optimal structures must be endogenous to the 
flow, at least at sufficient distance from boundary contri- 
butions to the perturbation field. The great potential for 
growth found for optimal structures argues that the role of 
nonlinearity in scattering energy back into growing struc- 
tures could be fairly weak, and yet the feedback could still 
be sufficient to transform the amplification into a self- 
sustaining oscillation maintaining turbulence in the man- 
ner discussed by Farrell.’ An explicit demonstration of this 
mechanism has been made by Schmidt and Henningson 
and Trefethen et al.35 Regardless of the success of such 
models, a particular mechanism underlying regeneration of 
optimal structures more specific than the appeal to “non- 
linearity” remains to be identified. For instance, it may be 
that the chance juxtaposition of the perturbation debris 
from previous growth episodes advected by the shear re- 
sults in the local occurrence of near optimal structures and 
attendant bursts of perturbation energetics, a mechanism 
well known to give rise to highly intermittent cyclone for- 
mation in the atmosphere.36,37 

Optimal excitation theory, developed here for the sim- 
plest shear flow problem, provides a unified method for 
analysis of shear stability, including the potential for 
growth in the limits t-+0 and t+ CO, as well as in the phys- 
ically important linite time domain, where large growth 
occurs, even in the absence of unstable normal modes. 
These perturbations identified as optimal in energy growth 
resemble observed recurrent structures in shear flow tur- 
bulence. 
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APPENDIX A: MINIMUM REYNOLDS NUMBER 
NECESSARY FOR PERTURBATION GROWTH 

We have shown that in unbounded shear flow single 
plane wave perturbations constrained to vary in the span- 
wise cross-stream plane (J+Z plane), i.e., with rq,i =O, and 
those constrained in the streamwise cross-stream plane 
(x-y plane), i.e., with ~~~‘0, achieve identical maximal 
energy density growth. It was shown that this result stems 
from the absence of a geometrically imposed scale limiting 
perturbation size. In this circumstance the effect of viscos- 
ity during the growth period may be made negligible by 
sufficiently increasing the perturbation scale. This result 
does not follow when the viscous effects necessarily enter, 

as in the case of bounded channel flows. When viscous 
effects are important the streamwise rolls grow more than 
perturbations constrained in the x-y plane. The increased 
maximum growth of streamwise rolls can be illustrated by 
determining the minimum Reynolds number for which 
growth is possible in an unbounded flow. 

To consider the viscous effects in an unbounded flow 
we nondimensionalize time by l/cl, where a is the shear of 
the background flow and length by I=r/.& where A is the 
initial total horizontal wave number. We can then define 
the Reynolds number as R=aP/v. 

First consider perturbations with K@~=O. From (16) 
and (10) we obtain energy density growth G=E(t)/Eo: 

G= dT[ 1+ (Ko2-d21 > 

C-41) 

where the variables are nondimensional and R is based on 
the cross-stream wave number K~, . At t=O we have 

d In G I+42 
-E-22- 2Ko2 

dt R +x’ t-42) 

The minimum Rmin for which growth is possible is given by 

pin--tin +( d(1K;2Q2). (-43) 

The minimum is attained for a perturbation with 
Ko2=3 - 1’2, leading to Rmin= 3.08 2=30.4. Orr’ calcu- 
lated for arbitrary 2-D perturbations meeting boundary 
conditions in a Couette flow R”‘“=44.3, where the Rey- 
nolds number is based on the channel width. As expected, 
the less constrained unbounded constant shear flow has a 
lower stability threshold. 

Consider perturbations with K~~=O. The energy den- 
sity growth can be derived from ( 16) and (9) to be 

G=(W+t)Z+1+KZ,2 
w”-+1+d2 exp (A4) 

where 7j is the amplitude of GoY and R is based on the 
spanwise wave number ~~~~ Note that in (23) we have 
considered perturbations that have initial cross-stream vor- 
ticity having a r/2 phase lag from the initial cross-stream 
velocity, as it can be easily seen that such initial conditions 
are favored. At t=O we obtain 

dlnG 22 
-=-3-- cl+x’,)fl+;+K;2. dt (A51 

The minimum Rmin for which perturbation energy growth 
is possible is given by 

. . 
Rm’“=mm(,KOZ) 

&l+‘&)(~+1+&2) 
w (A61 

The minimum is attained for perturbations with Z= 1 and 
K~~=O. The minimum is Rmin=2g=19.7. Note that the 
stability threshold for streamwise rolls occurs for a lower 
value of R than it does for perturbations with K~~=O. The 
critical R = 19.7 for streamwise rolls in an unbounded flow 
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is also smaller than the corresponding critical R =20.7 cal- 
culated by Joseph3’ for plane Couette flow, and R=49.6 
calculated by Busse3’ and Joseph and Carmi39 for plane 
Poiseuille flow. These critical Reynolds numbers demon- 
strate the potential for growth of nonmodal perturbations. 
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