Optimal excitation of perturbations in viscous shear flow
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Evidence, both theoretical and experimental, is accumulating to support a mechanism for
transition to turbulence in shear flow based on the 3-D secondary instability of finite 2-D
departures from plane parallelism. It is of central importance for using this mechanism to
understand how the finite amplitude 2-D disturbances arise. To be sure, it is possible that in
many experiments the disturbance is produced by the intervention of a mechanism that
directly injects the requisite disturbance energy without calling on the store of kinetic energy
inherent in the shear flow. It is shown here that it is also possible to tap the mean shear energy
using properly configured perturbations that develop into the required primary disturbance on
time scales comparable to those associated with the secondary instabilities even though the
shear flow is stable or supports, at most, weak exponential instability.

1. INTRODUCTION

While the growth of small perturbations in shear flow is
usually ascribed to linear modal instability, it is known that
properly configured perturbations not of normal mode form
undergo a period of transient growth resulting in large in-
creases of amplitude and energy. For flows such as the
Couette that do not support unstable normal modes this
transient growth must account for whatever increase of per-
turbation energy is observed, assuming the initial distur-
bance is sufficiently small that linearity is maintained. For
flows such as the Poiseuille that do support unstable normal
modes the excitation of the unstable mode is determined by
the configuration of the initial perturbation and exciting the
mode in isolation is shown here to be highly suboptimal.

A consideration of energetics reveals that developing
perturbations must have momentum fluxes directed down
the mean momentum gradient and this can guide the choice
of energetically active disturbances; with experience one can
readily produce rapidly growing waves if the Reynolds num-
ber of the flow is sufficiently large. Still, it is worthwhile to
find the optimal initial condition that most effectively excites
a given mean flow. Such an optimal excitation allows an
assessment of the potential of the initial value problem to
account for the growth of perturbations in stable flow or to
excite the unstable mode rapidly. Additionally, the structure
of the optimum shows how a given mode is most easily excit-
ed; for instance, some modes are efficiently induced by
boundary disturbances and others by interior disturbances.

In this work optimal initial conditions for the excitation
of 2-D disturbances are found as solutions to a variational
problem and the results illustrated with examples from the
viscous Poiseuille and Couette flows: the optimum is found
for the unstable Poiseuille mode and the least damped
Couette mode. The constraint that a particular mode be opti-
mized is then relaxed and the most rapidly growing distur-
bance in a given time is found without regard to projection.

The mechanism of transient growth is examined with
the model problem of plane parallel viscous shear flow for
which stationary solutions of the form U(z) to the equations
of motion in a channel bounded by horizontal planes at
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z= + 1 are linear combinations of the two basic profiles of
plane Poiseuille flow,

Uz)=1-2,

corresponding to a constant imposed pressure gradient and
Couette flow,

Uiz) =z,
corresponding to imposed plate motion U(1) = 1.0,
U(—1) = — 1.0. The linear evolution of perturbation

streamfunction, ¥ = ¥(z)e™** with u =3y/dz and
w= — iky is governed by the Orr-Sommerfeld equation

(‘k -1 az 22 — 32 2
tkR) :??—k ¢—(U-C)5‘z;—k v—U.¥,
(1a)

with boundary conditions expressing the vanishing of veloc-
ity at the rigid plates,

k=% _0, z= +10. (1b)
oz
It is understood in this linear problem that physical signifi-
cance is ascribed to the real part of complex quantities.

This linear stability problem for viscous flow is charac-
terized by the nondimensional Reynolds number
R=U_,L /v, where y is the kinematic viscosity, L is the
half-channel width used to nondimensionalize distance, and
U, is the maximum mean flow velocity providing the time
scale L /U,,,.

The growth of small disturbances can arise either from
modal instability or from the transient development of a
properly configured initial perturbation. For Couette flow
there are no unstable modes at any Reynolds number, a theo-
retical result’ consistent with numerical experiments. Tran-
sient growth in the linear Couette problem was examined by
Orr® who found that all perturbations decrease for R < 44.3,
but above this value growth is possible. He was unable to
determine the extent of the growth because of analytical dif-
ficulties associated with the viscous boundary conditions.

Poiseuille flow has no exponential temporal instabilities
for R <5772.22, according to Orszag.> Above this value
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there is an unstable symmetric mode that obtains, for
R=10* and k=10, the complex phase speed of
¢ = (0.238,0.003 74), corresponding to one e-folding in the
time taken for 134 channel width advections by the maxi-
mum mean flow velocity. This growth rate is two orders of
magnitude smaller than that typical of inflection point insta-
bilities in inviscid shear flow, but the slow growth cannot be
directly attributed to the effects of viscous dissipation at
Reynolds numbers of 10*. As will be made clear by example,
the slow growth rate of normal modes arises from modal
structures that are highly inefficient at converting mean flow
energy to perturbation energy.

The importance of the least stable normal mode derives
from its being a long-lived structure in the linear problem. If
one wishes to excite waves by drawing on the mean flow
energy through Reynolds stress mediated conversion from
mean energy to perturbation energy, then other things being
equal it is best to call on a perturbation that excites the most
persistent structure. Because the instability is so weak, it
does not matter much over the first few hundred units of
nondimensional time whether the structure is slowly grow-
ing or slowly decaying. Thus the qualitative distinction
between the Poiseuille and Couette flow, that the former
supports instabilities while the latter does not, will fail to
produce a qualitative difference in the results. The Couette
flow does possess a slightly damped mode at moderately
large Reynolds number and behavior similar to that of the
Poiseuille flow is found.

It is certainly true that the most unstable mode (if it
exists) dominates the response of the flow in the limit 71— «
to any disturbance not deliberately configured to have a null
projection on it. However, it is likely that many physical
problems and experiments are appropriately analyzed as ini-
tial value problems with excitation confined in time and not
controlled to project only on the single most unstable mode.
If the additional modes of the problem that are unavoidably
excited were irrelevant to the growth of perturbations then it
would be permissible to ignore them; however, as will be
demonstrated, this is not so. Even if the most unstable mode
is dominant at some later time the initial setup of the mode
will be shown to be inextricably linked to interactions with
its companion stable modes.

The outline of the paper is as follows. In Sec. II the
optimal excitation problem in the L, norm is solved. As this
norm is perhaps not as physically motivated as the energy
norm, the optimal excitation for the energy norm is also
found. In Sec. III the requirement that a specific mode be
optimally excited is relaxed and in its stead a time interval is
imposed over which the perturbation is required to increase
by the greatest possible amount. The motivation here is
physical: we are attempting to find explosive growth scenar-
ios. While these optima are not likely to be exactly duplicat-
ed by a stochastic forcing they do provide an upper bound on
what growth can result from a perturbation. An interesting
result emerges in that the potential for growth increases rap-
idly with Reynolds number above about 500. Stochastic
forcing is not effective until this Reynolds number has been
exceeded but above this value forcing can be highly effective
in exciting disturbances.
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1l. OPTIMAL EXCITATION OF A MODE

The Orr-Sommerfeld equation together with its bound-
ary conditions (1) can be written in operator notation, as-
suming the solution form ¥(x,z,t) = E(z)e®**", as

LE(z) =cE(z),

L=A~'(—AYikR+ UA—U,) . 2
Nontrivial solutions to (2) are associated with complex
phase speeds c. In this work only flows confined between
boundaries at finite z are used as examples. It has been shown
that under this circumstance the spectrum of modes is dis-
crete* and complete.>¢ By contrast, Mack’ demonstrates by
example that completeness in boundary layer flows that are
unbounded above requires a continuous spectrum in addi-
tion to a set of discrete modes.

In the examples to follow, L is expressed in finite differ-
ence form.® Various orders of finite differences and numbers
of collocation points were tried and the resolution necessary
to obtain converged solutions determined. Results shown
used 100 grid points and seven point difference approxima-
tions. Eigenvalues extracted using the QR algorithm were
compared with those of Orszag? and the first eigenfunction
for Poiseuille flow at R = 10* with the tabulated values of
Thomas.®

The N modal solutions in the finite difference approxi-
mation are each represented by a vector

ik(x —cjt)
Y, =E;e . (3)

Assuming a fixed wavenumber &, we can express the evolu-
tion in time of an initial perturbation {,e™* as

d ik(x — )
‘\'J = EajEje o ,
ji=1
where a is the spectrum of the perturbation obtained using
E, which is the matrix having the eigenvectors as columns:

a=E"'Y,. (4)

The concept of an optimum requires a measure for the
perturbation magnitude. One choice is the rms amplitude of
the streamfunction, which has the advantage of simplicity. A
second and perhaps more physical measure is the rms ampli-
tude of the streamfunction gradient corresponding to the
rms velocity. The square of this norm is proportional to the
kinetic energy. The former will be referred to below as the L,
norm and the latter as the energy norm. An additional ad-
vantage gained by using two norms is that examples of opti-
mal perturbations in these norms can be compared to obtain
an impression of the general attributes of optima indepen-
dent of the specific measure.

We now consider some example problems, the first
posed as follows: find the minimum initial disturbance re-
quired to excite a chosen mode at unit amplitude. The moti-
vation might be to find the best way to produce the most
persistent wave, in that case the least stable mode would be
the target. It might be supposed that the best way to excite
the least damped wave would be to put the available ampli-
tude or energy, as the case may be, directly into that mode.
This is not so; in fact, exciting the desired mode directly is
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highly suboptimal. It is much better in flows with nonor-
thogonal modes to distribute the initial disturbance so that
the interaction between the nonorthogonal modes and the
mean flow transfers energy from the mean to the perturba-
tion. The result of such a choice of perturbation can be an
increase in disturbance energy even for a model problem
with only stable or damped modes. This disturbance energy
is drawn from the mean flow despite the absence of instabil-
ity.

With a little experience one becomes skilled at produc-
ing perturbations that are energetically active and the attri-
butes of such disturbances will become clear from examples
below. Limits on transient growth are determined by finding
optimal perturbations. If no perturbation could produce sig-
nificant growth for a Reynolds number below some value in
a given flow, then the energy of the flow is not available in the
linear limit. This is a quite different result from the absence
of exponential jnstabilities placing a limit on #— o asympto-
tic growth, and the existence of such instabilities has no clear
relationship with the potential for transient growth, as
should be clear from examining the Couette and Poiseuille
problems. In practice, transient development seems only to
require that there be energy available in the mean flow as
shear, or more generally as a deformation field,' and that
the Reynolds number be large enough. These are conditions
required by general integral bounds'' but whereas these
theorems limit what might be done in theory, the optima
provide concrete examples of what can be done in fact.

The solution to finding the best perturbation for exciting
a given mode is found by a variational method. In the L,
norm the functional to be minimized is d*«{. It is written
using the spectrum (4) at t =0as

(Ea)*(Ea) = a*E*Ea = a*Aa. (5)

Here A is the matrix of the positive definite quadratic form
that associates with a spectrum «, the square of the L, norm
of its streamfunction .

Choosing as a constraint that the ith mode be of unit
magnitude, the variational problem is to render stationary
the function

F=o*Aa + A(are;, — 1),

where ¢, is the unit column vector. Setting the first variation
in a to zero gives, recognizing A to be Hermitian,

Aa= - Ae; .
The optimal spectrum
o= — /1 A_ lE,- (6)

is completed by choosing A so that a; = 1.0.

There is a relationship between this optimum and the
eigenvectors of the matrix adjoint to L. Whereas the eigen-
functions of a self-adjoint operator are orthogonal and con-
sequently dynamically independent, a non-self-adjoint oper-
ator such as L has an associated adjoint operator L¥*, its
Hermitian transpose, with eigenvalues that are the complex
conjugates of the eigenvalues of L. The eigenvector of an
eigenvalue in the adjoint matrix is orthogonal to all eigenvec-
tors of the original matrix except for the one with an eigen-
value conjugate to its own. It is clear from (5) and (6) that
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the L, optimal initial condition for exciting a mode is the
adjoint mode.

Taking advantage of the observation that the desired
initial condition is the eigenvector of the adjoint matrix, the
optimization problem can be solved for all modes simulta-
neously by eigenanalysis of the adjoint. Figure 1 shows the
unstable mode of the Poiseuille problem at R = 10* and the
optimal initial condition to excite this mode while Fig. 2
shows of the two degenerate least stable modes in the
Couette flow at R = 10° that one trapped near the lower
boundary and the optimum associated with it. The develop-
ment of these optimal perturbations is shown in Figs. 3 and
4, respectively. In these figures and those to follow, the maxi-
mum value of the streamfunction as well as the normalized
square of the L, norm are indicated at each time so that the
resolution of the plot need not be compromised by a constant
contour interval.

Optima in the energy norm for the examples above are
obtained in a similar way using the perturbation energy K:

4K = kP + b,

This can be expressed using the spectrum a as
4K = a*Bua,
B=k’A + E*E,,

where E_ is the matrix with the eigenvector derivatives as
columns.
The optimization proceeds as before with the solution

)]

-0.50

0 16 31 . a7 6.3

FIG. 1. Optimal excitation in the L, norm of the unstable eigenmode for
Poisenille flow with k = 1.0 and R = 10°. (a) Perturbation streamfunction
of the unstable eigenmode with eigenvalue ¢ = (0.378,0.003 74). (b) Dis-
turbance streamfunction that is the optimal condition for exciting the un-
stable mode.
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FIG. 2. Optimal excitation in the L, norm of the least stable mode for
Couette flow with X = 1.0and R = 10°. (a) Perturbation streamfunction of
the least stable eigenmode with eigenvalue ¢ = (0.605, — 0.119). (b) Dis-
turbance streamfunction that is the optimal initial condition for exciting the
least stable mode.

=~ —AB~ ¢, (8)

where A is chosen to make the projection on the ith mode
unity.

The minimum energy initial condition for the unstable
mode in the Poiseuille problem at R = 10* is shown in Fig. 5
together with its development in time.

At this point we return to the adjoint matrix and exam-
ine a connection with the differential equation adjoint to the
Orr-Sommerfeld equation:

(ikR)"(a—2 k2)2¢ = (‘9—2— kz)(U— c)p—U.¢,

E a2
(9a)
with boundary conditions
k¢=a—¢=0, z= +1.0. (9b)

Jz
The argument leading to expression (6) for the optimal
spectrum using the vector product ¢*« can be made in a
similar fashion for continuous functions by replacing the
vector product with the analogous expression

+1
I YY* dz.

-1
Properly normalized eigenfunctions of the Orr—-Sommerfeld
equation, ¢; with eigenvalue c; and of the adjoint equation ¢;

with eigenvalue c;, are biorthogonal in a way similar to that
of their matrix analogs,>'?

+1 a 2 )
\——k ) dz=25, .
f LY (322 9 dz =0,
Integration by parts permits ¢ and ¢ to be interchanged

(10)

(11)
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FIG. 4. Development of the perturba-
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norm initial condition for exciting the
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in this expression. An examination of (8), (10), and (11)
then shows that the analogy between the matrix optimal so-
lution and the differential optimum requires the energy
norm optimum be identified with the conjugate of the corre-
sponding adjoint eigenfunction. In the L, norm the analogy
would be complete if the matrix adjoint could be identified
with the Laplacian of the conjugate of the differential ad-
joint. The optimal excitation for the mode 3, would then be
(9%/32* — k*)¢*. Unfortunately, while ¢, satisfies the
boundary conditions appropriate for a streamfunction, its

Laplacian in general does not and it is required that the
expression for the optimum (6) be solved using a general-
ized inverse. This is not a conceptual impediment, but, for
our purpose, it suffices to observe that the Laplacian of ¢} is
nearly identical to the matrix adjoint except for a region very
near the boundary where the adjustment to the boundary
conditions is accomplished.

The eigenanalysis of the adjoint equation (9) was per-
formed for the Poiseuille flow example of Fig. 1 to illustrate
the above argument. As expected, the eigenvalues are identi-
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FIG. 6. Perturbation streamfunction of the eigenmode of the adjoint Orr-
Sommerfeld equation, which is associated with the unstable eigenmode of
Poiseuille flow illustrating the relation between this adjoint eigenmode and
the optimal initial condition for exciting the unstable mode. (a) The adjoint
Orr-Sommerfeld mode associated with the unstable eigenmode of Poi-
seuille flow for k=1.0 and R = 10°. The eigenvalue is ¢=(0.378,
0.003 74). (b) The Laplacian of the conjugate of the adjoint mode which
closely approximates the optimal initial condition.

—

t=0.0
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cal to those of (1), the energy norm optimum in Fig. 5(a) is
identical to the conjugate of the adjoint in Fig. 6(a), and the
approximate L, optimum deviates from the matrix solutions
only in the immediate vicinity of the boundary. The unstable
mode provides the severest test as its matrix adjoint solution
is highly concentrated near the boundary precisely where
the argument is likely to fail. Even so, the deviations are
slight, as seen in Fig. 6 where the adjoint mode and its Lapla-
cian are shown. Figure 6(b) is to be compared to Fig. 1(b)
and the adjustment to the boundary conditions noted.

In summary, the energy norm optimum is the conjugate
of the companion adjoint mode and a good approximation to
the L, optimal excitation for a given mode is the Laplacian of
the conjugate of its companion mode in the adjoint problem
subject only to a smooth transition in the immediate vicinity
of the boundary. Further development of the relation
between the differential adjoint and the matrix optimal solu-
tions is beyond our present scope and we return now to the
question of identifying the most rapidly growing distur-
bances.

ill. OPTIMAL GROWTH PERTURBATIONS

Another physically interesting problem results from re-
laxing the constraint that a given mode be optimally excited
and instead seeking the perturbation that produces the maxi-
mum total growth over a time interval of a few tens of advec-
tion periods. The purpose is to identify initial conditions that
grow explosively and to compare the development of these
less constrained optima with that of the specific mode excita-
tions. In addition, a revealing dependence of the growth on
Reynolds number is found.

The functional to be rendered stationary is

FIG. 7. Development of the perturba-
tion that increases maximally in the L,
norm over 20 time units for Poiseuille

- 100 e flow with k = 1.0 and R = 10%.
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F=a*A,a + A(a*Aa—1).

Here A, =E}E,, where E, is the matrix of eigenvectors each
advanced in time according to (3).
The requirement of stationarity is

Aa+AA0=0,
(Ag'A, +ADa=0.

The eigenvectors of the above matrix are the spectra of
the stationary solutions, one of which is the desired opti-
mum. As an example the optimum for an interval ¢ = 20.0
and its development in time is shown in Fig. 7 for the Poi-
seuille with £ = 1.0, R = 10*. The same example optimized
in the energy norm is shown in Fig. 8. Although the precise
form of the optimal growth disturbance depends on the
choice of norm, it is clear from Figs. 7 and 8 that there are
general features common to favorable perturbations for ex-
citing the unstable mode including upshear tilt in the phase
lines and concentration near the boundaries. Other distur-
bances sharing these features can be expected to grow but to
be suboptimal.

An energy optimum for the interval = 12.0 in the
Couette flow with k = 1.0, R = 10° is shown in Fig. 9. The
total growth here is considerably less than that found in the
previous two examples, revealing that perturbation growth
is severely reduced for R < 10°. Growth rates for perturba-
tions optimized in the energy norm over the interval ¢ = 20
for Poiseuille flow at R = 500, 10°, 10* are shown in Fig. 10
to illustrate this point. Even so, these growth rates are com-
parable to the maximum rates associated with inviscid in-
flection point instabilities and are nearly two orders of mag-
nitude greater than the growth rate of the viscous unstable
mode at R = 10*. If plotted in Fig. 10, the unstable mode
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FIG. 8. Development of the perturba-
tion that increases maximally in the en-
ergy norm over 20 time units for Poi-
- seuille flow with k = 1.0 and R = 10*.
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growth rate would not be distinguishable from the abscissa
line.

IV. DISCUSSION AND CONCLUSIONS

The development of perturbations in viscous shear flow
arises from the transfer of the kinetic energy of the mean flow
to the perturbation scale mediated by a systematic down gra-
dient flux of momentum by the perturbation Reynolds
stress. A useful distinction can be made between two wave
processes that produce this flux: exponential instabilities
that dominate the long-time asymptotic limit in the linear
problem because of their unbounded growth, and transient
growth processes arising from energetic interaction between
the modes and the mean flow because the modes are not
mutually orthogonal. The first process cannot explain the
growth of disturbances in stable flows such as the Couette.
Even in flows that do support exponential instabilities, such
as the Poiseuille, the second process is potentially able to
dominate the development over time scales of a few hundred

advection periods because of the slow growth of the unstable

mode. A necessary first step in validating the hypothesis that
transient growth processes be of importance is the demon-
stration here that properly configured disturbances can
grow in viscous shear flows at a rate comparable to that of
inviscid inflection point instabilities and can sustain this
growth over sufficient time to realize total growth of nearly
two orders of magnitude.

Because exponential instabilities in viscous parallel
shear flow are either nonexistent or have small growth rate,
it is now widely believed that rapid growth arises from sec-
ondary 3-D exponential instabilities.'®> The transient devel-
opment demonstrated here provides a mechanism for pro-
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ducing from small initial disturbances the finite amplitude
2-D perturbed flow that supports 3-D cross-stream instabili-
ties. However, it is also possible that the generation and
maintenance of a highly perturbed flow is more essentially
related to its perturbation spectrum and it is useful to distin-
guish a weak and strong version of this hypothesis. The weak
version recognizes that the conceptual basis of exponential
mode dominance is valid only in the limit of long time be-
cause it requires the most rapidly growing mode to obtain
dominance over both the energetically active neutral and
damped waves as well as over competing instabilities. For
every perturbation that effectively excites an exponential
mode, as in the above examples, there is an equivalently inef-
ficient perturbation that, rather than advancing the setup of
the instability inhibits it. Because of the exponential charac-
ter of the growth, the perturbation with favorable origins

1 1 1 1 1 1)

Y S
0 3 6 9 12 15182 2427 0
t

FIG. 10. Energy growth rate at the indicated Reynolds numbers in Poi-
seuille flow for perturbations optimized on an interval of 20 time units with
k=1.0.
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will be increasingly dominant. The importance of the initial
condition in this weak version derives from its role in deter-
mining the connection between the statistical distribution of
perturbations and the resulting field of saturated instabilities
as they equilibrate nonlinearly. The strong version arises on
noting that exponential dominance is not assured over time
scales compatible with at least some experiments; thus it is
possible that the instability achieves normal mode form after
the greater part of its development has occurred and that the
individual energetic event is primarily of the transient type
discussed above. In either case the normal mode structure is
found after the development is completed but comparison of
time scales for exponential growth with time scales charac-
teristic of an energetic event should allow a discrimination
between these processes. There does not appear to be a justi-
fication for assuming that perturbations are of normal mode
form to begin with and once it is seen that the configuration
of the perturbation is crucial in determining its development,
itis clear whether the weak or strong version is operating in a
particular case that the transient development cannot be ig-
nored. In some experiments the form of the initial distur-
bance is at least partially controlled and the observation here
that disturbances introduced near the boundaries are par-
ticularly favorable in producing rapid growth is compatible
with experimental results involving trip wires, excitation rib-
bons, spark gaps, and the like that are often deployed in
those regions. It is also interesting that the least damped
mode, the persistent structure in the linear problem, arises
naturally both as the result of optimal excitation and in ex-
periments.

. Although the results presented here address the viscous
problem governed by the Orr-Sommerfeld equation, the in-
terior flow far from boundaries is in many respects similar to
the inviscid problem. Practically speaking, this similarity
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underlies the historical success of inviscid dynamics in appli-
cations. The relation between the transient growth phenom-
ena and the stable and unstable modes has been recently
developed for inviscid shear flows and qualitatively similar
phenomena to those described here are found, including rap-
id initial growth at rates exceeding exponential mode rates
and the preferential setup of a linear normal mode as a per-
sistent structure.'*'® At higher amplitude the equilibrated
structure are nonlinear modes.!” A preferred inviscid exam-
ple in the work just referenced is the Eady problem of baro-
clinic instability theory. This problem can be identified with
the Couette problem with free boundaries and has the impor-
tant theoretical advantage of supporting normal modes, the
linear persistent structures, and of being solvable exactly.

For plane Couette flow the growth of perturbations can
only arise in the linear approximation from the mechanism
addressed here as the problem does not support unstable
modes. It might appear that for R > 5772.22 the Poiseuille
flow, which does support an instability, would exhibit finite
amplitude perturbations starting from an arbitrarily small
initial disturbance if one is willing to wait long enough. In
fact this is only true for experimental apparatus with period-
ic boundary conditions in the along-stream direction with-
out which Poiseuille flow has been maintained laminar by
careful control of perturbations up to R = 9000, far above
the instability boundary.'® This result arises from the fact
that it is not sufficient for a temporal exponential instability
to exist in an apparatus of finite along-stream extent for that
flow to support unbounded growth in the linear limit, it is
necessary additionally for the instability to have a vanishing
group velocity so that the growing wave packet does not
propagate out of the experimental domain leaving behind an
undisturbed flow. If it is assumed that the apparatus is fixed
in the laboratory, the only relevant instability in the limit of
long time is the one with zero group velocity. This concept is
well known in the theory of plasma instabilities'® where the
existence of zero group velocity unstable modes is associated
with the so-called absolute instability as opposed to the case
when all unstable modes propagate away, referred to as con-
vective instability. The group velocity of the unstable modes
in Poiseuille flow has been found by Deissler®° to be strongly
positive. This result forbids unbounded growth in a finite
apparatus and requires that the disturbance be continuously
reexcited at the upstream end, which accords with the com-
mon use in experiments of trip wires, ribbons, and the like to
excite the modes. Convective instability of Poiseuille flow
makes the excitation central in producing the disturbance,”'
while this work has demonstrated that there are perturba-
tions especially effective for this purpose.

The mechanism of transient growth can account for the
development of perturbations in flows other than plane par-
allel shear where the importance of the transient dynamics is
clearly motivated by the small growth rates of the instabili-
ties. Once a finite amplitude 2-D wave arises, the 3-D insta-
bilities that it supports are often found to grow at rates with-
in small factors of the maximum permitted by integral
bounds, thus suggesting an early dominance of the unstable
mode. It remains true, however, that 2-D transient growth is
equally rapid over its shorter time scale and furthermore
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there is no reason to assume normal mode form for the 3-D
perturbations if nonmodal configurations have comparable
growth rates. The dominance of exponential modes is plausi-
ble for time scales sufficiently long to justify ignoring the
transient development, and this depends on the experiment,
but even if the life cycle energetics are dominated by the
exponential growth phase, the weak hypothesis described
above points out a role for the transients. It is a matter only
of increased computational complexity to calculate the
modes of a higher-dimensional flow and considering that the

- dynamical equations are not self-adjoint it follows that the

modes are not orthogonal and as a result have transient dy-
namics analogous to that found here.

Consider a stationary solution to the 2-D Navier—Stokes
equations such as plane parallel shear flow or a nonlinear
equilibrated wave such as the 2-D upper branch solutions of
Poiseuille flow.!* In the comoving coordinate system sta-
tionarity requires

J(@hAY) = (1/R)A%Y,

where ¥ is the streamfunction of the stationary solution. Per-
turbations to this solution evolve on a rapid advective time
scale associated with the Jacobian followed by a slow diffu-
sive relaxation. If there is superimposed a field of small per-
turbations ¢, the analysis here demonstrates for the plane
parallel flow and suggests by analogy for 2-D flow that cer-
tain of these perturbations are dangerous in that they result
in the explosive growth of disturbance energy. The picture
that emerges is of a flow close to a stationary solution but
with intermittent energetic events associated with the
chance occurrence of dangerous perturbations. As the per-
turbations disrupt the solution on the advective time scale it
is likely that diffusive equilibrium is never exactly obtained.

This preliminary study has left many issues unresolved,
including the behavior of a disturbance localized in the
along-stream direction. Using Fourier synthesis this can be
thought of as a packet of waves. Strictly speaking, the above
argument concerning the potential importance of the growth
of the individual modes must be confirmed for a local packet
made up of such waves if this corresponds to the experiment
to which the theory is applied. If the modes are strongly
dispersive the maximum local amplitude obtained could be
reduced considerably. There are at least two pieces of indi-
rect evidence relevant to this question: in examples of invis-
cid shear flow where analytic solutions can be obtained the
dispersion of the packet is small over the time of the transient
growth and the packet grows at the rate of the central
mode'’; also in examples of boundary layer flows Gaster and
Grant® observed the packet to maintain its integrity even in
the nonlinear limit.
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