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‘Itvo-dimensional perturbations configured for maximum energy growth in laminar viscous shear 
flow are shown to develop into quasisteady finite amplitude structures, provided that the initial 
perturbation has sufficient energy and a nearby nonlinear mode exists. For Poiseuille flow, which 
supports finite amplitude equilibria for Reynolds numbers above -2900, an optimal perturbation 
with initial energy density equal to or greater than 0.1% of the mean flow energy density closely 
approaches the quasiequilibrium state within 10 advective time units. For Couette flow, which has 
no finite amplitude solution, the optimal perturbations decay rapidly after reaching maximum 
amplitude unless the configuration is sufficiently close to a linear mode with slow exponential decay 
rate. While the quasiequilibrium structure for Poiseuille flow is locally infiectional, it supports only 
weak instabilities with scales larger than the local region. 

I. INTRODUCTION 

Nonlinear coherent structures play an important role in 
many aspects of fluid behavior. Vibrating ribbons are com- 
monly used to generate a coherent two-dimensional (2-D) 
flow field in forced transition experiments such as those of 
Klebanoff et aZ.’ and Nishioka et aZ.’ Secondary instability 
theories,ss4 rely on these 2-D structures to support three- 
dimensional (3-D) parametric secondary instabilities. 

The problem of the origin of coherent structure from the 
background flow field is a central theoretical issue that has 
received little attention. For stable basic flows with strong 
forcing, such as those alluded to above, the origin can be 
related to the forcing. When a strong coherent forcing is not 
imposed, the problem of identifying the source of the coher- 
ent structure is more difficult. 

supports neither exponentially growing modes nor (appar- 
ently) 2-D finite amplitude equilibria (although it does sup- 
port 3-D equilibria’). In order to demonstrate the growth of 
3-D secondary instabilities on 2-D quasiequilibria for Rey- 
nolds numbers down to R-1000 based on channel half 
width and upper wall velocity, Orszag and Patera” found it 
necessary to superimpose a large amplitude 2-D modal dis- 
turbance on the basic flow. An initial perturbation of El-=4% 
l?, where I? is the mean flow energy density, gives the 3-D 
secondary instabilities sufficient time to develop on the rap- 
idly decaying 2-D structures. 

In plane Poiseuille flow, a finite amplitude quasiequilib- 
rium state can arise from the development of 2-D distur- 
bances. The unperturbed Poiseuille flow is linearly unstable 
(albeit with small growth rates) for Reynolds numbers above 
R,=5772 (Ref. 5) based on channel half width and center- 
line velocity and supports up to two finite amplitude nonlin- 
ear solutions at a given streamwise wave number (Y for 
R;22900. Taking E to be the finite amplitude perturbation 
energy density, the neutral surface representing this set of 
subcritical and supercritical finite amplitude equilibria, 
mapped out in (E,R,cY) space by Zahn et aL6 and Herbert,7 
has been shown by Orszag and Patera* to attract 2-D modal 
disturbances above a threshold energy for Reynolds numbers 
as low as R-1000. The evolution of these finite amplitude 
modal disturbances toward the equilibrium point follows a 
route characterized by two time scales: the eddy circulation 
time l/JE (of order 10) over which the initial flow develops 
into a quasiequilibrium state, and the viscous time scale R 
over which the flow develops along a band of quasiequilibria 
toward the steady solution. 

Clearly it would be useful to identify initial conditions 
that are particularly effective at converting a nearly parallel 
flow into a flow containing long-lasting finite amplitude 
structures. In particular, for the secondary instability mecha- 
nism to explain the onset of natural transition in subcritical 
flows, a long-lasting 2-D elliptical structure must somehow 
arise from low levels of background noise. 

A general approach to the question of the origin of finite 
amplitude disturbances has been proposed by Farrell,” who 
demonstrated that properly configured initial conditions that 
are not of exponential modal form can grow rapidly (on the 
advective time scale) by tapping the kinetic energy available 
in the mean shear. In this paper, we follow the nonlinear 
development of ZD perturbations that are optimally config- 
ured in the linear problem to gain the most energy. The ten- 
dency of these initial disturbances to evolve nonlinearly into 
quasisteady structures is investigated for both Poiseuille and 
Couette flows. Using the criteria provided by Landman and 
Saffman” on the 3-D instability of a 2-D elliptical vortex, 
we estimate the initial disturbance energy required to initiate 
transition. We also compare the growth of exponential insta- 
bility suggested by the inflectional nature of local profiles 
within the quasiequilibrium flow with the growth arising 
from optimal perturbation of the 2-D structures. 

Plane Couette flow differs from Poiseuille flow in that it II. NONLINEAR EVOLUTION OF A TWO-DIMENSIONAL 
FLOW 

“)Present address: Building and Fire Research Laboratory, MST, Gaithers- The Navier-Stokes and continuity equations for an in- 
burg, Maryland 20899. compressible two-dimensional viscous flow are 
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au au au ap 1 
z+udx+~--=-dx+RA~, 

JY 
(la) 

au $P 1 dt++~=--+EA~, 
JY JY 

(lb) 

au dv 
z +- =o, 

dY 
where A=(d2/dxt+ a2/Jy2). The two-dimensional continu- 
ity equation enables us to define a streamfunction 9, such 
that u= - a$~Jay and u =&,!~/llax. Eliminating the pressure p 
from the Navier-Stokes equations results in the vorticity/ 
streamfunction formulation 

, 
2 +Jthq’) =; Aq, 

q=AlCI, t2b) 
withJ(~,q)~(d~/dx)(dqldy)-((d~/dy)(dqldx). 

Suitable boundary conditions for channel flow are no 
slip at the walls located at y = + 1 and periodic in the stream- 
wise (x) direction 

w 
z (x,?l,t)=O, 

$(x,il,r)=-U,,, 

tW 

Gto,Y,t)= ~(~,YJ), (3c) 

where a=2rrla is the x wavelength. For Couette flow, the 
flow rate is fixed by making $(? 1,t) constant. For Poiseuille 
flow, the mean pressure gradient is assumed constant, and 
integration of Eq. (la) over both x and y results in a time 
dependence of cc/ at each wall that can be written as 

- 

fg (J,t)=P’-; $ (l,t), 

- 

“,:‘(-l,r)=-+$ (-1,t). 
(4) 

Here an overbar indicates an average in x and P’ is the fixed 
pressure gradient. Boundary condition (3b) is turned into a 
constraint on vorticity q using the second-order Pearson’s 
ap&oximation. 

The perturbation can be expressed in a reference frame 
traveling with velocity cref in the streamwise direction by 
modifying the streamfunction 

**df+crefy. (5) 

In order to view the emergence of a quasiequilibrium state, 
the reference velocity is selected to hold the nonlinear struc- 
ture approximately steady in the x direction. 

The vorticity equation is approximated numerically us- 
ing a Fourier spectral method in x and finite differences in y . 
The advective term is represented by third-order Adams- 
Bashforth scheme, and the solution is stepped in time ac- 
cording to the Crank-Nicolson scheme. Convergence prop- 
erties are second order in both time and space. Depending on 

the initial conditions, the size of the problem may be reduced 
by a factor of 2 using symmetry about the y=O axis. The 
numerics were verified by integrating Orr-Sommerfeld 
waves of infinitesimal amplitude forward in time to check 
velocity and growth rate against known values. 

The discretization used was N,=33 and NY=201 
(halved using symmetry) for Poiseuille flow at R =4000, and 
N,=33 and NY= 151 for Couette flow at R =lOOO. The ac- 
curacy of this discretization was tested by performing short 
integrations with double the number of nodes in x or y di- 
rections. In each case ratios of perturbation energy to total 
energy over time agreed within roughly 5%. 

Ill. LINEAR OPTIMAL PERTURBATIONS 

Farrell” suggests that optimal perturbations of suffi- 
ciently high initial amplitude may be particularly disruptive 
to laminar flow. These disturbances are set up for use as 
initiai conditions for the nonlinear dynamic equations in the 
following manner. 

We start by linearizing the vorticity equation, letting 

~(x,y,t)=?Er(y)+~‘(x,y,t), (6) 

with mean flow velocity U(y) = - d?V/dy . The perturbations 
of interest are periodic in the x direction, so solutions are 
sought in the form 

1c/t= S/(Y)ei4x-4m (7) 

Substituting Eqs. (6) and (7) irto the vorticity equation (2) 
results in the Orr-Sommerfeld equation 

St)= c 5/, 

S=A--’ 
(8) 

where A=(d2/dy2 -2). The no-slip boundary conditions for 
channel flows, including plane Poiseuille and Couette flows, 
become 

l&t I)$ (kl)=O. 

The spectrum of modes for bounded flows is both 
discrete13 and complete.14Y15 Therefore, the evolution of an 
arbitrary initial disturbance $eiaX in time can be expressed as 
an infinite sum of modes 

m  

(10) 
j=l 

where the set of coefficients rj is the spectral projection. In 
practice this sum is truncated at some number of modes, N, 
sufficient to capture the behavior of interest, so that Eq. (10) 
can be written in matrix form as 

(jl’ = S,,pia*, 111) 

Here S, is a matrix whose columns are the discretized ap- 
proximation to the Orr-Sommerfeld eigenvectors each 
moved forward by time r. 

If L? in Eq. (8) were a normal operator, then the associ- 
ated quadratic norm could be resolved into noninteracting 
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contributions from individual orthogonal modes. The devel- 
opment of small disturbances in a viscous shear flow is made 
more interesting by the fact that the Orr-Sommerfeld opera- 
tor Z is non-normal in the energy norm 

(V+‘*.V+‘)dx dy. 

This norm is derived from the physical velocities 

+-; (t$ +f$), 

+; (!g -+!g), 

(12) 

Y=-hA&, 09) 

where X is chosen to set yl= 1. Note that time dependence 
does not enter into this problem; the subscript on matrix 4 
is retained for consistency. 

Physically, perturbations gain energy through the trans- 
port of momentum down the mean momentum gradient me- 
diated by the perturbation Reynolds stress, as indicated by 
the inviscid energy density equation 

where the superscript (*) denotes the complex conjugate. 
As a result of the non-normality of 3, certain combina- 

tions of the nonorthogonal eigenfunctions may demonstrate 
significant transient energy growth. The initial configuration 
that gains maximum energy is therefore of interest. Substi- 
tuting for (// from Eq. (11) and integrating over x and y 
provides the energy density at time 7 in discretized form as 

$(&L r* E$$ yfct!‘fS~S,y =r*&Y* 
i 1 

(14) 

- =-- U’UT dy, 
1 

WV 

(13) 

The matrix A is Hermitian, and defines a positive definite 
quadratic form on the spectral projection 7. The linear per- 
turbation that results in maximum energy at time Q- given unit 
initial energy can be found through a variational problem 
whose functional is 

F=fA,y+UPAor-l), 05) 

where A is the Lagrange multiplier for the fixed initial en- 
ergy. Setting the first variation in y to zero results in the 
Euler-Lagrange equation for this funciional, 

A,y+ XA,, y= 0. 116) 

This is a generalized eigenproblem whose eigenvalues X are 
the ratios of energy at time 7 to knergy at time zero corre- 
sponding to eigenvectors, 7, the spectral projections of the 
perturbations associated with X. Arranging the spectra in or- 
der of decreasing eigenvalue X orders the necessarily or- 
thogonal initial perturbations by growth over time 7. , 

Another initial condition that may provide insight into 
the development of equilibrium flow states is the perturba- 
tion that optimally excites a given Orr-Sommerfeld mode. 
Of particular interest is the least-rapidly decaying mode that, 
given sufficient time, will come to dominate the perturbation 
field in the initial value problem. As shown by Farrell,” this 
initial condition is obtained from the variational problem 
whose functional is 

F= P&Y+UY.%- l), 07) 

where e1 is the unit column vector that selects the least- 
rapidly decaying mode. Requiring stationarity in y results in 
the Euler-Lagrange equation 

-b-Y= -h, (18) 

which gives us the optimal spectral projection of 

where the overbar indicates an average in x. A visual indica- 
tion of the direction of energy transfer for 2-D perturbations 
can be obtained by observing that the perturbation energy 
increases when 

!?; u~=(~)(~)2u~=-(~)~~)2u~ (21) 

is positive over the integral. As perturbation streamlines ori- 
ented with an initial up-shear phase tilt, (dy/dx)&‘.<O, are 
advected by the mean shear, the perturbation gains energy. 1s 
the metin shear continues to advect the disturbance until the 
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FIG. 1. Energy optimals in Poiseuille flow with R=4000, ~u=1.25 for 
growth times (a) 7=S, (b) r-15, and (c) r-50 resulting in energy growth at 
time T of E,/Ea=7.8, 35.2, and 9.2, respectively. Streamline contour inter- 
vals at t=r are 10 times those at t=O. 
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a> b) 

FIG. 2. (a) Streamlines of the conjugate of the differential adjoint eigen- 
function, the optimal energy norm configuration for (b) the least stable 
eigenmode in Poiseuille tiow with R =4000. Compare with Fig, l(c). 

phase tilt assumes the opposite orientation, indicated by 
(dy/dx)&J’>O, ~energy is returned to the mean flow by up- 
gradient Reynolds stress. 

The complex non-normal eigensystem to find the modes 
of the Orr-Sommerfeld equation and the generalized Her- 
mitian eigensystem to find the optimal spectral projection are 
each solved using the QR algorithm. A nine-point difference 
approximation for the Orr-Sommerfeld operator was se- 
lected by verification with the eigenvalues obtained by 
Orszags for Poiseuille flow. 
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IV. EQUILIBRATION IN POISEUILLE FLOW 

The Navier-Stokes equations admit two-dimensional fi- 
nite amplitude solutions for Poiseuille flow with Reynolds 
numbers as low as -2900. Orszag and Patera demonstrated 
that the upper branch solution acts as an attractor for finite 
amplitude disturbances. In their numerical experiments, least 
rapidly decaying Orr-Sommerfeld modes with initial energy 
densities above a threshold of O.l%-0.2% of the mean flow 
energy density evolved on an advective time scale to a qua- 
siequilibrium state. Further modifications of the flow toward 
the equilibrated solution occurred only on the much longer 
diffusive time scale, of order R. 

In this section, we explore the nonlinear development of 
2-D perturbations that at infinitesimal amplitude are opti- 
mally configured to gain maximum energy over a specified 
time period before their eventual decay. Of particular interest 
is the tendency of these initial disturbances to evolve into a 
quasiequilibrium state, the rapidity of this evolution, and the 
initial energy required to instigate traversal of the path to- 
ward equilibration rather than toward linear decay. The wave 
number selected for study is a=1.25 at Reynolds number 
R=4000 so that results may be compared with those of 
Orszag and Patera. At this Reynolds number no unstable 
mode is supported. 

Figure 1 illustrates the linear development of energy op- 
timals for Poiseuille flow, showing energy growth maxi- 
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FIG. 3. Nonlinear evolution of the total streamfunction $for the 2-D energy 
optimal in Poiseuille flow with R =4000, CT= 1.25, 7= 15, and initial pertur- 
bation energy ?$=O.l% g showing the rapid evolution of an elliptical 
vortex from nearly parallel flow. The reference frame is moving with veloc- 
ity c,r=O.365. 
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FIG. 5. Total streamfunction and vorticity contours for the quasiequilibrium 
state at t=200 showing parallelism in the interior. 

mized over three different growth periods, r. Note that there 
is a 7 that gives the largest growth in energy. The optimal 
perturbations for smaller periods do not have time to realize 
their full growth potential. As the time allotted for energy 

FIG. 6. Mean velocity profile for the quasiequilibrium state at t=200 (solid 
line) relative to the initial Poiseuille profile (dotted line). 

growth increases, the initial up-shear tilt of the optimal in- 
creases to provide more down-gradient Reynolds stress, until 
viscous damping of these small perturbation scales limits 
their ability to contribute to energy growth. The optimal per- 
turbation for energy growth at large times [see Fig. l(c)] is 
the same as the perturbation that optimally excites the 
slowest-decaying mode because this mode clearly dominates 
the perturbation field in the limit r--+03, This optimal can be 
shown to be the a propriate adjoint of the least damped 
mode (see Fig. 2). IP - For R-4000 and a=1.25, the growth 
period that maximizes the energy growth of an initial pertur- 
bation is ~15, at which time maximum transient growth (in 
the linear case) of EdE,=35.2 is obtained. We will investi- 
gate the nonlinear evolution of this initial condition. (We 
note in passing that the 2-D perturbation capable of the larg- 
est transient growth with R=4000 has a wave number of 
cr=1.5 and grows by a factor of 38 in 13 time units.) 

The time evolution of this optimal perturbation, assigned 
an initial energy of 0.1% of the energy in the mean Poiseuille 
flow (&), is shown in Figs. 3 and 4, in which total and 
perturbation streamfunctions, respectively, are displayed 
from a frame of reference traveling with the disturbance. 
This perturbation rapidly falls into a quasiequilibrium state 
(Fig. 5) similar to the 2-D finite amplitude solution from 
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FIG. 7. Nonlinear evolution of the total streamfunction for the 2-D energy 
optimal in Poiseuille flow with R =4000, LY= 1.25, 7= 15, and initial pertur- 
bation energy &=O.OS% z. The reference frame is moving with velocity 
c,,,=o.35. 
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FIG. 8. Nonlinear evolution of the total streamfunction for the slowest- 
decaying Orr-Sommerfeld mode in Poiseuille tlow with R=4000, a=1.2& - 
and initial perturbation energy go = 0.1% $70. The reference frame is mov- 
ing with velocity c,,r=O.31. 

Orszag and Patera.” The vorticity q  of the quasiequilibrium 
structure is nearly parallel to the streamfunction fi in the 
interior of the flow, and further adjustments take place on a 
diffusion time scale -R. An elliptical vortex structure devel- 
ops from the initial nearly parallel flow in less than 10 ad- 
vective time units, which is considerably less than the time 
taken to reach the quasiequilibrium band from the linite am- 
plitude Orr-Sommerfeld modes employed by Orszag and 
Patera. Further evidence that the finite amplitude solution is 
acting as an attractor in this flow follows from the observa- 
tion that the mean velocity profile at time t=200, plotted in 
Fig. 6, is developing a small kink near each boundary similar 
to those of the finite amplitude solution.6 

The evolution of the same optimal perturbation but with 
half the initial energy of the previous example (0.05% E,) is 
shown in Fig. 7. The quasisteady elliptical vortex reached in 
less ‘than ten advective time units for this perturbation is 
lower in amplitude than that in Fig. 3, but is clearly also 
attracted to the 2-D finite amplitude solution, If the initial 
energy is further reduced to 0.01% E<, however, the optimal 
perturbation does not have sufficient amplitude to develop 
into a quasiequilibrium state, and instead follows the linear 
pattern of energy growth followed by decay toward a laminar 
flow. For comparison with the rapid equilibration of the op- 

timal perturbations, Fig. 8  shows the gradual decay of the 
least-damped Orr-Sommerfeld mode assigned an initial en- 
ergy of 0.1% g, equal to the initial energy for the optimal 
of Fig. 3  and near the modal threshold energy for quasiequi- 
libria found by Orszag and Patera. 

Figure 9 shows perturbation energy as a function of time 
for the four cases just described. It is interesting that the 
energy growth of the optimals at its first peak decreases as 
the initial assigned energy increases. When the initial energy 
is 0.1% & the energy peaks at t-14 with energy growth by 
a factor of 19, compared to the optimal with E,=0.05% 
g which grows by 24 times and the optimal with 
E,=O.Ol% .E, which undergoes near linear energy growth 
by a factor of 31. The effect of nonlinearity here is to limit 
the potential for growth, which occurs through the linear 
mechanism of momentum transport through down-gradient 
Reynolds stress. 

Finally, we consider whether the long-lasting elliptical 
vortices that have developed rapidly from sufficiently ener- 
getic optimal perturbations are capable of supporting second- 
ary instabilities. Pierrehumbert16 and Bayly17 showed ana- 
lytically that the secondary instability mechanism is possible 
for inviscid flow with locally elliptical streamlines. The 
analysis was extended to viscous flows by Landman and 
Saffman,12 who determined a stability boundary in the Ek- 
man number-eccentricity parameter plane. According to cri- 
teria derived from this stability boundary, the elliptical vor- 
tex in Fig. 3  at time t= 10 is capable of sustaining 3-D 
secondary instability growth at an estimated growth rate of 
0.02, such that order of magnitude energy growth occurs in 
50 advective time units. However, the vortex resulting from - 
E; =0.05 %  Ea must develop further (on the viscous time 
scale) toward the 2-D finite amplitude solution before it is 
capable of supporting 3-D instabilities. This suggests a 

I 1 I I r I I I I 

r ime 

FIG. 9. Perturbation energy vs time for the evolution of energy optimals 
with %A = 0.1% g (solid line), K; = 0.05% z (dotted), and go 
= 0.1% c (dashed), and of the slowest-decaying Orr-Sommerfeld mode - 
with #a = 0.01% Ka (dot-dash) in Poiseuille tlow. 
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FIG. 10. Evolution of the total streamfunction for the Z-D energy optimal in 
Couette flow with R =2000, cu=l.O, ~13, and initial perturbation energy 
k$ = 0.1% X0, showing the rapid growth and just as rapid decay of an 
elliptical vortex starting from nearly parallel flow. The reference frame is 
moving with velocity c,r=O. 

threshold initial perturbation energy on the order of 0.1% of 
the mean energy for rapid (advective time scale) develop- 
ment of secondary instability from a nearly parallel back- 
ground flow. 

V. COUElTE FLOW 

Unlike Poiseuille flow, Couette flow is linearly stable to 
infinitesimal disturbances at finite Reynolds numbers, and 
there are no known finite amplitude 2-D solutions. However, 
the least stable Orr-Sommerfeld (OS) mode is slowly- 
decaying for high Reynolds numbers, so it may be possible 
to locate regions of quasiequilibria that tend to attract prop- 
erly configured initial conditions. Orszag and Patera’ were 
able to observe growth of three-dimensional secondary insta- 
bilities on slowest-decaying OS modes of finite amplitude 
for Reynolds numbers down to R = 1000. In this section, we 
study the potential of optimal perturbations with small initial 
energies to develop into finite amplitude quasiequilibrium 
structures in Couette flow. 

The first initial condition to be studied is the energy 
optimal, which in the case of Poiseuille flow resulted in the 
finite amplitude equilibrium structure. The Reynolds number 
chosen is R =2000, above a value (R =1500) at which 
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FIG. 11. Evolution of the perturbation streamfunction for the flow in 
Fig. 10. 

Orszag and Patera” were able to sustain secondary instabili- 
ties on the slowest-decaying Orr-Sommerfeld mode with ini- 
tial energy EL = 4% g. The initial.perturbation chosen is 
the two-dimensional disturbance which gains close to the 
maximum energy under linear conditions at this Reynolds 
number, with wave number a=l.O, energy growth period 
7=13, and maximum linear energy growth of EJEo=20.3. 

The total streamfunction showing the nonlinear evolu- 
tion of this optimal perturbation from an initial energy EA 
= 0.1% g, (Fig. lo), shows the failure of this choice to 
develop into a quasiequilibrium state. Instead, the distur- 
bance follows the same path of rapid transient growth and 
decay observed for infinitesimal optimal disturbances. The 
evolution of the perturbation streamfunction in time is shown 
in Fig. 11. 

Comparison with the development of the energy opti- 
mal in Poiseuille flow suggests that the energy optimal for 
Couette flow fails to equilibrate because no nearby 2-D so- 
lution or quasiequilibrium state exists to serve as an attractor 
for this flow, which is symmetric about the centerline. The 
optimal perturbation that feeds the most energy into the 
(asymmetric) slowest-decaying mode may therefore be a 
more promising initial condition for development into a 
long-lived nonlinear structure. This modal optimal, assigned 
an initial energy of EA = 0.1% g, was found to perform 
little better than the energy optimal, decaying to a nearly 
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FIG. 12. Evolution of the total streamfunction for the optimal in Couette 
fow that feeds most energy into the slowest-decaying Orr-Sommerfeld 
mode, with R=2000, cy=l.O, and initial perturbation energy X6 
= 0.5% z. The reference frame is moving with velocity c,,r=-0.55. 

FIG. 13. Evolution of the perturbation streamfunction for the flow in 
Fig. 12. 

parallel flow by r=30. Figures 12 and 13 show the evolution 
of the modal optimal with a larger initial energy of El, 
= 0.5 %  6. This perturbation is able to sustain a finite am- 
plitude elliptical vortex for a longer time period than the 
previous attempts primarily because the decay of this mode- 
like disturbance proceeds from a larger initial amplitude. 

Row. Because certain inflectional flows are strongly unstable 
(on an advective time scale), it is often assumed that a lo- 
cally inflectional tlow is a good candidate for growth of sec- 
ondary instabilities. In this section, we explore this idea for 
the quasiequilibrium flow state from Sec. IV. 

Figure 1.4 displays the perturbation energy versus time 
from the above initial conditions of energy and modal opti- 
mals, along with an imposed Orr-Sommerfeld mode with 
E;=OS% g. 

Figure 15 shows the local velocity profiles at eight n 
locations separated by Ax=a/16 for the quasiequilibrium 
structure in Poiseuille flow with R =4000 at t =200 (see Fig. 
5). Clearly each of these flows has at least one inflection 
point. 

This failure of large amplitude optimal disturbances in a 
constant shear flow to exhibit nonlinear behavior is in agree- 
ment with the result of Tung” that if the initial nonlinear 
terms of a bounded disturbance in uniform shear flow are 
small, then they will remain small for all time. 

VI. LOCAL INSTABILITIES FOR QUASlEQUlLlBRlUM 
STRUCTURE 

The wave number for the most unstable eigenmode of 
each local profile and of the mean profile U (Fig. 6) is listed 
in Table I along with the corresponding wave speed c, and 
growth rate aci. Note that some local profiles are stable 
despite the existence of inflection points. The growth rates of 
the unstable modes are slow, and the cutoff wave numbers 
cu,, above which no growing mode was found for the un- 
stable profiles in Table I, indicate that the wavelengths of 
unstable modes are larger than the local region described by 
each profile. 

Frequent reference is made in the viscous shear tlow 
literature” to the stability properties of flow profiles that 
are inflectional in some local region. These profiles are 
thought to be significant because of Rayleigh’s in- 
tlection-point-theorem,“) which states that an inflection point 
is a necessary condition for instability of an inviscid shear 

VII. DISCUSSION 
2-D perturbations that are favorably configure-d for tran- 

sient energy growth in viscous shear flow have been shown 
in this work to rapidly develop into quasisteady finite ampli- 
tude structures under conditions of (a) sufficient initial am- 
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FIG. 14. Perturbation energy versus time.for the energy optimal with g0 
= 0.1% ?$ (solid linej, modal optimals with & = 0.5% gi (dashed), and 
;” = 0.1% g (dotted) and the slowest-decaying Orr-Sommerfeld mode 
with go = 0.5% g (dot-dash) in Couette flow. 

,:. 
plitude, and (b) the dxistenke of a  nearby finite amplitude 
nonlinear mode or quasimode. The rapid growth of these 
disturbances is due to the down-gradient transport of mean 
momentum by the Reynolds stresp* as indicated by the initial 
orientation of. the perturbation streamlines in the direction 
opposite the shbar. (The same linear mechanism operates for 
shear instability, although there are no unstable modes at the 
Reynolds numbers examined in this work.) 

Optimal perturbations are found to develop rapidly into 
persistent 2-D finite amplitude structures from initial condi- 
tions with energy densities on the order of 0.1% of the mean 

t 

t 
2. 

FIG. 15. Streamwise velocity u profiles at intervals of Ax=?r/8cu for the 
Poiseuille flow quasiequil ibrium at t=ZOO (see Fig. 5) illustrating locally 
inflectional profiles. 
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TABLE I. Stability properties of local profiles for an equilibrated flow field 
(see Fig. 15). 

Protile # amax cr max  *cl max  ai, 

I 0.80 0.27 to.0045 0.9 
2 0.65 0.24 -0.0026 *** 
3 0.65 0.23 -0.0064 ... 
4 0.75 0.24 -0.0027 **. 
5 0.90 0.29 -i-O.0083 1.7 
6  2.1 0.51 +0.074 4.1 
7  1.15 0.38 +0.028 1.6 
8 1.05 0.33 +0.027 1.3 
u 1.00 0.33 -0.0019 ... 

flow energy density for Poiseuille flow and 1% of the mean 
flow energy density for Couette flow. It should be einpha- 
sized, however, that 3-D optimal perturbations are capable of 
energy growth two orders of magnitude greater than the 2-D 
optimals, as shown by Gustavsson21 and Butler and FarrelL2’ 
This suggests that 3-D disturbances are more likely to appear 
in a natural flow field and dominate the flow throughout the 
transition process. 

The inability of locally inflectional velocity profiles of a  
sample quasiequilibrium structure to support strongly grow- 
ing eigenmodes suggests caution in the assumption that the 
necessary Rayleigh condition is sufficient to explain obser- 
vations of secondary instability and flow breakdown. This 
conclusion is supported by recent research on the breakdown 
of streamwise vortices by Swearingen and Blackwelder” 
and Hamilton.“4 
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