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ABSTRACT

The role of nonnormality in the overreflection of gravity waves is investigated. In the limit of weak strat-

ification, wave packets having a critical level inside a shear layer of finite depth are reflected with amplified

energy. This process, which exhibits the characteristics of stimulated emission, occurs in three stages: first, the

incoming wave enters the shear layer and excites nonpropagating perturbations leaning with and against the

shear. Subsequently, the energy of perturbations leaning against the shear grows in a manner similar to energy

growth of perturbations in constant shear flows, indicating that the Orr mechanism that is slightly modified by

stratification underlies the observed growth. Finally, the amplified perturbations excite propagating waves

originating from the vicinity of the shear layer boundary. The role of nonnormality in this process is also

investigated from the perspective of the associated nonorthogonality of the modes of the dynamical system. It

is found that the incident wave packet projects on nonorthogonal analytic modes having the structure of

a downward propagating wave in the far field below the shear layer and overreflection expressed by the

interaction among these nonorthogonal modes.

1. Introduction

Shear instability of stably stratified fluids is a common

feature of atmospheric and oceanic flows that has been

studied for over a century. However, despite the fact

that the conditions under which shear instability occurs

are now well known, the physical mechanism underly-

ing the instability is not comprehensively understood.

Conceptual frameworks that have been advanced for a

physical, mechanistic basis for shear instability are the

overreflection theory and the counterpropagating Rossby

wave theory.

Overreflection theory (see Lindzen 1988 for a review)

describes the instability of stably stratified flows in terms

of continuous overreflection of gravity waves. Over-

reflection is a process initially noted by Jones (1968),

who studied the scattering properties of a shear region

with Richardson number less than 1/4. Jones (1968)

found that a gravity wave propagating toward a critical

level embedded in a shear region is overreflected (i.e.,

the reflection coefficient exceeds one) because of ex-

traction of energy from the mean flow. Lindzen (1974)

further suggested that if the overreflected waves were

fully reflected back by a containing surface and if the

fully reflected and overreflected waves interfered con-

structively (by satisfying a proper quantization condi-

tion), then every time they traveled across the region

between the overreflecting critical level and the con-

taining surface, they would be amplified by the same

factor and, by being continuously overreflected, could

lead to the formation of an exponentially growing ei-

genmode. Lindzen and Rosenthal (1976, 1981, 1983),

Rosenthal and Lindzen (1983a,b), and Lindzen and Tung

(1978) found the necessary conditions for overreflection

and for quantization of the waves and were able to relate

all unstable modes with continuously overreflected waves

in the cases of barotropic, baroclinic, and stratified shear

flow instabilities. Hence, shear flow instability appears to

be closely related to the overreflection process.

To shed more light on the mechanism of overreflection,

Lindzen and Barker (1985) studied the time evolution of

the scattering of an incident wave train under a specific

wave geometry and found that the reflected and trans-

mitted wave amplitudes at steady state are equal and that

the characteristic time scale needed for the reflected and

transmitted wave amplitudes to reach their steady-state

values is almost identical. This result is consistent with

overreflection being a stimulated emission instigated by

the incident wave. Lindzen and Barker (1985) also found
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that this characteristic time scale depended only on the

variation of velocity across the critical level and was in-

dependent of the Richardson number in the vicinity of

this level. This indicated that the stimulated emission is

a kinematic effect. Based on this result, Lindzen (1988)

hypothesized that the Orr mechanism (Orr 1907), in

which a perturbation leaning against the shear intensifies

transiently as it is sheared over, provides the necessary

energy extraction mechanism from the mean flow in the

process of overreflection. However, he did not support

this hypothesis with numerical or analytical evidence.

Transient growth of small perturbations in stratified flows

was investigated by Farrell and Ioannou (1993), who were

able to identify the Orr mechanism, which was slightly

modified by stratification, as the underlying mechanism

for rapid transient perturbation growth. Farrell and

Ioannou (1993) also traced the observed energy growth to

the nonnormality of the dynamical operator governing

the perturbation dynamics. However, since their analysis

was performed for a flow lacking the wave geometry for

overreflection (Lindzen 1988), these results do not di-

rectly apply to perturbation growth during overreflection.

In this work we undertake this task to study the scattering

of a wave packet by a finite stably stratified shear layer

bounded by two regions of uniform velocity and to clarify

the role of nonnormality and the Orr mechanism in the

overreflection process.

A very different approach to understanding modal in-

stability is through the framework of counterpropagating

Rossby waves that was pioneered by Bretherton (1966a)

for Rossby waves. Bretherton (1966a) showed that un-

stable modes can be associated with a constructive in-

teraction between two counterpropagating Rossby edge

waves that become phase locked in a mutually rein-

forcing configuration. This approach of interacting edge

waves that are supported by regions of vorticity or

density gradient discontinuity was followed by studies

of baroclinic (Hoskins et al. 1985; Davies and Bishop

1994), Kelvin–Rossby wave (Sakai 1989), planar shear

flow (Heifetz and Methven 2005), and Holmboe in-

stabilities (Baines and Mitsudera 1994). In addition to

application of the counterpropagating Rossby wave idea

to models in which vorticity or density gradient discon-

tinuities support edge waves, which addresses the corre-

sponding normal modes of the discrete spectrum, Heifetz

and Methven (2005) extended Bretherton’s formula-

tion to include the continuous spectrum and developed

a generalized form of counterpropagating Rossby wave

theory describing the complete spectrum of solutions in

terms of kernel–wave interactions. Harnik and Heifetz

(2007) used this kernel formulation to show that over-

reflection in the case of barotropic instability can be

understood as a mutual amplification of kernel Rossby

waves, thereby relating the theories of overreflection and

counterpropagating Rossby waves. A similar kernel–

wave formulation has been developed recently for strat-

ified flows (Harnik et al. 2008) but has not been applied

yet to the overreflection of gravity waves.

Since overreflection involves transient algebraic growth

rather than exponential growth of perturbations, a com-

prehensive understanding of this process requires the

methods of generalized stability theory (GST; Farrell

and Ioannou 1996), which extends modal stability theory

to account for all growth processes. In this work, we

apply the tools of GST to study the overreflection of a

gravity wave packet by a stably stratified shear layer of

finite depth. Our focus is on the role of nonnormal in-

teractions among the analytic modes of the system in

overreflection. The overall goal is to provide new insight

into this process that will deepen our mechanistic un-

derstanding of shear instability.

This paper is organized as follows. Section 2 describes

the evolution equations for perturbations in a stably

stratified flow. In section 3 we review the necessary

conditions for overreflection by studying the scattering

of a monochromatic wave by a shear layer. In section 4

we elaborate on the transient characteristics of over-

reflection and study the scattering of a gravity wave

packet by a shear layer of finite depth focusing on the

energetics and propagation properties involved. In sec-

tion 5 we trace the overreflection process to nonnormal

excitation of the analytic modes of the dynamical sys-

tem, and we finally end with a brief discussion and our

conclusions in section 6.

2. Evolution equations for a two-dimensional
stratified flow

Consider a flow with mean zonal velocity U(z) varying

in the vertical direction in a Boussinesq fluid with

background density r0(z) varying with height. Small

perturbations of zonal u� and vertical w� velocities as

well as density r� and pressure p� perturbations are su-

perposed on the mean fields. The evolution of harmonic

perturbations of the form

[u
�
(x, z, t), w

�
(x, z, t), p

�
(x, z, t), r

�
(x, z, t)]

5 [~u(z, t), ~w(z, t), ~p(z, t), ~r(z, t)]eikx,

where k is the zonal wavenumber, is governed by the

linearized, nondimensional equations

[›
t
1 ikU(z)]u 1 w

dU

dz
5�ikp� r(z)u 1

1

Re
=2u, (1)

[›
t
1 ikU(z)]w 5�›

z
p�Rir � r(z)w 1

1

Re
=2w, (2)
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[›
t
1 ikU(z)]r 5 w� r(z)r 1

1

Re
=2r, and (3)

iku 1 ›
z
w 5 0, (4)

where the following nondimensionalizations have been

made:

~t 5 (1/a)t, (~x, ~z) 5 (V
0
/a)(x, y),

(~u, ~w) 5 V
0
(u, w), ~p 5 r

m
V2

0p, ~r 5 (r
m

V
0
N2

0/ag)r,

in which the tilde denotes dimensional variables; a is the

shear; V0 and rm are typical values for mean flow ve-

locity and density, respectively; and g is the gravitational

acceleration. The Richardson and Reynolds numbers

are defined as Ri 5 N0
2/a2 and Re 5 LV0/n, respectively,

where n is the coefficient of kinematic viscosity that has

been chosen to be equal to the coefficient of density

diffusion, and N0 is a typical value of the Brunt–Väisälä

frequency such that N0
2 5 2(g/rm)(dr0/dz). The Rayleigh

damping r(z) terms are introduced to allow for sponge

layers in the numerical calculations presented in sections 4

and 5, where further details will be provided.

The system (1)–(4) can be reduced by taking the curl

of (1) and (2) and expressing the perturbation velocity

field in terms of a streamfunction (u, w) 5 (cz, 2ikc)

such that u, w satisfy (4) to finally obtain two equations

for the perturbation streamfunction c and density r:

[›
t
1 ikU(z) 1 r(z)](=2c)� ikc

d2U

dz2

5�dr

dz
›

z
c 1 ikRir 1

1

Re
=4c and (5)

[›
t
1 ikU(z) 1 r(z)]r 1 ikc 5

1

Re
=2r, (6)

where =2 5 d2/dz2 2 k2 and =4 5 (=2)2.

3. Scattering of a monochromatic gravity wave by
a shear layer

In this section, we review the necessary conditions for

overreflection by studying the scattering of a mono-

chromatic wave by a shear layer. Closed form solutions

can be obtained in the absence of viscosity for the

piecewise continuous mean flow profile

U(z) 5

V
0
, for z . H/2

2V
0
z/H, for zj j # H/2

�V
0
, for z # �H/2

8<
: (7)

that is shown in Fig. 1. It consists of a localized shear

layer bounded by two regions of uniform velocity. Values

of length and time used in nondimensionalization are

the shear region width H 5 2 and the inverse shear 1/a 5

H/2V0 5 1.

Harmonic functions of the form [c, r] 5 [ĉ(z),

r̂(z)]e�ikct satisfying (5) and (6) with r(z) 5 0 solve

d2ĉ

dz2
1

Ri

[U(z)� c]2
� d2U

dz2

1

[U(z)� c]
� k2

( )
ĉ 5 0. (8)

The solution of (8) is

ĉ(z, c) 5

Teim
t
(z�H/2), for z $ H/2

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(z� c)

p
I

m
[k(z� c)] 1 D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(z� c)

p
I�m

[k(z� c)], for zj j, H/2

e�im(z1H/2) 1 Reim(z1H/2), for z # �H/2

8><
>: , (9)

where mt and m are the square root of Ri/(V0 2 c)2 2 k2,

m 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/4�Ri
p

, and I6m is the modified Bessel function

of the second kind of order m. If we seek bounded so-

lutions or impose radiation conditions at infinity, then

mt and m satisfy the conditions R(mt)[R(c) 2 V0] , 0,

J(mt) . 0 and R(m)R(c) . 0, J(m) , 0, where R and J

denote the real and imaginary part, respectively. The

incident wave fexp[2im(z 1 H/2)]g has a unit ampli-

tude, while the amplitudes of the reflected R and the

transmitted T waves for a given phase speed c are ob-

tained in the appendix.

Previous studies have shown that overreflection oc-

curs in the following two cases. In the first case, A has

a neutral mode having the structure of a propagating

wave in the far field. An incident wave having the same

phase speed as the neutral mode resonates with the

mode, producing a reflected wave amplitude that grows

as the integral of the incident wave (McIntyre and

Weissman 1978). In the second case, A does not have

neutral or unstable radiating modes and overreflection

occurs because of extraction of energy from the shear

flow (Lindzen 1988). In this work we focus on the latter

case, for which two conditions are necessary for the

occurrence of overreflection (Lindzen 1988). The first

condition is that the incident wave should have a critical

level within the shear region and that the Richardson
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number in the vicinity of the critical level be less than 1/4.

The second condition is the existence of a trapping re-

gion below the critical level, where the wave decays

exponentially, so that the wave can tunnel through this

region and reach the critical level in finite time, rather

than approach the critical level asymptotically with

ever-decreasing group velocity as predicted by Wentzel–

Kramers–Brillouin (WKB) analysis (Bretherton 1966b).

The third condition is the existence of a sink for wave

flux on the side of the critical level opposite to the side of

the wave region. This sink can be a second wave region

or even a friction layer. Choosing Ri 5 0.2, k 5 0.275,

and m 5 23 satisfies all of the above conditions as

the incident wave has a critical level at z 5 c 5 20.85

for which the Richardson number is less than 1/4. Also,

close to the critical level the wave decays exponen-

tially because the solution to (8) is well approximated

for jz 2 cj � 1 by

ĉ(z, c) ’ C exp[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/4�Ri
p

log(z� c)]

1 D exp[�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/4�Ri
p

log(z� c)]

and above the critical level there is a small region of

wave propagation that acts as a sink of wave flux. Cal-

culation of the reflection coefficient verified the oc-

currence of overreflection, with R 5 1.5. In addition,

calculation of the discrete spectrum of A in the appendix

showed that for these values of k and Ri there are no

modal solutions. For this range of values, the spectrum

of A consists only of a real number infinity of non-

orthogonal, singular neutral modes forming a continu-

ous spectrum (Case 1960). Therefore, overreflection

must result from the nonnormal interaction among these

singular modes. In the next sections we elaborate on the

transient characteristics of the overreflection process

and on the role of nonnormality by studying the scat-

tering of a wave packet with the same central wave-

number as the monochromatic wave in this section.

4. Scattering of a gravity wave packet by
a shear layer

Consider the scattering of a wave packet by a finite

stably stratified shear layer with mean velocity profile

U(z) 5

2V
0
z/H, 0 # zj j,

H � z
w

2

sgn(z)V
0
� sgn(z)z

w
f

z
w

1 H � 2 zj j
2z

w

� �
,

H � z
w

2
# zj j,

H 1 z
w

2

sgn(z)V
0
, zj j $

H 1 z
w

2

8>>>>>><
>>>>>>:

, (10)

where

f (x) 5

2

3
x3, 0 # x ,

1

2

� 2

3
x3 1 2x2 � x 1

1

6
,

1

2
# x , 1

8>><
>>: .

This profile differs from profile (7) only within a re-

gion of width zw 5 0.2 at the boundaries of the shear

layer, where in this case the corners are rounded (cf.

Fig. 1). The initial perturbation is of the form [c0(z),

r0(z)]eikx and is localized in the lower region of uni-

form velocity. It can be readily shown that in the ab-

sence of viscosity and damping this perturbation

initially propagates in the region of uniform velocity

according to

[c(x, z, t), r(x, z, t)]

5
1ffiffiffiffiffiffi
2p
p

ð‘

�‘

[ĉ(m, t), r̂(m, t)]eikx1imz dm, (11)

where

FIG. 1. Velocity vertical profile given by (7) (solid line) and (10)

(dashed line). It consists of a shear region bounded by two domains

of uniform velocity flow. For the profile shown H 5 2 and V0 5 1.
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ĉ(m, t) 5
1

2
[ĉ

0
(m)� ĉr̂

0
(m)]eik(�V01ĉ)t

1
1

2
[ĉ

0
(m) 1 ĉr̂

0
(m)]eik(�V0�ĉ)t, (12)

r̂(m, t) 5�(i/kĉ2)(dĉ/dt)� V
0
ĉ/ĉ2, and

[ĉ
0
(m), r̂

0
(m)] 5

1ffiffiffiffiffiffi
2p
p

ð‘

�‘

[c
0
(z), r

0
(z)]e�imz dz

are the Fourier components of the initial perturbation.

The two terms in (12) correspond to two counter-

propagating gravity waves with intrinsic phase speed

ĉ 5
ffiffiffiffiffiffi
Ri
p

/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 m2

p
. We launch a localized wave packet

with initial density

r
0
(z) 5 Geim0ze�[(z�z0)2/dz]2

, (13)

where (k, m0) 5 (0.275, 23), dz 5 2, z0 5 25.5, and G

is a chosen amplitude yielding unit initial energy. The

initial streamfunction

c
0
(z) 5

Gdz
ffiffiffiffiffiffi
Ri
p

e�im0z0

2
ffiffiffiffi
p
p

3

ð‘

�‘

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 m2

p eim(z0�z)e�(m�m0)2(dz)2/4 dm

(14)

is chosen so that the first term in (12) is zero for all

wavenumbers. As a result the initial perturbation com-

prising a narrow spread of wavenumbers around m0 5

23 propagates upward as a coherent wave packet with

group velocity c
g

5 �km
0

ffiffiffiffiffiffi
Ri
p

/(k2 1 m2
0)3/2.

We numerically obtain the time evolution of the initial

perturbation by first rewriting (5) and (6) in the compact

form

dx

dt
5 Ax, (15)

where x(t) 5 [c(t), r(t)]T is the state vector and

A 5
=�2 �(ikU 1 r)=2 1 ik

d2U

dz2
� dr

dz
›

z
1

1

Re
=4

" #
ikRi=�2

�ik �(ikU 1 r) 1
1

Re
=2

8>><
>>:

9>>=
>>; (16)

is the dynamical operator. We then discretize the differ-

ential operators in (16), incorporating the appropriate

boundary conditions (zero streamfunction and zero mo-

mentum and thermal fluxes at the boundaries) and in-

terpret (15) as a matrix equation in which the state

becomes a column vector. We also impose radiation con-

ditions at infinity by inserting sponge layers at the top and

bottom of the domain with Rayleigh friction coefficient:

r(z) 5 a
r
f1 1 tanh[(z� z

p
)/d

r
]g

1 a
r
f1� tanh[(z 1 z

p
)/d

r
]g,

in which ar is the damping amplitude, zp determines the

vertical position of the sponges, and dr determines the

transition width into the sponge layer. Numerical tests

showed no spurious back-reflection either from the

upper and lower boundaries or from variation of r(z).

Finally, a small amount of diffusion (Re 5 106) is also

introduced to serve as a sink for energy transferred to

unresolved scales in the vicinity of the critical level

because of the rapid decrease of the wave’s vertical

wavelength in this region.

The time evolution of this localized perturbation

obtained by numerical integration of (15) is illustrated in

Fig. 2, where contours of streamfunction perturbation

at successive times are shown. The initial wave packet

(Fig. 2a) propagates upward and its initial evolution

closely follows (11) as revealed by comparison of the

numerical solution with (11). As it enters the shear region

it excites perturbations with phase lines leaning toward

and against the shear, resulting in the vertically tilted

structure shown in Fig. 2b. It is worth noting that imme-

diately after the wave packet enters the shear layer, the

density perturbations are confined below the critical layer

of the wave packet (not shown), as would be expected for

a wave propagating toward its critical level. However, the

streamfunction perturbations occupy the whole shear

region (Fig. 2b), showing that the excitation of the

streamfunction within the shear region is nonlocal. This

nonlocal excitation is an indication of wave-tunneling

through the critical level that is merely assured by the

condition of Ri , 1/4, as discussed in the previous section.

Perturbations leaning against the shear do not propagate

vertically for such low Richardson numbers (Hartman

1975). They grow in place and excite vertically propa-

gating disturbances originating from the region of the

shear layer corners as shown in Fig. 2c. These distur-

bances subsequently propagate downward as a coherent

wave packet (Fig. 2d). The nonlocal character of the
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excitation of the streamfunction inside the shear layer,

along with the fact that the downward propagating waves

originate from the vicinity of the shear layer corners

rather than from the vicinity of the critical layer, indicates

that the reflection process has the characteristics of an

emission that is stimulated by the incident wave packet, in

agreement with the transient evolution results of Lindzen

and Barker 1985). Evolution of perturbation energy is

calculated as

E 5

ð
1

4
u2 1

1

4
w2 1

Ri

4
r2

� �
dz 5 xyMx, (17)

where the overbar denotes an average in the zonal di-

rection, a dagger denotes the complex conjugate, and

M 5
Dz

4

�d2/dz2 1 k2 0

0 Ri

� �

is the energy metric with grid interval Dz. Figure 3a,

showing the evolution of perturbation energy in the

lower region, illustrates that the downward propagating

wave packet (Fig. 2d) has more energy than the initial

wave packet. Additional evidence for overreflection of

the incident wave packet was found by a Fourier de-

composition of the reflected packet that yielded

ĉ
r
(�m

0
)

�� ��5 1.5 ĉ
i
(m

0
)

�� ��,
where ĉ

r
, ĉ

i
are the Fourier amplitudes for the reflected

and the incident wave packet, respectively. Since the

reflected Fourier amplitude calculated at the central

wavenumber coincides with the reflected amplitude of

the monochromatic wave with the same wavenumber,

we conclude that there is a one-to-one correspondence

between the transient wave packet reflection and the

steady-state scattering problem. Summarizing, the scat-

tering of the wave packet by the shear layer has the

characteristics of stimulated emission and can be sep-

arated into three stages: nonlocal excitation of pertur-

bations that do not propagate in the vertical within the

shear layer by the velocity component of the incident

FIG. 2. Evolution of a wave packet given by (13) and (14) with central wavenumber (k, m0) 5 (0.275, 23) and dz 5

2. Snapshot of streamfunction at t 5 (a) 0, (b) 120, (c) 340, and (d) 700. Only positive values are shown, the contour

interval is 0.1, and the boundaries of the shear region are shown by the thick lines.
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wave, which occurs as the incident wave tunnels through

the region of the critical level; growth of the excited

perturbations within the shear region; and excitation by

these amplified perturbations of vertically propagating

waves.

We now focus on perturbation growth within the shear

region. Transient growth of perturbations in a stably

stratified, constant shear flow was studied by Farrell and

Ioannou (1993), who found that for low Richardson

numbers perturbation vorticity is conserved for early

times. Kinematic deformation of vorticity by the shear

flow leads to substantial growth of velocity perturbations,

as first discussed by Kelvin (1887) and Orr (1907), with

the downgradient Reynolds stresses being the mecha-

nism of energy exchange between the mean flow and the

perturbations. They also found that the Orr mechanism

is modified by stratification, as buoyancy fluxes convert

kinetic energy into potential energy and limit the overall

energy growth compared to the unstratified case. The

finite time required for this energy conversion results in

a time lag between kinetic and potential energy growth,

with the potential energy peak lagging behind the kinetic

energy peak. To investigate whether the Orr mechanism

is associated with perturbation growth in the shear re-

gion during overreflection, we calculated the kinetic

and potential energy within the shear region by using

the norms

M
k

5
Dz

4

�d2/dz2 1 k2 0

0 0

� �
and

M
p

5
Dz

4

0 0

0 Ri

� �
,

expressing perturbation kinetic and potential energy in

terms of the Euclidean inner products

E
k

5

ðH/2

�H/2

1

4
u2 1

1

4
w2

� �
dz 5 xyM

t
M

k
x and (18)

FIG. 3. (a) Perturbation energy evolution in the lower region of uniform velocity calculated by (17). (b) Kinetic

(solid line) and potential (dashed line) energy evolution within the shear layer calculated by (18) and (19), re-

spectively. The times at which the maximum kinetic energy (340 advective time units) and the maximum potential

energy (370 advective time units) are attained are noted by the dotted lines. (c) Average Reynolds stress within the

shear region [calculated by (20)] as a function of time. (d) Average buoyancy fluxes within the shear region [cal-

culated by (21)] as a function of time.
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E
p

5

ðH/2

�H/2

Ri

4
r2

� �
dz5 xyM

t
M

p
x, (19)

respectively. The projection matrix Mt 5 diag(0 0 . . .

0 0 1 1 . . . 1 1 0 0 . . . 0), with ones only at the grid points

that are inside the shear region, merely imposes the

domain of integration. We also calculated the average

Reynolds stress and buoyancy fluxes within the shear

region:

huwi5 1

2

ðH/2

�H/2

uw dz 5
Dz

4
xyWyM

t
Ux and (20)

hrwi5 1

2

ðH/2

�H/2

rw dz 5
Dz

4
xyWyM

t
Px, (21)

where U, W, and P are projection matrices giving u, w,

and r, respectively, in terms of the state vector x (u 5 Ux,

w 5 Wx, r 5 Px). As shown in Fig. 3b, there is an ini-

tial increase in kinetic energy that can be traced to the

downgradient Reynolds stresses shown in Fig. 3c. The

kinetic energy amplification is redistributed through

the positive buoyancy fluxes (shown in Fig. 3d) to poten-

tial energy lagging behind kinetic energy by 30 advection

time units (as illustrated in Fig. 3b). Therefore, perturba-

tion growth inside the shear region during overreflection

exhibits the same characteristics found by Farrell and

Ioannou (1993) in their study of transient growth in a

constant shear flow. This is a strong indication that the

modified Orr mechanism underlies perturbation growth

during overreflection. The role of nonnormality and mode

interaction in producing the observed growth will now be

further investigated.

5. Stimulated emission as excitation of the
continuous spectrum modes

In this section we relate the stimulated emission to

nonnormal excitation of the analytic modes of the dy-

namical operator. We first express (15) in terms of a new

variable y 5 M1/2x for which the energy is given by the

Euclidian product E 5 yyy. Perturbation evolution can

then be written in terms of the new dynamical operator

D 5 M1/2AM21/2 as

dy

dt
5 Dy.

As discussed in section 3, the spectrum of D consists in

the inviscid case of a continuous spectrum of singular

neutral modes. In the presence of diffusion, however

small, the singular neutral modes are replaced by a set of

analytic, nonorthogonal modes. The dispersion relation

of the analytic modes for k 5 0.275, Ri 5 0.2, and Re 5

103 is shown in Fig. 4. The spectrum consists of a Y-shaped

branch, hereafter called the shear branch, resembling the

unstratified shear flow spectrum (Dongarra et al. 1996),

and two branches, hereafter called scattering branches,

containing a large number of modes with phase speeds

close to c 5 6V0 5 61. The shear modes are localized

within the shear layer as shown in Fig. 5a and resemble

the analytic modes of unstratified flow (Reddy et al.

1993). On the other hand, the scattering modes are not

localized and have a wavelike structure in the far field

as illustrated in Fig. 5b. The scattering modes corre-

sponding to different eigenvalues have different verti-

cal wavelengths in the far field, with the modes having

longer wavelengths occupying the upper part of the

spectrum (i.e., they correspond to eigenvalues with small

negative real part) as expected for diffusive dissipation.

Evolution of an initial perturbation y(0) can now be

expressed as an expansion in the complete basis of the

normalized eigenmodes ui as

y(t) 5 �
i

a
i
eiv

i
tu

i
, (22)

where vi are the eigenvalues corresponding to ui and ai

are the corresponding projection coefficients. The pro-

jection coefficients can be calculated as

a
i
5

[vyi , y(0)]

(vyi , u
i
)

, (23)

FIG. 4. Dispersion relation for the modes of the mean profile

(10), with Re 5 1000, Ri 5 0.2, and k 5 0.275. The small subset

of modes responsible for the growth and stimulated emission of

the incident wave packet given by (13) and (14) is shown by the

rectangle.
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where vi are the eigenvectors of the adjoint matrix Dy

that are biorthogonal to the normal modes of D (Farrell

and Ioannou 1996). Using (23) we calculate the pro-

jection coefficients for the initial wave packet given by

(13) and (14). By comparing the wave packet evolution

given by (22) to the evolution obtained by numerical

integration of (15), we find that a small subset of only 30

members of the scattering branch modes having similar

structure is adequate to describe the reflected wave

packet. A member of this subset is plotted in Fig. 6a. The

lower part of the mode (lying approximately below z 5

2H/2 5 21) has the structure of a wave leaning against

the shear. Fourier decomposition of the lower part of the

mode shown in Fig. 6b reveals that the mode has the

form of a wave consisting mainly of positive vertical

wavenumbers. The upper part (lying approximately

above z 5 H/2 5 1) decays exponentially away from the

shear region. We therefore do not expect to find our

initial perturbation propagating upward away from the

shear flow. This result is consistent with the steady-state

result of Lindzen and Rosenthal (1981) and Eltayeb

and McKenzie (1975), who found overreflected waves

propagating both above and below the critical layer only

for Ri , 0.1146.

Projection of the initial perturbation onto the spec-

trum of the dynamical operator reveals two further re-

sults worth noting. The first is that at no time does the

wave packet look like any of these modes individually,

as would be the case of an unstable mode dominating

after a long time. It is the sum over this subset of modes

forming the perturbation and the nonnormal interac-

tion among them that produces the observed growth.

This underscores the essential nonnormal nature of the

overreflection process. The second is that the initial

perturbation (leaning against the shear and propagating

energy upward; cf. Fig. 2a) does not appear at first glance

to project on the modes shown in Fig. 6a (leaning with

the shear in the lower region of uniform velocity and

FIG. 5. (a) Vertical structure of the streamfunction of the eigenmode with phase speed c 5 20.17 2 0.82i. The

structure is typical of the shear modes that are localized within the shear region. (b) As in (a), but with c 5 20.87 2

0.09i. The structure is typical of the scattering modes that have a wavelike behavior in the far field.
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propagating energy downward). But for nonnormal

systems, the perturbation with the maximum projection

on a certain mode is the complex conjugate of the ad-

joint mode (Farrell and Ioannou 1996). Figure 6c shows

the complex conjugate of the adjoint mode plotted in

Fig. 6a. Fourier decomposition of the lower part of

the adjoint mode plotted in Fig. 6d clearly illustrates

that the initial perturbation (wave packet centered at

m0 5 23) does indeed project most strongly on the mode

in Fig. 6a.

6. Conclusions

In this paper we examined the role of nonnormality

in the overreflection process. Initially the scattering of

a monochromatic gravity wave by a finite shear layer

was investigated using closed form solutions and the

conditions under which overreflection occurs were re-

viewed. The scattering of a gravity wave packet by a

shear layer was subsequently investigated focusing on

the transient characteristics of the overreflection pro-

cess. It was found that for Ri , 1/4, wave packets having

a critical level inside the shear region are reflected with

amplified energy. It was also shown that the process of

overreflection occurs in three stages: during the first

stage, the incoming wave enters the shear layer, tunnels

through the critical level, and excites perturbations that

do not propagate in the vertical. The excitation is non-

local as a result of the tunneling of the wave and the

streamfunction perturbations occupy the whole shear

region. During the second stage, the energy of the

nonpropagating perturbations grows and during the fi-

nal stage the amplified perturbations excite propagating

waves in the far field originating from the vicinity of the

shear layer boundary. These results therefore were found

to support the conclusion of Lindzen and Barker (1985)

that overreflection has the characteristics of stimulated

emission.

FIG. 6. (a) Structure of the streamfunction of the eigenmode of the scattering branch with the maximum projection

coefficient ai (see text for details). Only positive values are shown and the contour interval is 0.005. (b) Fourier

decomposition of the eigenmode shown in (a). (c) Structure of the complex conjugate of the adjoint eigenmode with

the maximum projection coefficient ai. Streamfunction is shown as in (a) with the same contour interval. (d) Fourier

decomposition of the adjoint mode shown in (c).
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Perturbation energy amplification during the second

stage was further investigated. It was found that the ki-

netic energy of perturbations is amplified because of

downgradient Reynolds stresses and a part of the am-

plified kinetic energy is converted to potential energy

through positive buoyancy fluxes. Because of the finite

time required for conversion, potential energy growth

was found to lag behind kinetic energy growth. These

results, which are common for perturbation growth in

stratified shear flows with low Richardson number

(Farrell and Ioannou 1993), indicate that the modified

Orr mechanism (Farrell and Ioannou 1993) produces

the observed growth during overreflection and reveals

the essential nonnormality underlying the overreflection

process. This result is also in agreement with the conclu-

sion of Harnik and Heifetz (2007) that the Orr mechanism

underlies perturbation growth in the overreflection of

Rossby waves, while the role of the kernel–wave inter-

actions is to hold the perturbation at a configuration that

is favorable for energy growth.

Finally, the link between overreflection and non-

normal interaction between the analytic modes of the

dynamical system was highlighted. Eigenanalysis of the

linear, viscous dynamical operator revealed a finite num-

ber of nonorthogonal analytic modes replacing the non-

orthogonal singular modes of the operator in the inviscid

case. It was shown that reflection occurs as the incident

wave packet projects strongly on the modes of the spec-

trum having the structure of a downward propagating

wave in the far field below the shear layer, while the ex-

cess energy of the reflected wave is traced to the non-

normal interaction among these modes.
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APPENDIX

Calculation of the Discrete Spectrum for an Inviscid
Shear Layer and Closed Form Solution for the

Scattering of a Monochromatic Wave

To find the amplitudes R, C, D, and T in (9), we apply

continuity of displacement and pressure at z 5 6H/2—

implying continuity of ĉ/[U(z)� c] and [U(z)� c]

dĉ/dz� ĉdU/dz at z 5 6H/2, respectively—to obtain

the following equation:

B(c)Y 5 [1, 0, 0, 0]T, (A1)

where Y 5 [R, C, D, T]T and

B(c) 5

1 �a
1

�a� 0
�im(H/2 1 c) (H/2 1 c)kda

1
1 a

1
(H/2 1 c)kda�1 a� 0

0 �b
1

�b� 1
0 �(H/2� c)kdb

1
1 b

1
�(H/2� c)kdb�1 b� im

t
(H/2� c)

2
664

3
775,

with

a
6

5�ie7imp ffiffiffiffi
z

l

p
I

6m
(z

l
), b

6
5

ffiffiffiffiffi
z

u

p
I

6m
(z

u
),

da
6

5 ie7imp
I

6m
(z

l
)

2
ffiffiffiffi
z

l

p 1
ffiffiffiffiffiffi
z

m

p dI
6m

dz

�����
z

l

2
4

3
5,

db
6

5
I

6m
(z

u
)

2
ffiffiffiffiffi
z

u

p 1
ffiffiffiffiffi
z

u

p dI
6m

dz

�����
z

u

, and

z
l
5 k(H/2 1 c), z

u
5 k(H/2� c)

if jcj , H/2 or

a
6

5
ffiffiffiffi
z

l

p
I

6m
(z

l
), b

6
5

ffiffiffiffiffi
z

u

p
I

6m
(z

u
),

da
6

5
I

6m
(z

l
)

2
ffiffiffiffi
z

l

p 1
ffiffiffiffi
z

l

p dI
6m

dz

�����
z

l

2
4

3
5,

db
6

5
I

6m
(z

u
)

2
ffiffiffiffiffi
z

u

p 1
ffiffiffiffiffi
z

u

p dI
6m

dz

�����
z

u

, and

z
l
5�k(H/2 1 c), z

u
5 k(H/2� c)

otherwise. The amplitudes are then given by the solution

to (A1).

On the other hand, the discrete spectrum of A is ob-

tained by the complex roots of

det[B(c)] 5 0. (A2)

The values of c satisfying (A2) are calculated iteratively

using a two-dimensional secant method. For the values
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of k and Ri considered in section 3, no such solutions

were found. That is, there are no discrete modes of A

and its spectrum is continuous consisting only of singular

nonothogonal modes.
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