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ABSTRACT

Methods for approximating a stable linear autonomous dynamical system by a system of lower order are
examined. Reducing the order of a dynamical system is useful theoretically in identifying the irreducible di-
mension of the dynamics and in isolating the dominant spatial structures supporting the dynamics, and practically
in providing tractable lower-dimension statistical models for climate studies and error covariance models for
forecast analysis and initialization. Optimal solution of the model order reduction problem requires simultaneous
representation of both the growing structures in the system and the structures into which these evolve. For
autonomous operators associated with fluid flows a nearly optimal solution of the model order reduction problem
with prescribed error bounds is obtained by truncating the dynamics in its Hankel operator representation. Simple
model examples including a reduced-order model of Couette flow are used to illustrate the theory. Practical
methods for obtaining approximations to the optimal order reduction problem based on finite-time singular vector
analysis of the propagator are discussed and the accuracy of the resulting reduced models evaluated.

1. Introduction

The dynamical system of fluid flow can be expressed
as a set of partial differential equations and while the
formal dimension of the state space of these equations
is infinite, projection of the dynamics onto a sufficiently
large, but finite, basis of functions suffices for an adequate
representation of the dynamics. Nevertheless, the dimen-
sion, N, of this finite basis may be very large, for ex-
ample, N 5 O(107) for present forecast models, and this
large dimension is an obstacle to implementing statisti-
cally optimal state estimation methods for forecast ini-
tialization, including the Kalman filter which requires the
perturbation error covariance of dimension N2 [O(1014)]
be obtained (Farrell and Ioannou 2001). Moreover, it is
of fundamental theoretical interest to determine the min-
imal dynamical dimension of a fluid system such as a
storm track model and also to determine the minimal
structures required to accurately represent the dynamics
and the dynamical relation among these structures.

The system governing the dynamics of perturbations
to the fluid equations is linear, and if the nonlinear state
to which the perturbation is introduced is stationary,

Corresponding author address: Dr. Brian F. Farrell, Department
for Earth and Planetary Sciences, Pierce Hall, 29 Oxford St., Harvard
University, Cambridge, MA 02138.
E-mail: farrell@deas.harvard.edu

then a finite-dimensional linear autonomous system
governs the perturbation dynamics. We study the prob-
lem of finding a dynamical system of lower dimension
that best approximates the full perturbation dynamics
in such a finite-dimensional linear autonomous system.
This model order reduction requires for an accurate rep-
resentation of the dynamics that both the set of optimally
growing perturbations at an initial time, and the set of
perturbations into which these evolve at the future (op-
timizing) time (the optimals and the evolved optimals
or equivalently the left and right singular vectors of the
linear system propagator), be faithfully represented in
the dynamics. For normal systems this problem has a
simple solution: truncation retaining a set of least
damped eigenmodes of the system. But the perturbation
dynamics of fluid flow is governed in general by non-
normal operators which, unlike normal operators, have
optimals and evolved optimals that change with the op-
timizing time and are distinct both from each other and
from the eigenmodes of the dynamical operator. Finding
a way to represent the dynamics of both the optimals
and the evolved optimals in a balanced manner is re-
quired for solution of the problem of model order re-
duction in nonnormal systems.

Traditionally in fluid mechanics model order reduc-
tion has been performed by an ad hoc truncation ac-
complished by reducing the number of collocation
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FIG. 1. The structure of the streamfunction of the first two stochastic optimals which are the
eigenfunctions of Q with the largest eigenvalues. (a) First SO, which is responsible for producing
41% of the maintained variance. (b) Second SO, which is responsible for producing 25% of the
variance. (bottom) The structure of streamfunction of the first two EOFs, which are the eigen-
functions of P with the largest eigenvalues. (c) First EOF, which is responsible for producing 57%
of the maintained variance. (d) Second EOF, which is responsible for producing 17% of the
variance. For the Couette flow at Re 5 800, k 5 1.

points in a gridpoint representation or modes in a spec-
tral representation of the dynamical equations. This
method is straightforwardly implemented but reduction
to a low-order system by simple truncation of a grid
point or spectral representation lacks error bounds and
may even introduce instabilities. A more dynamically
motivated truncation is truncation to an ordered set of
least damped eigenmodes of the system. This method
of reducing the model order at least has the advantage
of retaining in the reduced-order system the stability
properties of the original system but except for normal
systems truncation to a set of least damped modes is
suboptimal and in practice produces disappointing re-
sults as the examples to be shown demonstrate.

An alternative basis for the dynamics is obtained by
exciting the system with unbiased forcing and projecting
the dynamics onto the empirical orthogonal functions
(EOFs) of its response; a closely related basis is obtained
by projecting onto the observed EOFs of a nonlinear
system (Hasselmann 1998; Holmes et al. 1997). Each
of these methods is an attempt to introduce information
about the dynamics into the truncation. However, while
projection onto EOFs is easily implemented and rep-
resents the evolved optimals well, it is not suited to
representing the optimals themselves (Farrell and Ioan-
nou 1993a,b).

We wish to find a method for reducing the order of
the dynamics that retains both the growing structures
and the structures into which these evolve. At the least
we would like to have assurance that the stability prop-
erties of the original system are preserved, but desirable
would be explicit bounds on the approximation error.
In the case of discrete multiple input multiple output
(MIMO) discrete parameter systems optimal truncation
of the dynamics has been obtained through balanced
truncation of the Hankel operator representation of the
dynamics (Moore 1981; Glover 1984; Zhou and Doyle
1998). We seek to extend this balanced truncation meth-
od of model order reduction to provide an optimal trun-
cation of the continuous dynamics of fluid flow.

The method of model order reduction presented in
this paper not only demonstrates constructively that the
linear dynamics are not optimally approximated by re-
ducing the dimension using either EOFs or singular vec-
tors or the least damped modes of the system but also
provides the spatial and temporal structure of the errors
incurred in the approximation and a constructive a meth-
od of determining the effective dimension of the dy-
namical system.

In the following, methods of model order reduction
are discussed, the balanced truncation is introduced, a
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FIG. 2. The Hankel singular values (dots), the singular values (or eigenvalues) of P (stars) and
the singular values (or eigenvalues) of Q in descending order of their magnitude. The corresponding
structures of the first SO and EOF are shown in Fig. 1. The Hankel singular values are the square
roots of the eigenvalues of PQ.

comparison is made among these methods of model
reduction, and an example problem is examined.

2. Methods for reducing the order of a linear
dynamical systems

a. Optimal reduction of the order of a matrix and
reduction of order for normal dynamical systems

Consider the linear dynamical system

dc
5 Ac, (1)

dt

in which, if necessary, the continuous operators have
been discretized so that the dynamical operator is a fi-
nite-dimensional matrix. Our goal is to reduce further
the order of this finite-dimensional matrix, retaining de-
sired accuracy of the solution.

A method for optimally reducing the order of a finite-
dimensional matrix is immediately available from ma-
trix theory; provided that the error is measured in the
euclidean or L2 norm.1 This solution can be exploited

1 The optimal solution is known only for the class of unitarily
invariant norms, i.e., norms that are invariant to unitary transfor-
mation of their vectors; the L2 or the Frobenius norm are such norms
(cf. Stewart and Sun 1990).

to approximate the system propagator that advances the
initial state of the system at t 5 0 to its state at a fixed
later time t because this propagator is a finite dimen-
sional matrix: for A autonomous the explicit expression
for the propagator matrix F(t) at time t is F(t) 5 eAt.
Optimal truncation of this matrix propagator can be con-
structed using singular value decomposition. The sin-
gular value dyadic expansion of the propagator is F(t)
5 siui , where n is the dimension of the staten †S yi51 i

space, and the n vectors ui and y i define two orthonormal
bases. The y i are the optimals, the initial perturbations
ordered in decreasing growth si over time t; and the ui

are the evolved optimals, the structures to which the y’s
evolve in time t (sometimes referred to respectively as
the left and right singular vectors of the matrix propa-
gator). If A is normal (i.e., AA† 5 A†A) both the optimals
and the evolved optimals coincide with the eigenvectors
of the operator A. It can then be shown that in the L2

norm the error in approximating the propagator at time
t by any matrix X of rank less than k, with k , n, is
necessarily at least equal to the k 1 1st singular value
of the propagator; that is, the error in the L2 norm sat-
isfies \F(t) 2 X\ $ sk11. The minimum error sk11 is
attained (nonuniquely) by the matrix approximation

k

†X 5 s u y , (2)Ok i i i
i51
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FIG. 3. (top) Frequency response trace [R†(v)R(v)] as a function of real frequency v. The con-
tinuous curve is the original system, the dash curve is the order 10 balanced truncation. (bottom)
Frequency [J (v)]and decay rate [R (v)] of the eigenvalues of the original system (stars), and of the
order 10 balanced operator A11 (crosses). For Couette flow at Re 5 800 and k 5 1.

which is obtained by truncating the singular value de-
composition of F(t) to its first k largest singular values.
This result is the Eckart–Schmidt–Mirsky (ESM) the-
orem (Schmidt 1907; Eckart and Young 1936; Mirsky
1960; Stewart and Sun 1990) and it provides an optimal
truncation of the propagator in the euclidean norm at
any fixed time t.

For a normal system the propagator of the full sys-
tem is

n

l t †iX 5 e e e , (3)On i i
i51

where li is the eigenvalue associated with eigenvector
ei. If the li are ordered decreasing in their real part,
R (li), then truncation to the first k modes results in the
order k propagator:

k

l t †iX 5 e e e . (4)Ok i i
i51

This propagator limits the dynamics to the subspace
spanned by the first k least damped modes of the system.
It is clear by appeal to the ESM theorem that reduction
of the dimension of the system by Galerkin projection
on the first k least damped modes produces the optimal
order k truncation of the propagator at all times and that
error in the propagator at time t is bounded by .l tk11e

Also note that the modally reduced system inherits the
stability properties of the original system.

However, modal reduction is not suitable for most
fluid problems because the linearized equations asso-
ciated with fluid flows are generally nonnormal and
modal reduction is suboptimal for nonnormal systems.
In order to obtain an approximation of the dynamics for
nonnormal systems we seek to extend application of the
ESM theorem to an arbitrary nonnormal system, ob-
taining a truncation that is otherwise similar to that re-
sulting from modal truncation of a normal system. The
necessary result was developed by Adamjan et al.
(1971) and methods of model reduction based on it were
developed in the context of discrete MIMO systems by
Moore (1981) and Glover (1984) (see also Zhou and
Doyle 1998).

The method of optimal model reduction utilizes the
stochastic optimals and the EOFs (Farrell and Ioannou
1993a,b, 1996) and we start by discussing how these
structures are obtained.

b. Reducing the order of a nonnormal system by
projection on the space spanned by the EOFs and
the stochastic optimals

We wish to educe the intrinsic dynamics of the linear
system without influencing the system response by the
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FIG. 4. (top) The top 4 singular values of the propagator, eAt, as a function of time for the
Couette flow at Re 5 800 and k 5 1. The curves correspond to the full system and also (indis-
tinguishably) to the order 10 approximate system obtained by balanced truncation. (bottom) A
plot of the maximum singular value of the error system A 2 A10 as a function of frequency. The
system A10 is an order 10 approximation obtained from A by balanced truncation. The maximum
of this curves is the H` error of the order 10 balanced truncation which is found here to be 2.2.
Also indicated with a straight line is the theoretical minimum error of an order 10 truncation,
which equals the first neglected Hankel singular value S11 5 1.2. The balanced truncation is seen
to be nearly optimal.

choice of forcing, therefore we excite the system in an
unbiased manner:

dc
5 Ac 1 Fw(t). (5)

dt

In (5) the operator A is assumed stable and is stochas-
tically forced with white noise w(t), and the structure
of the forcing, F, is unitary.2 The statistically steady
response (cf. Farrell and Ioannou 1996, hereafter F196)
can be characterized by the covariance matrix P 5
^cc†&, where the brackets denote the ensemble average,
which for unitary white noise forcing is also given by
the expression:

`
†t tA AP 5 e e dt. (6)E

0

As the covariance matrix, P, is hermitian, its eigenvec-
tors form an orthonormal basis. These are the EOFs that
span most concisely the structures accounting for the
variance; in the sense that the variance is distributed

2 That is, FF† 5 I, where I the identity and F† the Hermitian trans-
pose of F.

over the EOFs according to their associated eigenvalues,
and the trace of the covariance matrix therefore is the
total variance maintained by the stochastic forcing.

Because the EOFs are the most concise representation
of the response of the system in the sense of accounting
for the maximum variance with the fewest structures
when the system is subjected to unbiased forcing, it is
perhaps reasonable to expect that the EOFs also provide
the preferred basis of functions for truncation of the
system dynamics. The EOFs, after all, include in their
structures information about the preferred responses of
the system and should therefore be superior to an ar-
bitrarily chosen orthogonal basis of functions in rep-
resenting economically the state of the system. Indeed,
a method of truncation based on observed covariance
is used to produce lower-order systems for turbulent
modeling (Holmes et al. 1997).

However, such a truncation is not optimal in general
even for linear operators because, as was argued in Far-
rell and Ioannou (1993b), the linear operator A arising
in fluid flow perturbation problems is generally non-
normal so that the optimal responses are structurally
distinct from the corresponding optimal excitations, and
consequently a lower-order system approximation of the
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dynamics needs to include in a balanced way both the
optimal excitation structures as well as their distinct
optimal responses. The time-integrated optimal excita-
tions of the system are identified as the stochastic op-
timals that are the eigenfunctions of the Hermitian ma-
trix

`
†t tA AQ 5 e e dt. (7)E

0

This identification stems from writing the maintained
variance of the stochastically forced system (5) as

† †^c c& 5 trace(F QF), (8)

where brackets denote the ensemble average. The ei-
genvectors of the positive definite hermitian matrix Q
are the stochastic optimals (SOs) that order the forcing
structures (the columns of F) according to their contri-
bution to exciting the variance under the assumption of
unbiased forcing. The variance excited in statistical
equilibrium by each eigenvector is given by the cor-
responding eigenvalue of Q and the total variance is the
trace of Q.

The importance of retaining a balance between the
leading EOFs and the leading SOs in a truncation of
the dynamical operator A is demonstrated by consid-
ering the following nonnormal system:

21 21/e
A 5 . (9)1 2e 22

Because A is asymptotically stable, the covariance ma-
trix P, given by Eq. (6), is readily found by solving the
Lyapunov equation (FI96):

†AP 1 PA 5 2 I, (10)

where I is the identity. The solution is

21 7 1 1/e 2e 2 1/e
P 5 . (11)21 22e 2 1/e 4 1 e18

For small e the eigenvalues of P approach the values
1/(18e2) and 1/6, and the leading EOF associated with
the first eigenvalue approaches [1, 0]T. As e → 0 this
eigenvector accounts for nearly all the variance. One
may expect then that truncation to retain this first EOF
would provide a good description of the dynamics. In-
deed, this is the case for a normal dynamical operator
A. However, in the case of perturbation dynamics in
fluid flows, for which A is generally nonnormal, this
truncation of the system is demonstrably wrong in the
sense that if the system is truncated to a single equation
by projection on the dominant EOF the dynamics are
poorly represented. The neglected EOF, which accounts
for an asymptotically vanishing fraction of the total var-
iance, is in fact the first SO, that is, the structure that
is responsible asymptotically for producing all the var-
iance. The SO is obtained by eigenanalysis of the matrix

Q, which can be found by solving the Lyapunov equa-
tion:

†A Q 1 QA 5 2 I. (12)

Because of the structure of A in this example, we can
obtain Q by replacing e by 21/e in the expression for
P in (11) to obtain

21 7 1 e e 2 2/e
Q 5 . (13)21 2e 2 2/e 4 1 1/e18

The eigenvalues of Q for e K 1 approach the eigen-
values of P, but the eigenvector corresponding to the
largest eigenvalue, the SO, approaches [0, 1]T, a struc-
ture orthogonal to the first EOF as e → 0. This structure,
almost exclusively responsible for producing the vari-
ance, remarkably accounts only for a vanishing fraction
of the variance. Truncation to retain only this leading
SO would, however, also lead to an inaccurate approx-
imation of the dynamical system as the dynamics would
then not include the dominant response of the system,
the leading EOF. This example demonstrates that for a
good approximation of the dynamics both the leading
SOs and the leading EOFs must be retained in the trun-
cated dynamics.

If the system is normal the SOs and the EOFs coincide
(they are identical to the eigenmodes of the system),
and in that case an optimal k order truncation corre-
sponds to retaining the least k damped modes of the
system as we have already seen. The truncated operator
is then Ak 5 EkDk where Ek is the column matrix†Ek

consisting of the first k eigenmodes of A and Dk is a k
3 k diagonal matrix with its diagonal elements equal
to the eigenvalues corresponding to the eigenvectors in
Ek.

This procedure is not applicable to nonnormal sys-
tems in which the SOs, EOFs and eigenvectors are not
identical. But if there were a coordinate system in which
the EOFs and the SOs become identical, then in that
coordinate system we could proceed with the truncation
as in normal systems. Such a transformation exists and
this procedure is called balancing and the coordinates
in which both the P and Q are transformed to a diagonal
matrix S is called the balanced realization (Moore 1981;
Zhou and Doyle 1998).

Because the original dynamics are represented in co-
ordinates chosen for physical relevance, we demand also
that the transformed coordinates preserve the inner
product of the original coordinates; for instance, the
state c may be such that the euclidean inner product
corresponds to energy. Consider now the transformation

x 5 Tc. (14)

In order that the inner product in the new coordinate
system, x, satisfies (x, x) 5 c†c the inner product in
the x space must be defined as
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† 21† 21(x, x) 5 x T T x. (15)

The transformed dynamical equations (5) are then

dx ˜5 Ax 1 TFw(t), (16)
dt

where

21Ã 5 TAT . (17)

We obtain the transformed Q̃ by making use of the in-
variance of the inner product as follows:

† †^c c& 5 trace(F QF)

† 21† 215 ^x T T x&

† ˜5 trace(F QF), (18)

where

`
†˜ ˜t 21† 21 tA AQ̃ 5 e T T e dt. (19)E

0

Using (17) and the definition of Q given in (7) we have

21† 21Q̃ 5 T QT . (20)

We obtain now the transformation law for P. From
the forced solution of (16) we have

`
†˜ ˜† t † tA AP̃ [ ^xx & 5 e TT e dt, (21)E

0

and again using (17) and the definition of P given in
(6) we have

†P̃ 5 TPT . (22)

The coordinate transformation T, which simulta-
neously diagonalizes the P and Q matrices, is obtained
as follows (Moore 1981; Glover 1984). Define the Her-
mitian matrix

1/2 1/2R 5 P QP , (23)

which requires for its calculation the determination of
the square root3 of the Hermitian and positive definite
covariance matrix P. Determine the unitary matrix U
that diagonalizes the Hermitian matrix R:

2†U RU 5 S , (24)

3 The square root of a matrix P is the matrix P1/2 with the property
P 5 P1/2P1/2. Clearly the square root of a diagonal matrix is the diagonal
matrix consisting of the square root of the diagonal elements. If P is
diagonalizable with eigenvalues forming the diagonal matrix L the
square root of P is defined as follows: diagonalize P 5 SLS21, then
the generally multivalued P1/2 is given by P1/2 5 SL1/2S21. If P is
Hermitian and positive definite then the square root is unique. In this
case it is numerically advantageous to calculate the square root using
its singular value decomposition: P 5 SSS†. Then P1/2 5 SS1/2S†. For
nondiagonalizable matrices a generalized square root can be defined
based on the Jordan block decompositions (cf. Horn and Johnson 1991,
p. 459).

with U†U 5 I. It can then be verified that the coordinate
transformation

1/2 21/2†T 5 S U P , (25)

simultaneously diagonalizes the P and Q matrices, trans-
forming P to P̃ 5 S and Q to Q̃ 5 S. The structure of
the forcing TF (which is no longer unitary) and the
nonnormality of the transformed operator Ã are such as
to render the resulting P̃ and Q̃ matrices in these co-
ordinates equal. The diagonal elements of S in descend-
ing order are called the Hankel singular values. In these
coordinates the SOs and the EOFs are the same and the
system is truncated at order k by retaining the first k
Hankel singular values, as if the ESM theorem were
applicable. In the H` matrix norm (which will be intro-
duced subsequently) the error incurred by the reduction
of the system will be shown to be bounded below by
the first neglected Hankel singular value and above by
twice the sum of the all the neglected Hankel singular
values (Glover 1984). In summary, the method is to
reduce the system to a kth-order system by retaining the
first k SO and EOFs, which are both equal to the first
k Cartesian basis vectors in these new coordinates.

The associated truncation of Ã is truncation to the
submatrix Ã11 of the first k rows and columns of Ã. The
reason is that in these coordinates the Lyapunov equa-
tion (10) satisfied by the covariance matrix P̃ 5 S is

† †˜ ˜AS 1 SA 1 TT 5 0. (26)

Because S is diagonal, Ã11 solves the Lyapunov equa-
tion:

† †˜ ˜A S 1 S A 1 T T 5 0,11 11 1 11 1 (27)

where S1 is the diagonal matrix with the first k Hankel
singular values and T1 the transformation matrix in
which only the first k rows have been retained. Con-
sequently, the reduced k 3 k operator Ã11 accounts for
the variance, which is equal to the sum of the retained
first k Hankel singular values. The reduced low-order
dynamical system is

dz ˜5 A z, (28)11dt

where z is a k dimensional vector. The physical state is
recovered by c 5 z, where is the n 3 k submatrix21 21T T1 1

of T21 obtained by retaining the first k columns.
An important general property of the truncated system

(28) is that Ã11 inherits the stability properties of A, and
is therefore stable.4 This follows from a general property
of the Lyapunov equation and the fact that in Eq. (27)
the matrix T1 is positive definite (Zhou and Doyle†T1

1998).

4 The balanced transformation can be also applied to unstable sys-
tems (Glover 1984).
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c. Deterministic interpretation of P and Q

Because of their importance in the theory of model
order reduction and their application in predictability
theory we give alternative deterministic interpretations
of the matrices P and Q.

The time integrated square magnitude of the response
of the system to an initial perturbation is obtained by
analysis of the matrix Q 5 e dt. This is because` †t tA A# e0

the initial condition c0 will evolve to c(t) 5 eAtc0 with
time-integrated square magnitude:

` `
†† † t tA Ac(t) c(t) dt 5 c e e dt cE 0 E 01 2

0 0

†[ c Qc . (29)0 0

It follows that eigenanalysis of the positive definite Her-
mitian matrix Q orders the initial perturbations accord-
ing to the resulting time integrated response.

The covariance matrix P 5 eAte dt can also be` †tA#0

given a deterministic interpretation. Consider square in-
tegrable deterministic forcings u(t) that force the system
for past times, that is, for t , 0:

dc
5 Ac 1 u(t). (30)

dt

Define the functional, J(u) 5 u(t)†u(t) dt, to be the0#2`

integrated square magnitude of the imposed forcing,
u(t). We wish to determine the forcing ũ(t) of minimal
J(u) that produces a given state c0. Luenberger (1969)
showed that this minimal J(ũ) is determined from P
through the relation: J(ũ) 5 P21c0. To show this we†c0

form
† 21dc(t) P c(t)

† 21 21†5 c(t) (A P 1 P A)c(t)
dt

† 21 21 †1 u(t) P c(t) 1 [P c(t)] u(t), (31)

then integrate using (10) and complete the square to
obtain

0

† 21 †c P c 5 u(t) u(t) dt0 0 E
2`

0

21 † 212 [u(t) 2 P c(t)] [u(t) 2 P c(t)] dtE
2`

0

21 †5 J(u) 2 [u(t) 2 P c(t)]E
2`

213 [u(t) 2 P c(t)] dt. (32)

This shows that the integrated square magnitude J(u)
for all past forcings u(t) that produce state c0 satisfies
the inequality

† 21J(u) $ c P c .0 0 (33)

Inspection of (32) also reveals that the minimum inte-
grated forcing is attained for

21ũ(t) 5 P c(t). (34)

Substituting this minimum forcing in (30) we obtain
that c(t) obeys for t , 0 the equation

dc
215 (A 1 P )c, (35)

dt

which for t , 0 and c(0) 5 c0 has the solution
21 † 21 † 21( 1 )t 2 t 2 tA P PA P A Pc(t) 5 e c 5 e c 5 Pe c , (36)0 0 0

where (10) was used to write A 1 P21 5 2PA†P21. This
proves that the minimum forcing that produces c0 is

† 212 tA Pũ(t) 5 e c ,0 (37)

and the time-integrated square magnitude of this forcing
is P21c0.†c 0

We pause now to consider an implication of this result
for forecast. Consider perturbations to the initial state,
which represent uncertainty in knowledge of the initial
state. Singular value decomposition of the forward prop-
agator of the perturbation forecast equations provides
the structures contributing to forecast uncertainty after
a chosen interval of time and orders these structures in
their contribution to producing this uncertainty. As we
have seen, truncating the singular value decomposition
of the propagator provides an explicit optimal order re-
duction of the propagator of forecast error over the cho-
sen interval of time. In contrast (37) provides the min-
imum past forcing, ũ(t), distributed over space and time
that produces a given perturbation at t 5 0. From the
forecast perspective examining ũ(t) provides informa-
tion on sources of uncertainty in the forecast distributed
over space and time. One implication of this result is
that the forecast at t 5 0 would be most affected by
model error distributed in space and time as ũ(t) in (37)
with c0 chosen to be the eigenfunction of P21 with
smallest eigenvalue, that is, the first EOF. Another im-
plication is that the first EOF is the most likely error to
be produced by the forecast model. A third implication
is observing resources may be best deployed at locations
and times indicated by this ũ(t).

We have argued that accurate representation of the
dynamics requires that both the amplifying structures
and the resulting responses be resolved. Based on the
interpretations of matrices P and Q we can quantify this
requirement by demanding that the structures c0 con-
tributing maximally to the functional,

†c Qc0 0H [c ] 5 , (38)0 † 21c P c0 0

be well approximated. The H[c0] is referred to as the
Hankel quotient hereafter. For initial condition c0,
H[c0] is the ratio of the time-integrated square mag-
nitude of the response of the system to c0 (for t . 0)
to the time-integrated square magnitude of the minimum
forcing (for t , 0) required to produce c0. This quotient
measures in a joint manner both sensitivity to initial
conditions (determined by the Q matrix) and the inte-
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grated forcing required to produce initial conditions (de-
termined by the P matrix). The stationary values of this
quotient are the eigenvalues of PQ which are also the
eigenvalues of R defined in (23) and used to cast the
system in balanced coordinates by simultaneously di-
agonalizing P and Q. The stationary values of the Han-
kel quotient are thus the squares of the Hankel singular
values, which indicate the accuracy of the model order
reduction.

d. The Hankel operator representation of the
dynamics

The ESM theorem solves the problem of optimally
truncating the propagator in the Euclidean norm at any
fixed time, but it does not directly provide a solution
to the problem of truncating the underlying dynamical
system. In order to address this question we must apply
the ESM theorem to the linear map that describes the
dynamics, that is, the map that connects all forcings to
all responses. The reduced model provides another lin-
ear map connecting all forcings to all responses. The
closeness of these two maps determines the accuracy of
the approximation, which from the ESM theorem can
be as small as the largest singular value of the linear
map which is removed in the truncation. Therefore, in
order to determine the optimal truncation and assess its
performance we must first find the singular values of
the linear map describing the dynamics.

The system dynamics compose a transformation of
past forcings to future responses. The time translational
symmetry of the linear autonomous system can be ex-
ploited to fix the time origin at t 5 0 so that the dynamics
can be viewed as a transformation of past forcings over
t on (2`, 0] to future responses over t on (0, `). This
linear transformation is called the Hankel operator and
it is defined as the linear map H:L2(2`, 0] → L2(0,
`), from square integrable forcings, u(t), in the interval
(2`, 0] to square integrable responses of the system,
c(t), in the interval [0, `):

0

t 2 sA AHu(T ) 5 c(t) 5 e e u(s) ds. (39)E
2`

Note that the Hankel operator can be found by the action
of two linear maps: N, which maps past forcings to the
state of the system at t 5 0, called c0; and M, which
maps c0 to its state at later time, c(t); that is, the Hankel
operator is H 5 MN, where

tAc(t) 5 Mc 5 e c , and (40)0 0

0

2 sAc 5 Nu 5 e u(s) ds. (41)0 E
2`

Both N and M are operators of rank n where n is the
dimension of the system and consequently the Hankel
operator is also of rank n.

In order to obtain the singular values of the linear

operator H the inner product of the function spaces it
operates on must be specified. The Euclidean inner prod-
uct will be used: for the responses, which are functions
limited to t . 0, it is ( f , g) 5 f (t)†g(t) dt, while for`#0

the forcings, which are functions limited to t , 0, it is
( f , g) 5 f (t)†g(t) dt. The squares of the singular0#2`

values are obtained as the stationary values of the ratio
of the square of the norm of the responses to the square
of the norm of the forcings:

`

†c(t) c(t) dtE
0

H [c ] 5 , (42)0 0

†u(t) u(t) dtE
2`

which can be found by sequential maximization over
u(t) in the subspace that is orthogonal to that spanned
by the previously obtained stationary forcings. Instead
of maximizing this quotient over u(t) we can equiva-
lently maximize it over the initial states c0 and specify
ũ(t) to be the forcing of minimum square amplitude,
which by (37) is c0P21c0. It is now clear that the sta-
tionary values of the Hankel quotient H[c0], introduced
in (38), are also the stationary values of quotient (42),
and that the singular values of the Hankel operator are
the Hankel singular values S, which were defined as

1/2 1/2S 5 ÏL(PQ) 5 Ïl(P QP ), (43)

where L(B) denotes the eigenvalues of a matrix B. We
can write the singular value decomposition of the Han-
kel operator as

†H 5 USV , (44)

where S is the diagonal matrix of the Hankel singular
values S; and U, V are unitary operators.

Just as for linear transformations in which the L2 norm
of vectors induces a matrix norm equal to the largest
singular value of the matrix representation of the trans-
formation, so also here we can define the L2 induced
norm of the linear operator H as the largest Hankel
singular value. We can then define the Hankel norm of
the dynamical operator matrix A as \A\ H 5 \H\ 2; that
is, the Hankel norm of a dynamical operator matrix is
the L2 induced norm of its associated Hankel operator.
From the ESM theorem the optimal truncation of H in
the L2 induced norm of its Hankel operator is the Hk of
rank k with Hankel singular values equal to the first k
Hankel singular values.

We have truncated the singular value decomposition
of the Hankel operator but if we instead truncated the
singular value decomposition of M in (40), which maps
initial conditions to responses, instead of the Hankel
operator, then we would retain the top M-singular values
of the system and obtain again by appealing to the ESM
theorem an optimal truncation of the system in the as-
sociated M norm of A. Alternatively, optimality in the
ESM sense could be obtained if the dynamics were trun-
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cated in the N map [cf. (41)]. So there is a need to
measure and compare the accuracy of truncations in a
norm that does not depend on the representation of the
dynamics. One such norm is the time integral of the L2

norm of the propagator, another would be the H` norm,
which is defined for a stable system as the maximum
singular value of the resolvent over all real frequencies
v, that is,

\A\ [ max s (R(v)), (45)` max
v∈R

where smax is the largest singular value of the resolvent
(cf. FI96):

21R(v) 5 (ivI 2 A) . (46)

The H` norm is the optimal response of the system to
sinusoidal forcing. This generally accepted notation for
the H` norm of a dynamical system governed by dy-
namical operator A should not be confused with the
notation of the L` matrix norm of A, which is the largest
row sum of the entries of the matrix.

The relation among the Hankel norm \A\ H of an op-
erator A, which is equal to its largest Hankel singular
value S1, and other norms of the operator (Zhou and
Doyle 1998) is

` n

tA\A\ 5 S # \A\ # \e \ dt # 2 S . (47)OH 1 ` E 2 i
i510

From (47) and the ESM theorem it follows that the
approximation error for reduction to rank k as evaluated
in the H` norm must be at least

S # \A 2 A \ ,kk11 ` (48)

where Sk11 is the first neglected Hankel singular value
of A. The method for calculating the H` error is de-
scribed in appendix A. As measured in the H` norm no
reduction technique can give an approximation better
than this bound. Some reduction techniques also come
with an upper bound on the approximation error but in
practice in choosing the approximation technique we
must also consider its computational complexity. The
balanced truncation introduced in the previous section,
although it is not Hankel and is suboptimal in the Hankel
norm, is a good compromise. It gives an error bound
that can be seen from (47) to be twice the sum of the
neglected Hankel singular values (Zhou and Doyle
1998); that is, for balanced truncations the error satisfies
the inequality

n

S # \A 2 A \ # 2 S , (49)Okk11 ` i
i5k11

which is easily computed. In practice the error is found
to be close to the lower bound.5

5 Optimal Hankel norm approximations with tighter infinity norm
error bounds can be constructed iteratively (Glover 1984), but they
are cumbersome and probably unsuitable for implementation in the
large systems that arise in flow problems. They involve N 4 operations
compared to the N 3 operations required for balanced truncation and
reduce the upper bound of the error in (49) by a factor of 2.

3. Reduced-order approximation of the linear
operator associated with shear flow

Consider perturbations to a time-independent zonally
homogeneous barotropic Couette flow, U(y) 5 y, con-
fined to a channel in which y is the northward direction
and x is the zonal direction. Choosing the inverse of the
mean shear and the half-channel width as characteristic
time- and space scales, the nondimensional barotropic
vorticity equation for the meridionally and temporally
varying component of the streamfunction c(x, y, t) 5
c(y, t)eikx is given by

2]D c 1
2 45 2ikyD c 1 D c, (50)

]t Re

where k is the zonal wavenumber. The operator D2n is
defined as

n2d
22nD [ 2 k , (51)

21 2dy

and these continuous operators have been cast in finite-
dimensional matrix form by discretizing and approxi-
mating the derivatives with central differences. If a grid-
point discretization is sufficiently fine, we are assured
that the solution of the matrix approximation approaches
asymptotically the solution of the continuous system
(50) (Ince 1956). The Reynolds number is Re 5 L2/
(an) where L is the channel half-width, a the shear, and
n the viscosity. The boundary conditions at the channel
walls are c(61, t) 5 0 and the nonslip condition cy(61,
t) 5 0. The perturbation dynamics are governed by the
classical Orr–Sommerfeld equation (Drazin and Reid
1981).

We transform to generalized velocity coordinates, f,
defined as f 5 (2D2)1/2c. It can be shown that in the
Euclidean inner product and the chosen boundary con-
ditions that 2D2 is Hermitian and positive definite and
its square root, (2D2)1/2, is uniquely defined. The square
root of the finite-dimensional matrix approximation to
(2D2)1/2 is easily obtained as explained in footnote (3).
In generalized velocity coordinates the Euclidean inner
product f†f is proportional to perturbation energy den-
sity. The dynamical system in generalized velocity is

df
5 Af, (52)

dt

with the dynamical operator6

1
1/2 21/22 22 2 4 2A 5 (2D ) D 2ikyD 1 D (2D ) . (53)1 2Re

Discretization on 100 grid points approximates well the
spectrum and the evolution dynamics of the full con-
tinuous operator at Re 5 800 (convergence to the con-

6 The inverse of the matrix representation of D2 is defined to be
the matrix approximation of the operator D22.
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FIG. 5. (left) The structure of the streamfunction of the optimal perturbation that leads to the
greatest energy growth at t 5 10, and the evolved optimal streamfunction, (right) the structure that
these optimals evolve into at the optimizing time t 5 10. The bottom panels are for the full system
while the top panels are for the order 10 balanced truncation. The difference in the structure of
the streamfunction is less than 1%.

tinuous operator was verified by doubling the number
of discretization points), so at the start we consider (52)
to be a 100 dimensional dynamical system. The per-
formance of various truncations will be assessed for Re
5 800 and the single wavenumber k 5 1.

a. Balanced truncations

We start with the balanced truncation of the full system.
The operator Q is calculated from (12) and operator P
from (10). The eigenfunctions of Q are the stochastic
optimals. The first two SOs are shown in the two top
panels of Fig. 1. The eigenfunctions of P are the EOFs
of the dynamical system forced white in space and time.
The first two EOFs are shown in the bottom panels of
Fig. 1. The first 8 SOs are responsible for exciting 90%
of the maintained variance. In this example the first 8
EOFs also account for 90% of the maintained variance.
The eigenvalues (or singular values) of P and Q are
shown in Fig. 2 along with the Hankel singular values
obtained by applying coordinate transformation T given
by (25). This transformation renders P and Q diagonal.
The diagonal elements of these matrices are the Hankel
singular values, and in these coordinates the singular vec-
tors are the canonical basis. A k rank balanced truncation
is obtained by retaining the first k singular vectors of the
diagonalized P and Q while setting the remaining singular

vectors to zero. The resulting dynamical operator Ã11

consists of the first k columns and rows of Ã.
The low-order dynamical system is constructed so as

to reproduce as closely as possible the time development
of the original system. This implies that it will also
closely approximate the frequency response of the op-
erator. The frequency response can be quantified by the
magnitude of the resolvent (46). The integral of trace
[R†(v)R(v)] over all frequencies is the variance main-
tained under spatially and temporally white forcing (cf.
FI96). The magnitude of the frequency response de-
pends in part on the damping of the modes of the op-
erator, but for nonnormal systems it also depends on the
nonnormality of the operator, which can lead to variance
far in excess of that anticipated from the rate of damping
alone (cf, Farrell and Ioannou 1994; Ioannou 1995). The
spectrum of the 10th-order operator obtained from bal-
anced truncation and that of the original system are
shown in the bottom panels of Fig. 3. We see that these
operator spectra are very different, they do not even
have the same least damped mode, and yet they produce
nearly identical frequency responses, especially for the
range of frequencies for which the response is large.
The truncated system also reproduces very accurately
the structure and growth of individual perturbations. In
the top panel of Fig. 4 the four largest singular values
of the propagator of both the original system and its
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FIG. 6. Optimal growth, \eAt\ , as a function of time for the Couette flow at Re 5 800 and k 5
1. Shown is the optimal growth for the full system (solid); optimal growth produced by an order
6 approximate system obtained by balanced truncation of the full system (circles); the optimal
growth for an order 6 approximate system in which the top 6 stochastic optimals have been retained
(crosses); the optimal growth by an order 6 approximate system in which the top 6 EOFs have been
retained (stars); and the optimal growth by an order 6 approximate system in which the top 6 least
damped modes have been retained (dash–dot).

order 10 truncation are shown as a function of time.
The time development of these growing disturbances in
the truncated and the untruncated system is indistin-
guishable. The structures of the optimals in the two
systems are also indistinguishable. The structure of the
optimal perturbation that leads to the largest energy
growth in the 10th-order reduced system and in the full
system are shown in Fig. 5. The evolved optimals are
also shown in Fig. 5. The structures are indistinguish-
able. The maximum possible error in the truncation can
be found by calculating the H` response of the error
system (see appendix A), which identifies the excitation
sinusoidal in time that leads to the greatest discrepancy
between the response of the original system and its ap-
proximant. We have seen in the previous section that
the H` error is bounded below by the first neglected
Hankel singular value and above by twice the sum of
all the neglected Hankel singular values, as in (49). For
the order 10 balanced truncation the bounds are not
tight: the lower bound is S11 5 1.2 while the upper
bound is 30.5. In the bottom panel of Fig. 5 is shown
the largest singular value of the resolvent of the error
system as a function of frequency (see appendix A). The
maximum of this curve gives the H` error of the ap-
proximation which is calculated to be \A 2 A10\` 5
2.2. This shows that the balanced truncation is almost

optimal in the sense of having error in the H` norm
close to the lower bound, which in this case is 1.2. We
have found this to be true in all cases we have inves-
tigated.

b. Comparison with other truncations

We compare the balanced truncation with truncations
in which only the top EOFs are retained, and to trun-
cations in which only the top stochastic optimals are
retained. We also compare to modal reductions in which
the first least damped eigenmodes of the system are
retained. These truncations correspond to Galerkin pro-
jection of the dynamics onto EOFs, SOs, and eigen-
vectors, respectively.

Truncations based on the top EOFs are equivalent to
approximating the N map in (41) because the singular
values of N coincide with those of P. The reduction
follows the same steps as for the balanced truncations:
introduce a change of coordinates T but with T 5 U†

where U is the unitary matrix of the eigenvectors of P
arranged in columns; that is, the columns of U are the
EOFs of the system when forced with spatially and tem-
porally white noise. This transformation renders P di-
agonal and transforms the dynamical operator to Ã. A
k order system is obtained by limiting the dynamics to
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FIG. 7. Power spectrum, trace [R†(v)R(v)], where R(v) is the resolvent (46) of the operator.
Shown is the power spectrum of the full system (solid); power spectrum of an order 6 approximate
system obtained from the full system by balanced truncation (line–dot); the power spectrum of
an order 6 approximant obtained by retaining the top 6 SO’s (dash); the power spectrum of an
order 6 approximant obtained by retaining the top 6 EOF’s (dash–dot); and the power spectrum
of an order 6 approximant obtained by retaining the 6 least damped modes (dot). The case is
Couette flow at Re 5 800 and k 5 1.

Ãk, which is equal to the first k columns and rows of
Ã. Because in these coordinates the truncated system
satisfies the following Lyapunov equation:

† †˜ ˜A S 1 S A 1 T T 5 0,11 k k 11 1 1 (54)

where Sk is the diagonal matrix with the first k eigen-
values of P, and T1 is the submatrix of T with the first
k rows, Ã11 inherits the asymptotic stability of the full
operator. Just as for balanced truncations, any reduction
of the dynamics to the top EOFs leads to a dynamical
system with guaranteed asymptotic stability.

We proceed similarly with reduction of order retain-
ing the top stochastic optimals. This is equivalent to
truncating the map M in (40) because the singular values
of M are the same as those of Q. For this reduction we
transform with T 5 U† where the columns of U are the
stochastic optimals, which are the eigenvectors of Q.
We truncate the dynamical system by retaining the de-
sired number of columns and rows of the transformed
dynamical operator. Again, because the reduced dynam-
ical operator satisfies a Lyapunov equation, the stability
of the approximant is guaranteed.

We consider now reduction of the original system to
an order 6 system. The optimal growth is shown as a
function of time for a balanced truncation, an EOF based
truncation, a SO based truncation, and a modal trun-

cation in Fig. 6. All these low-order systems have di-
mension 6. We observe that, despite the small dimen-
sionality of the low-order system, all the reduced sys-
tems perform rather well, except the one that was ob-
tained from modal reduction. It is also clear that among
the reductions the balanced is the best, followed by the
EOF based reduction, which in turn is better than the
SO based.7 The power spectrum of the response of the
reduced operators to white stochastic forcing, given by
trace [R†(v)R(v)], where R(v) is the resolvent of the
corresponding reduced operator, are compared in Fig.
7. Again the balanced reduction is closest to the re-
sponse of the full system. Also again the EOF reduction
performs better than the SO based reduction. The ei-
genmode reduction at this order provides a poor ap-
proximation to the dynamics. The truncated eigenmode
system inherits the first k elements of the spectrum and

7 Note that all the truncations break down at approximately the
same time. Because a small number of modes has been retained in
the approximation the power spectrum of the reduced system shown
in Fig. 7 reveals a natural beat frequency related to the difference
frequency of the poles of the truncated dynamical operators. The
unapproximated operator lacks these undulations. The breakdown of
the approximation occurs at the beat period of the difference in the
maxima in the frequency response which is at the difference fre-
quency of the poles.
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FIG. 8. Maximum singular value of the order 6 error systems A 2 A6 as a function of frequency.
Maxima of these curves gives the H` error of the approximation. Shown is an order 6 balanced
truncation of A, which is seen to give \A 2 A6\` 5 5.6 (solid). This is very close to the theoretical
minimum error, which is equal to the first neglected Hankel singular value, S7 5 3.2, indicated
by the horizontal line. Also shown is an order 6 approximation in which the top 6 SOs have been
retained, which gives an error \A 2 \` 5 34.5 (dash) and an order 6 approximation in whichSOA6

the top 6 EOFs have been retained, giving an error \A 2 \` 5 20.5 (line–dot).EOFA6

the nonnormality of the first k eigenvectors of the orig-
inal system, so in order to approximate the system well
a greater number of modes is needed; enough so that
all the important nonorthogonal eigenvectors are in-
cluded. The balanced truncations exploit the freedom to
relocate the spectrum in order to better approximate the
maintained variance, and this added freedom results in
improved performance. Of course, as the dimension of
the reduced system increases the differences among the
various reduction methods decrease, but in all cases we
find that the balanced truncation outperforms the other
reduction methods. We can quantify the performance of
the various reductions best by calculating the H` norm
of the truncation error. As discussed earlier this error
must exceed the first neglected Hankel singular value,
which for reduction to an order 6 system is S7 5 3.2
while according to (49) the error cannot exceed 48.6.
The maximum singular value of the resolvent of the
error system for the three reductions, balanced, EOF
based, and SO based, are compared in Fig. 8. The max-
imum of the corresponding curves over all real fre-
quencies determines the H` norm of the error of the
various reductions. For the balanced reduction we find
in this way that \A 2 A6\` 5 5.6, which is nearly
optimal. The error for the EOF based reduction is cal-

culated to be 20.5 while for the SO optimal based trun-
cation it is 34.5. The improved performance of the bal-
anced reduction over the other reduction methods is of
particular importance when we want to reduce the sys-
tem as much as possible.

c. Reductions based on balancing the optimal vectors

Up to this point we have presented methods of model
order reduction based on retaining a small number of
EOFs and SOs. We saw that the best way to proceed
was to transform into a coordinate system in which the
EOFs and SOs are identical and diagonal, and then trun-
cate the system in these balanced coordinates. This pro-
cedure guarantees stability and comes with explicit error
bounds and in practice is found to approximate the dy-
namics well. However, because it is numerically costly
to obtain the P and Q matrices for large systems, one
may wonder if similar performance could be obtained
with truncations based on retaining the first optimals
and evolved optimals (right and left singular vectors)
of the propagator at a specific time. From the earlier
discussion it is clear that such a procedure does not
formally approximate the dynamics, since by retaining
a few of these optimal vectors we only approximate the
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FIG. 9. Optimal growth, \eAt\ , as a function of time for the Couette flow at Re 5 800 and k 5
1. Shown is the optimal growth for the full system (solid); the optimal growth by an order 6
approximate system obtained by balanced truncation of the full system (line dot); the optimal
growth by an order 6 approximate system obtained by balancing the optimals and evolved optimals
associated with the propagator of the system at t 5 10 (circles); the optimal growth by an order
6 approximate system in which the top 6 evolved optimals of the propagator for t 5 10 have been
retained (stars); and a similar truncation in which the 6 top optimal perturbations of the propagator
for t 5 10 have been retained (crosses).

propagator at a specific time. On the other hand P and
Q are the integral over time of P (t) 5 eAte , and of†tA

Q (t) 5 e , and one approximation of P and Q is†t tA Ae
simply to retain one element of the Riemann sum of
this integration, which within a constant factor would
be the value P (t) and Q (t) for some particular time t.
If the reduction is done by retaining the leading eigen-
vectors of P (t) and Q (t) this is equivalent to retaining
the dominant optimal and evolved optimal vectors, since
the eigenvectors of P (t) are the evolved optimals of the
propagator at time t, and those of Q (t) are the optimals
of the propagator at this time.

We have defined a coordinate transformation T that
simultaneously diagonalizes the P and Q matrices; if
the same procedure is followed to bring P (t) and Q (t)
into a balanced representation in which both are diag-
onal, then by the same steps we can reduce the system
in this balanced representation. However, because now
P (t) and Q (t) do not satisfy a Lyapunov equation the
reduced system does not have guaranteed stability, and
indeed for severe truncations and for small t the reduced
system is found to be unstable. Still one may hope to
find a choice of optimizing time for which the perfor-
mance of a balanced truncation of the optimals and
evolved optimals is good.

The performance of such a truncation for optimizing
time t 5 10, which corresponds to the time of the global
optimum, is shown in Fig. 9. We plot in this figure the
optimal growth as a function of time for an order 6
truncation of the dynamics in which the optimal and
evolved optimals are truncated in their balanced rep-
resentation, which the truncation proceeds by consid-
ering only the optimal vectors (as was done previously
for the SOs) and also in which only the evolved optimals
are considered in the truncation (as was done previously
for the EOFs). For comparison we also plot the optimal
growth of the full system and of an order 6 balanced
truncation. We observe first that the unbalanced reduc-
tions based on the optimals or the evolved optimals
produce approximations inferior to the reduction ob-
tained by balancing the optimals and the evolved op-
timals. While the balanced truncation based on the op-
timal and evolved optimal vectors is inferior to that
obtained by balanced truncation of P and Q, the dif-
ference is rather small; the power spectrum of the re-
sponse of the system to white noise stochastic forcing
is shown in Fig. 10.

It is of interest to estimate the H` error of truncations
obtained by using the optimal vectors at various opti-
mizing times as a function of the optimizing time, and



2786 VOLUME 58J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 10. Power spectrum given by trace [R†(v)R(v)], where R(v) is the resolvent of the operator
(46). Shown is the power spectrum of the full system (solid); power spectrum of an order 6
approximate system obtained from the full system by balanced truncation (line–dot); the power
spectrum of an order 6 approximant obtained by balancing the optimals and evolved optimals
associated with the propagator of the system at t 5 10 (circles). The case is Couette flow at Re
5 800 and k 5 1.

compare it to the H` error of the balanced truncation.
For an order 6 balanced truncation the H` error was
found in the previous section to be 5.2, while the min-
imum H` error possible is equal to the 7th Hankel sin-
gular value, which is S7 5 3.2. The H` error as a func-
tion of optimizing time for balanced truncation of the
optimals and evolved optimals of the propagator at the
optimizing time, and truncations using only the optimals
or only the evolved optimals of the propagator at the
optimizing time is shown in Fig. 11. The minimum error
of 6.4 is attained by the balanced truncation of the op-
timals and evolved optimals of the propagator for t 5
10. Truncations based only on the optimals or only on
the evolved optimals do not perform particularly well.
This result suggests that when balanced truncations are
not feasible, truncations based on balancing the optimal
and evolved optimal vectors can perform very well if
the optimizing time is selected to be near the time of
the global optimal at which time evolved optimals re-
semble the EOFs of the system.

4. Discussion and conclusions

We have examined methods for reducing the dimen-
sion of a linear autonomous dynamical system while
retaining an accurate approximation of the dynamics.

Reduction of the dimension of non-normal systems such
as are associated with perturbation dynamics in fluid
flow require, in order to accurately model the dynamics,
that the disturbances spanning the perturbation variance
and the distinct perturbations producing the variance be
retained in a balanced manner when the system is trun-
cated. This can be most efficiently accomplished by ex-
pressing the dynamics in the finite-dimensional Hankel
operator form, balancing the operator between stochas-
tic optimals and EOFs, and then truncating the Hankel
operator in the balanced representation. This method of
truncating assures stability of the truncated system if
the original system is stable. It also has error in the H`

norm bounded between the first neglected Hankel sin-
gular value and twice the sum of the neglected Hankel
singular values. It is possible to derive a still more ac-
curate reduced-order model by using a more complex
iteration algorithm with error bounded above by only
the sum of the neglected singular values (Glover 1984)
but this method appears to be of limited utility in fluid
flow problems especially given that straightforward
truncation of the balanced Hankel operator is found to
be nearly optimal in practice.

Implementation of the method of Hankel norm bal-
anced truncation requires only standard matrix algebra
and is directly applicable for dimensions up to a few
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FIG. 11. The H` error of an order 6 reduced system based on truncations to the top optimals
and/or evolved optimals of the propagator for time t as a function of the optimizing time t. Shown
is the error when the truncation has been done after balancing the optimals and the evolved
optimals (line–dot); the error of a truncation to the top 6 evolved optimals of the propagator
(stars); the error of a truncation to the top 6 optimals of the propagator (crosses). Notice that the
truncation based on balancing the optimals and evolved optimals is a good approximation to the
dynamics when the optimizing time is selected to be near the global optimal time: a minimum
error of 6.4 is found for optimizing time 10, which is close to the error obtained from a balanced
truncation of the system (this error is 5.2, and is indicated by a horizontal line). The minimum
possible error is equal to the first neglected Hankel singular value, which is S7 5 3.2, (also
indicated by a horizontal line).

thousand but for systems of larger dimension these ma-
trix algorithms must be replaced by approximations to
the singular value decomposition of the propagator
(Lanczos 1950) and Riemann sum approximation of the
P and Q matrices. Examples of systems truncated using
these methods suggest that they can be successful even
for systems of very high dimension such as a forecast
model so long as the Hankel singular values fall suf-
ficiently rapidly.

The study of optimal order reduction has led to a
deeper understanding of the role of nonnormality in
linear dynamical systems. Application of these results
to the problem of obtaining an accurate linear stochastic
model of storm track statistics by reducing a climate
model to the minimum dimension responsible for main-
taining eddy variance will be reported elsewhere. Also
to be reported is a second area of application in which
model order reduction is being used to facilitate inte-
gration of the error covariance matrix required for im-
plementing Kalman filter optimal state estimation for
forecast initialization.
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APPENDIX A

Calculation of the Truncation Error

We obtain the H` norm of the error of the approxi-
mation as in Glover (1984). The system state in trans-
formed coordinates, x, is related to the system state in
physical coordinates, c, through the transformation x
5 Tc. The dynamical operator Ã in transformed co-
ordinates is related to the operator in the original co-
ordinates, A by (17). The k-dimensional reduced-order
dynamical operator is Ãk, which is equal to the first k
rows and columns of Ã. In these coordinates the k-di-
mensional vector xk satisfies the transformed reduced-
order equation

dxk ˜5 A x 1 T u(t), (A.1)k knkdt
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where u(t) is an n-dimensional forcing in physical co-
ordinates and Tkn is the first k rows of the transformation
matrix T. The full system is

dx ˜5 Ax 1 Tu(t). (A.2)
dt

Consider now the compound system

dy
5 Ey 1 Fu(t), (A.3)

dt

where y(t) is the compound state [xk, x]T (T denotes
transposition), F 5 [Tkn, T]T, and E is the compound
operator that evolves concurrently the approximate and
full system

Ã 0kE 5 . (A.4)˜1 20 A

The frequency response of the compound system is ŷ(v)
5 RE(v)Fû(v) where RE(v) is the resolvent: RE(v) 5
(ivI 2 E)21.

The Fourier amplitude of the error in physical co-
ordinates is

21 21ê(v) 5 T x̂ (v) 2 T x̂(v),nk k (A.5)

where is the matrix consisting of the first k columns21T nk

of T21. The error can be written in terms of the resolvent
of the compound system as

21 21ê(v) 5 [T , 2T ]ŷ(v)nk

21 21 T5 [T , 2T ]R (v)[T , T] û(v), (A.6)E knnk

The H` norm of the truncation error, denoted \A 2 Ak\`,
is the maximum over all real frequencies of the response
of the compound system (A.6):

21 21 T\A 2 A \ [ max \[T , 2T ]R (v)[T , T] \ , (A.7)k E kn` nk 2
v∈R

where the subscript, 2, denotes the L2 norm of the ma-
trix, which is equal to its largest singular value. The
error is the largest difference in the response of the full
and approximate system that can be obtained by a si-
nusoidal forcing.

APPENDIX B

The Singular Values of Operators M and N

Operators M and N are defined in (40) and (41),
respectively. To determine their singular values we need
the adjoint operators M† and N†. The adjoint of M is
obtained by noting that

†` `

† t tA A(c(t), Mc ) 5 c(t) e c dt 5 e c(t) dt c0 E 0 E 0[ ]
0 0

†5 [M c(t), c ].0 (B.1)

Hence

`
†† tAM c(t) 5 e c(t) dt. (B.2)E

0

Therefore for any c0 the product

`
†† t tA AM Mc 5 e e dt c 5 Qc , (B.3)0 E 0 01 2

0

and Q can be decomposed as
†Q 5 M M, (B.4)

and the singular values of M are revealed to be the square
roots of the eigenvalues (also singular values) of Q.

The adjoint operator of N is found by noting that
0

2 tA(c , Nu) 5 c e u(t) dt0 0 E
2`

0
†2 t † †A5 (e c ) u(t) dt 5 (N c , u), (B.5)E 0 0

2`

and consequently
†† 2 tAN c 5 e c ,0 0 (B.6)

for t , 0. We then have that the product

0
†† 2 t 2 tA ANN c 5 e e dt c0 E 01 2

2`

`
†t tA A5 e e dt c 5 Pc , (B.7)E 0 01 2

0

and the matrix P can be decomposed as
†P 5 NN . (B.8)

As a result the singular values of N are the square roots
of the eigenvalues (also singular values) of P.
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