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ABSTRACT

The dynamics of both transient and exponentially growing disturbances in two-dimensional vortices that are
maintained by the radial inflow of a fixed cylindrical deformation field are investigated. Such deformation fields
are chosen so that both one-celled and two-celled vortices may be studied. The linearized evolution of asymmetric
perturbations is expressed in the form of a linear dynamical system dx/dt 5 Ax. The shear of the mean flow
results in a nonnormal dynamical operator A, allowing for the transient growth of perturbations even when all
the modes of the operator are decaying. It is found that one-celled vortices are stable to asymmetric perturbations
of all azimuthal wavenumbers, whereas two-celled vortices can have low-wavenumber instabilities. In all cases,
generalized stability analysis of the dynamical operator identifies the perturbations that grow the fastest, both
instantaneously and over a finite period of time. While the unstable modal perturbations necessarily convert
mean-flow vorticity to perturbation vorticity, the perturbations with the fastest instantaneous growth rate use
the deformation of the mean flow to rearrange their vorticity fields into configurations with higher kinetic energy.
Also found are perturbations that use a hybrid of these two mechanisms to achieve substantial energy growth
over finite time periods.

Inclusion of the dynamical effects of radial inflow—vorticity advection and vorticity stretching—is found to
be extremely important in assessing the potential for transient growth and instability in these vortices. In the
two-celled vortex, neglecting these terms destabilizes the vortex for azimuthal wavenumbers one and two. In
the one-celled vortex, neglect of the radial inflow terms results in an overestimation of transient growth for all
wavenumbers, and it is also found that for high wavenumbers the maximum transient growth decreases as the
strength of the radial inflow increases.

The effects of these perturbations through eddy flux divergences on the mean flow are also examined. In the
one-celled vortex it is found that for all wavenumbers greater than one the net effect of most perturbations,
regardless of their initial configuration, is to increase the kinetic energy of the mean flow. As these perturbations
are sheared over they cause upgradient eddy momentum fluxes, thereby transferring their kinetic energy to the
mean flow and intensifying the vortex. However, for wavenumber one in the one-celled vortex, and all wave-
numbers in the two-celled vortex, it was found that nearly all perturbations have the net effect of decreasing
the kinetic energy of the mean flow. In these cases, the kinetic energy of the perturbations accumulates in nearly
neutral or unstable modal structures, so that energy acquired from the mean flow is not returned to the mean
flow but instead is lost through dissipation.

1. Introduction

In this report we introduce a new approach to the
study of the dynamics of asymmetries in primarily axi-
symmetric intense atmospheric vortices—such as wa-
terspouts, tornadoes, and hurricanes. For waterspouts
and tornadoes, these asymmetries include low-level
wind shear, the unsteady and asymmetric supply of their
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angular momentum, and also the effects of turbulence.
The success of recent three-dimensional numerical sim-
ulations in reproducing realistic maximum tornado wind
speeds (Lewellen et al. 1997), compared with the much
lower velocities predicted by theories and simulations
based on axisymmetric models (Lilly 1969; Fiedler and
Rotunno 1986; Fiedler 1994), indicates that asymme-
tries may play an important role in the maintenance of
an intense and robust tornadic vortex. For hurricanes,
asymmetric forcing includes the beta effect, potential
vorticity anomalies in the mid- and upper levels of the
atmosphere, and the shear of environmental winds; these
asymmetries are believed to play a significant role in
the track and intensity changes of these cyclones (Mol-
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inari 1992; Shapiro 1992; Montgomery and Farrell
1993; Smith and Weber 1993).

The traditional approach to understanding the behav-
ior of nearly axisymmetric vortices has relied heavily
on hydrodynamic stability analyses of their azimuthal
velocity profiles, which in practice are approximated as
a function of radius, either from measurements or from
idealized functions (such as a Rankine vortex). A clas-
sical stability analysis is applied to small perturbations
linearized about the mean azimuthal flow. Examples of
this kind of analysis include those of Michaelke and
Timme (1967), Rotunno (1978), Staley and Gall (1979),
Gall (1983, 1985), and more recently Steffens (1988),
Flierl (1988), and Peng and Williams (1991). In accor-
dance with traditional notions of stability in shear flows
originally derived by Rayleigh (1880), most of these
reports found that a change in sign of the vorticity gra-
dient of the azimuthal wind was necessary for the ex-
istence of instability. Some of the analyses cited above
also included the effects of a radially varying vertical
wind that can create additional instabilities.

In recent years a new approach has been taken to the
study of asymmetric dynamics in tropical cyclones,
which relies on the analysis of such perturbations as an
initial-value problem rather than as an eigenvalue prob-
lem. Carr and Williams (1989) and Smith and Mont-
gomery (1995) found linearized equations for the evo-
lution of asymmetric disturbances in hurricane-like vor-
tex flows, while Guinn and Schubert (1993) also in-
cluded the results of numerical simulations of perturbed
nondivergent barotropic flows in their analyses. The re-
sults of these studies show that asymmetric disturbances
generally decay rapidly with time due to the strong shear
of the vortex, and that these decay rates increase with
both the azimuthal and radial wavenumbers of the dis-
turbances. Kallenbach and Montgomery (1995) also
demonstrated how such disturbances can undergo a pe-
riod of transient growth before decaying. Asymmetric
dynamics have also been investigated by Willoughby
(1992, 1995) for their role in determining tropical cy-
clone tracks, in regard to both the northwest drift of
barotropic vortices due to the poleward increase of the
Coriolis parameter, and to how these asymmetries can
be used to determine the initial motion of the vortex in
forecast models. The growth of asymmetric disturbances
near the cores of tropical cyclones has also been ad-
vocated as the cause of the polygonal eyewall phenom-
enon (Schubert et al. 1999).

A simplifying assumption of great potential impor-
tance to the dynamics that was made in these stability
studies of intense atmospheric vortices was neglecting
the convergent background flow—the radial inflow—
which forms and maintains these vortices. While ini-
tially this was justified by the belief that the radial ve-
locities in the core of these vortices was negligible, it
is now well known due to laboratory experiments (Wan
and Chang 1972), theoretical analyses (Burgraff et al.
1971), and axisymmetric numerical simulations (How-

ells, et al. 1988) that there is in fact a strong radial
inflow near the surface in tornadic vortices, with radial
velocities typically half as large as the azimuthal ve-
locities. At some point as it approaches the central axis
of the vortex, the radial inflow separates from the sur-
face, turns upward, and flows up and out of the vortex
core. (Note: by the ‘‘core’’ of the vortex we mean inside,
and in the vicinity of, the radius of maximum winds.)
Hurricanes are also known to have substantial radial
inflow velocities in the surface boundary layer, from
both observations (Franklin et al. 1993) and numerical
simulations (Shapiro 1992; Liu et al. 1997). Using a
very high-resolution simulation of Hurricane Andrew
(1992), Liu et al. also found small (order 1–2 m s21)
radial inflow velocities outside the eyewall in the middle
levels, as did Shapiro (1992) in his three-level model.
While these velocities are very small compared to the
maximum azimuthal wind speeds, our results will show
that small radial inflow velocities can have a measurable
impact on asymmetric dynamics.

It is easy to imagine that this radial inflow may have
important effects on the stability of these vortices. For
example, one possible effect of this radial inflow could
be to advect growing perturbations out of the region of
maximum shear and inside the vortex core before it can
grow substantially. In this sense, the radial inflow may
render all growing perturbations ‘‘transient’’ by sup-
pressing modal instability.

In this report we introduce a general method for de-
termining the stability of two-dimensional vortex flows
that includes the radial inflow that maintains the vortex.
Furthermore, we will use an extension of classical sta-
bility analysis, known as generalized stability analysis,
to examine the growth of both transient and exponen-
tially growing (if they exist) perturbations on the mean
flow. Then we will examine specifically how these per-
turbations interact with the mean flow and the effects
of radial inflow on the dynamics. In section 2 we will
give an introduction to generalized stability analysis; in
section 3 we will describe our models of the idealized
vortices under consideration; in section 4 we derive
equations for the evolution of linearized asymmetric
perturbations to these flows; in section 5 we will eval-
uate and comment on the stability of these vortices; in
section 6 we will find the transient perturbations that
grow the most in finite times; in section 7 we will in-
vestigate how these perturbations interact with the mean
flow and how the presence of the radial inflow affects
the results; and in section 8 we will discuss our con-
clusions.

2. Generalized stability theory

While the traditional approach to assessing the sta-
bility of observed flows in fluid dynamics and meteo-
rology has been has been restricted to determining
whether the flow supports exponentially growing
modes, in recent years an alternative approach has de-
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veloped. Inspired by the observation of Thompson
(1887) and Orr (1907) that properly configured distur-
bances in stable shear flows undergo a finite period of
energy growth before decaying, Farrell (1982) dem-
onstrated the growth of baroclinic disturbances of this
type in the atmospheric midlatitude jet. The possibility
of transient growth in the absence of exponentially
growing modes is expressed mathematically by the non-
normality of the linearized dynamical operator, that is,
the fact that the dynamical operator does not commute
with its transpose. Such transient growth may not be
trivial: in Poiseuille flow at Reynolds number 5000,
Butler and Farrell (1992) found disturbances that could
grow in energy by a factor of 4897, despite the fact that
Poiseuille flow is exponentially stable at this Reynolds
number. This understanding has led to a general analysis
of nonnormal systems that has since been used exten-
sively to understand transient growth in deformation and
shear flows (Farrell 1988, 1989; Butler and Farrell 1992;
Farrell and Ioannou 1993a, 1993b, 1996). Consideration
of both transient and exponential growth processes has
come to be called generalized stability analysis.

Let us describe in some detail how the nonnormality
of a system can lead to transient growth. First we write
down the evolution of disturbances as a linear dynamical
system:

dy
5 Ty, (2.1)

dt

where y is a function or vector that describes the state
of the perturbation(s), and T is the time evolution op-
erator. We also define a positive-definite Hermitian op-
erator M such that the energy of the system can be
written

E 5 y*My. (2.2)

We now perform the following useful change into gen-
eralized velocity coordinates x:

1/2x 5 M y, (2.3)
1/2 21/2A 5 M TM , (2.4)

so that in generalized velocity coordinates,

dx
5 Ax, (2.5)

dt

E 5 x*x. (2.6)

Equation (2.4) is a similarity transformation, so the ei-
genvalues of A are the same as the eigenvalues of T.
If all the eigenvalues of T have a negative real part,
then all the modes of T are decaying. So then are all
the modes of A, and we can conclude that the energy
of the system goes to zero as t → `. The structure in
these generalized velocity coordinates that dominates
energetically for large times will be the eigenvector of
A associated with the eigenvalue with the largest real
part, which we will call the least damped mode (LDM).

The structure of the LDM in the original coordinate
system y can be found by transforming back into the
original coordinates, that is, inverting (2.3).

This does not address the issue of the energetics of
the system when 0 # t , `. We can easily solve for
the instantaneous rate of change in energy:

]E ] ] ]x
5 (x*x) 5 x* x 1 x*1 2 1 2]t ]t ]t ]t

† †5 x*A x 1 x*Ax 5 x*(A 1 A)x, (2.7)

where the † refers to the Hermitian matrix transpose.
Because the energy operator (A† 1 A) is normal and
Hermitian, the eigenvector of (A† 1 A) with the largest
eigenvalue will be at any instant the fastest growing (or
least decaying) perturbation. This is certain because the
eigenvectors of a normal matrix are complete and or-
thogonal—any other perturbation that does not project
onto the dominant eigenvector could be constructed en-
tirely from the other eigenvectors, all of which grow
more slowly than the first. Such fastest growing per-
turbations are usually called the instantaneous optimals
(IOs) of the system. By setting x 5 emax (the eigenvector
with maximum eigenvalue) in Eq. (2.7), one can see
that this upper bound on the normalized energy growth
rate is

1 ]E
5 l , (2.8)max1 2E ]t

max

where lmax is the largest eigenvalue of (A† 1 A).
In regards to the issue of transient growth and non-

normality, consider that when A is normal, A and A†

have the same eigenvectors. Therefore the IO will be
the same as the LDM, and its rate of change of energy
will be twice the real part of the eigenvalue of the LDM.
When A is nonnormal, the eigenvalues and eigenvectors
of A and the energy operator will be different, and any
positive eigenvalues of the energy operator will corre-
spond to transient growth as indicated by (2.8).

One can also find the perturbations of maximum
growth over finite time, which we call finite time op-
timals (FTOs). The energy as a function of time is

†A t9 At9E(t9) 5 x*(t9)x(t9) 5 x*(0)e e x(0). (2.9)

Because the matrix product in (2.9) is normal and Her-
mitian, we see again that the eigenvector corresponding
to the largest eigenvalue of will have the largest†A t Ate e
growth (or smallest decay) in energy between t 5 0 and
t 5 t9. We have that

E(t9)
5 l , (2.10)max1 2E(0)

max

where here lmax is the maximum eigenvalue of the ma-
trix product . Another approach to finding FTOs†A t Ate e
uses the singular value decomposition (SVD) of the
propagator matrix eAt. The propagator matrix can be
decomposed as
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FIG. 1. Profiles of radial and azimuthal velocity for the idealized one-celled vortex: (a) radial velocity, (b) azimuthal velocity, (c) negative
horizontal divergence (stretching), (d) vorticity gradient.

eAt 5 UDV†, (2.11)

where U and V are unitary matrices that can be inter-
preted to represent orthogonal decompositions of the
domain and the range of the propagator, and D is a
positive-definite diagonal matrix, the values of which
represent the relative excitation of the system by their
corresponding basis vectors. We can then write

†A t At † † 2 †e e 5 VDU UDV 5 VD V . (2.12)

Clearly by previous argument the basis vector associated
with the largest value of D will result in the most energy
growth at time t, and the magnitude of the excitation
will be the square of the largest element of D. The SVD
method is also useful in that the maximal state of the

FTO is produced in U simultaneously with its initial
condition in V.

3. One-celled and two-celled vortices maintained
by radial inflow in a closed domain

As stated in the introduction we will investigate the
dynamics of steady two-dimensional vortex flows that
are generated when a cylindrical deformation field acts
on a rotating fluid. In the following sections we will
outline a method for finding such steady-state solutions
given an arbitrary deformation field, and show how to
choose such fields so as to produce either one-celled or
two-celled vortices.
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FIG. 2. Profiles of radial and azimuthal velocity for the idealized two-celled vortex: (a) radial velocity, (b) azimuthal velocity, (c) negative
horizontal divergence (stretching), (d) vorticity gradient.

a. Formulation of the steady-state solution in
arbitrary deformation fields

The classic example of one such cylindrically sym-
metric flow is the well-known Burgers’ vortex solution
[Burgers (1948), also known as the Burgers–Rott so-
lution, see Rott (1958)]. If there exists in an unbounded
domain a cylindrical deformation field of the form

1
U 5 2 ar, (3.1)

2

W 5 az, (3.2)

where U and W refer to the radial and vertical velocities
in cylindrical coordinates, then a steady-state solution
of the Navier–Stokes equations is obtained when the
azimuthal velocity is

2G ar`V(r) 5 1 2 exp , (3.3)1 2[ ]2pr 4n

where G` is the circulation at infinity and n is the ki-
nematic viscosity. Note that this azimuthal velocity pro-
file for small r approaches solid-body rotation, and for
large r asymptotes to a potential vortex (V 5 G`/2pr).

Suppose instead we assume an arbitrary cylindrical
deformation field based on a radial inflow velocity field
that is a function of r only:

U 5 U(r). (3.4)

By continuity, we have

]W 1 ]
5 2 (rU ), (3.5)

]z r ]r

so that the vertical velocity field W(r, z) may be deter-
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FIG. 3. Real parts of the eigenvalues of the LDM for azimuthal
wavenumbers 1–15 in the one-celled vortex: V—standard case with
inflow; 1—with stretching term removed; 3—with stretching and
advection removed.

mined up to constant. Holding the U and W velocities
fixed, we can write down a single advection–diffusion
equation for the evolution of the axisymmetric azi-
muthal velocity V

]V ]V ]V UV
1 U 1 W 1

]t ]r ]z r

2] V 1 ]V V
5 n 1 2 . (3.6)

2 21 2]r r ]r r

If the azimuthal velocity field is a function of r only,
the vertical advection term may be neglected.

Now let us turn our attention to the solution of (3.6)
in the finite domain 0 # r # b, with boundary conditions
V(0) 5 0 and V(b) 5 Vb. We discretize V onto equally
spaced grid points between r 5 0 and r 5 b, and write
these values as the column vector V. Using matrix rep-
resentations of standard finite-difference operators, (3.6)
may be represented as the inhomogeneous linear system

]V
5 AV 1 B, (3.7)

]t

where B is a column vector that allows us to incorporate
the boundary conditions. Our steady-state solution is
found by solving for V such that its time derivative is
zero:

V 5 2A21B. (3.8)

Examples of some solutions of (3.8) are shown in the
following sections.

b. One-celled vortices

While the Burgers’ vortex solution is a useful point
of reference, the fact that it resides in an unbounded
domain creates serious difficulties for the analysis of

asymmetric perturbations in this flow. The greatest dif-
ficulties are those associated with the inflow of fluid
through the edge of the domain at r 5 b. Let us instead
create a deformation field similar to the Burgers’ vortex
deformation field, except that its support lies entirely
within a cylinder of radius r 5 b; we will use b 5 7
for the rest of this work. Furthermore, we require that
the radial inflow velocity transitions very smoothly to
zero as we approach the outer boundary, and is nearly
zero for a substantial region near the outer boundary.
An example of such a radial inflow function is given by

U(r) 5 .62mr2are (3.9)

This function with a 5 5.0 3 1023 and m 5 2.44 3
1024 is shown in Fig. 1a. This particular choice for a,
in conjunction with a choice of n 5 0.001 for the vis-
cosity, sets the radius of maximum winds rmax 5 1 for
Burgers’ vortex solution (3.3). Using this radial velocity
field and an outer boundary condition on V such that
the circulation at the outer boundary Gb 5 2prbVb 5
2p (i.e., the circulation of the fluid at the edge of the
domain is equal to 2p everywhere), (3.6) results in the
solution shown in Fig. 1b. The vortex Reynolds number,
as it is usually defined, is ReV 5 rbVb/n 5 1000. This
solution, which has rmax 5 1.0 and maximum azimuthal
velocity ymax 5 0.71, is virtually identical to the Bur-
gers’ solution with the same parameters despite the fact
that the radial inflow velocity transitions to zero near
the outer edge of the domain. The stretching (or negative
horizontal divergence) of the vertical velocity function
is shown in Fig. 1c, and the radial gradient of the vertical
vorticity is shown in Fig. 1d.

c. Two-celled vortices

In light of observations, laboratory experiments, and
both axisymmetric and three-dimensional numerical
simulations, it is generally believed that many tornadoes
(and other atmospheric vortices) have a stagnant core,
in which air flows down from above along the center
axis, diverges horizontally at the surface, and then re-
circulates upward along the annulus defined by the ra-
dius of maximum winds. Such a flow has come to be
called a ‘‘two-celled’’ vortex. Perhaps the most obvious
example of a two-celled vortex in nature is the hurri-
cane, which has a calm eye and generally descending
motion inside the eyewall. Much like the Burgers’ vor-
tex for one-celled vortices, an analytic model for two-
celled vortices was found by Sullivan (1959); unfor-
tunately, it too only exists in an unbounded domain, and
has the further disadvantage that due to diffusion the
azimuthal velocity in the core is substantial. We instead
present a simple model that produces a stagnant-core
vortex in a finite domain. We define the radial velocity
U(r) to have inflow outside some radius, and outflow
away from the r 5 0 axis, with a stagnation point in
between:
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FIG. 4. The LDMs for the first two azimuthal wavenumbers in the one-celled vortex: (a) contours of vorticity for k 5 1, (b) contours of
streamfunction for k 5 1, (c) contours of vorticity for k 5 2, (d) contours of streamfunction for k 5 2. The contour intervals and decay
rates (the real part of the eigenvalue) are indicated at the top of each plot.

0 r , 0.2

r 2 0.2
20.02 sin p 0.2 , r , 11 21.6 r 2 1

U(r) 5 0.035 cos p 2 0.15 1 , r , 31 22.0

r 2 3
220.05 cos p 3 , r , 6.51 27.0

0 r . 6.5.

(3.10)

This radial velocity function is shown in Fig. 2a. Ap-
plying our method, where again we have defined the

circulation at the outer boundary Gb 5 2p, and the vis-
cosity n 5 0.001 so that ReV 5 1000, we find the az-
imuthal velocity profile shown in Fig. 2b. The associated
deformation function is shown in Fig. 2c, while the
resulting vertical vorticity gradient is shown in Fig. 2d.
We can see that outside the radius of maximum winds
at r 5 2, the velocity profile is nearly exactly that of a
potential flow, while inside the radius of maximum
winds the velocity quickly drops to zero and the inner
core is stagnant. The vorticity gradient changes sign in
the transition region 1 , r , 2, where the flow tran-
sitions from the potential flow to the stagnant inner core,
indicating the possibility for instability as predicted by
Rayleigh’s (1880) theorem for growing disturbances in
inviscid rotating flows.
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FIG. 5. Stability diagram for asymmetric perturbations on the two-
celled vortex, showing the real parts of the LDMs for each azimuthal
wavenumber from k 5 1 to k 5 15: V—standard case with inflow,
1—with stretching term removed, 3—with stretching and advection
removed.

4. The evolution of vertical vorticity perturbations
in idealized vortices with radial inflow

a. Mathematical models of wave–mean flow
interactions near and inside the vortex core

Investigations of atmospheric vortex dynamics face
the problem of using finite resources to investigate dy-
namics in an unbounded domain. Most work on vortex
dynamics has used ‘‘solid wall’’ boundary conditions at
some distance outside the vortex core to close the system
(Howard and Gupta 1962; Staley and Gall 1979; Gall
1983; Staley and Gall 1984; Gall 1985; Steffens 1988;
Peng and Williams 1991). This practice is analogous to
the approximation of the midlatitude jet by bounded
channel flows, and it is based on the reasonable as-
sumption that disturbances to the mean flow that might
lie outside of the ‘‘outer wall’’ will not unduly influence
the results near or inside the vortex core. The results of
such analyses have generally been consistent with re-
sults derived from unbounded solutions based on semi-
analytic methods such as contour dynamics (Rotunno
1978; Flierl 1988), although Steffens (1988) did identify
some significant changes in growth rates of a particular
class of instabilities when the outer wall was moved
farther away from the vortex core. We used this tech-
nique to limit the domain, and found through numerical
experimentation that the location of the outer wall did
not affect the important results (the kind of results that
are affected by the location of the outer boundary are
discussed below in section 5b).

b. The linearized evolution of vertical vorticity
perturbations

The specific vortex flows we will study have been
outlined in section 3, but generally speaking we wish

to describe the evolution of vertical vorticity pertur-
bations in a swirling flow that has deformation and radial
inflow that are functions of radius only. We restrict our
attention to the dynamics of the vertical vorticity com-
ponent z, in cylindrical coordinates, where it is assumed
to have no variation in the vertical direction:

2 2]z ]z y ]z ]w ] z 1 ]z 1 ] z
1 u 1 5 z 1 n 1 1 .

2 2[ ]]t ]r r ]u ]z ]r r ]r r ]u

(4.1)

Now, we write each term in (4.1) as the sum of a radially
varying mean and azimuthally, radially, and temporally
varying perturbations: u 5 U(r) 1 u9(r, u, t) , z 5 Z(r)
1 z9(r, u, t), and so on for y and w. Substituting these
expressions into (4.1), we find the first-order equation
for the perturbations:

] ] ] ]Z
z9 1 U z9 1 V z9 1 u9

]t ]r ]u ]r

2 2]W ] 1 ] 1 ]
5 z9 1 n 1 1 z9, (4.2)

2[ ]]z ]r r ]r r ]u

where we have written V for the mean angular velocity
V/r. The last term on the left-hand side represents the
conversion of mean-flow vorticity to perturbation vor-
ticity, which can result in instability.

Due to the azimuthal homogeneity of the background
vortex, we can separate the solutions of (4.2) by writing
them as a sum of harmonically varying azimuthal
waves, that is, z9(r, u, t) 5 Sk zk(r, t)eiku, and so on for
the perturbations of u and y also. Substituting these
forms into (4.2), we create for each wavenumber k a
linear equation for the evolution of the radially and tem-
porally varying vorticity function zk(r, t):

] ] ]Z
1 U(r) 1 ikV(r) z 1 uk k1 2]t ]r ]r

2 2]W ] z 1 ]z kk k5 z 1 n 1 2 z . (4.3)k k2 2[ ]]z ]r r ]r r

From here on we will use the convention that the terms
uk, y k, zk refer to complex amplitude functions of r and
t only.

c. The evaluation of velocities from the vorticity

As we can see from (4.3), when there is a nonzero
background vorticity gradient, obtaining the evolution
of the perturbation vorticity requires knowledge of the
radial velocity perturbations. Furthermore, we anticipate
the need to evaluate both uk and y k in the calculation
of the perturbation kinetic energy and the eddy mo-
mentum fluxes. Following Carr and Williams (1989) and
Smith and Montgomery (1995), we find the velocities
by solving for the streamfunction:
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FIG. 6. Streamfunction and vorticity fields for the most unstable (least damped) perturbations at the first wavenumber with instability, k
5 3, and the wavenumber with highest instability, k 5 5: (a) k 5 3 vorticity; (b) k 5 3 streamfunction; (c) k 5 5 vorticity; (d) k 5 5
streamfunction.

ikuc(r, u, t) 5 c (r, t)e (4.4)O k
k

21 ]c 2ikku 5 5 c (4.5)k kr ]u r

]cky 5 (4.6)k ]r

1 ] ]ukz 5 (ry ) 2k k[ ]r ]r ]u

2 2] 1 ] k
5 1 2 c . (4.7)k2 2[ ]]r r ]r r

As previously discussed, we choose the boundary con-
ditions of no normal flow at the outer boundary r 5 b;
that is,

ck(0, t) 5 ck(b, t) 5 0. (4.8)

Given the vorticity, in the case of continuous functions
Eq. (4.7) may be inverted with a Green’s function:

b

c (r, t) 5 G (r, r)z (r, t) dr. (4.9)k E k k

a

The Green’s function appropriate for this problem is
[from Carr and Williams (1989), with the inner bound-
ary a set to zero]
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FIG. 7. Angular velocity, or phase speed, of the LDMs in the
two-celled vortex for each azimuthal wavenumber from k 5 1 to
k 5 15.

2k r
k11 2k 2k11(r 2 b r ) 0 # r # r

k 2k2kr b
G (r, r) 5k

2k 2kr 2 b
k11 r r # r # b.

k 2k2kr b

(4.10)

d. The solution and analysis of the system

We would like to express the evolution of the per-
turbations as a linear dynamical system. We discretize
the domain by assigning the values of the radial func-
tions to evenly spaced points from r 5 0 1 Dr to r 5
b 2 Dr, each point separated by a distance Dr. This
converts the continuous radial functions into vectors of
length N 5 (b/Dr) 2 1. For all calculations we use Dr
5 0.05 so that there are 139 grid points between the
axis and the outer boundary. We express all derivatives
as matrix operators corresponding to the usual centered-
difference approximations, with the exception that the
finite-difference operator used for the advection term is
one-sided so that it represents a second-order upwinding
advection scheme. We must also express the Green’s
function operation (4.9) as a matrix operation; that is,

ck 5 Gkzk, (4.11)

where k refers to the wavenumber, and the operator Gk

is defined as above according to (4.9).
Finally, we take vorticity evolution equation (4.3) and

manipulate it into a form with only the time derivative
on the lhs, and install the matrix operators accordingly.
The result is

dzk 5 T z , (4.12)k kdt

with

21T 5 2UD 2 ikV 1 (DZ)ikR G 1 Sk up k

2 21 2 221 n(D 1 R D 2 k R ), (4.13)

where we have written D for the matrix representing
the finite-difference calculation for the derivative with
respect to r, Dup for a similar but upwinded derivative
operator, S for the ‘‘stretching’’ term ]W/]z, and (4.5)
was used for the third term on the rhs. Operators that
refer to functions of r only, such as the R21 operator,
are simply diagonal matrices with the function values
on the diagonal. We must also incorporate into the dif-
ference operators additional boundary conditions on the
vorticity, which we choose to be

zk(0) 5 zk(b) 5 0. (4.14)

This condition prevents the advection and diffusion of
perturbation vorticity into the domain from the bound-
aries. The solution of (4.12) in time is

zk(t) 5 .T tke z (0)k (4.15)

e. The kinetic energy of the perturbations

The kinetic energy for each perturbation in contin-
uous space is

b 2 2u yk kE 5 1 2pr dr, (4.16)E 1 22 20

where the overbars refer to averages around the azimuth
of the real parts of the complex velocity functions. A
streamfunction–vorticity formulation for the energy can
be found by using (4.5)–(4.9) and integrating by parts
to find

b1
E 5 2 c z 2pr dr. (4.17)E k k2 0

Using the fact that pq 5 (p*q 1 q*p), we can rewrite1
4

(4.17) as
bp

E 5 2 (c*z 1 z*c )r dr. (4.18)E k k k k4 0

As discussed in section 2 it is useful to find an energy
metric operator M such that the energy of the discretized
linear dynamical system may be written E 5 z*Mz. For
each azimuthal wavenumber k, the energy metric can
be formulated from (4.18):

2pDr †M 5 [G R 1 RG ]. (4.19)k k k4

5. Stability

a. The stability of the one-celled vortex

We first consider the one-celled vortex as described
in section 3b. The nearly identical Burgers’ vortex so-
lution has been previously found to be stable to all two-
dimensional disturbances by Robinson and Saffman
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FIG. 8. The k 5 1 and k 5 2 IOs for the one-celled vortex: (a) k 5 1 vorticity; (b) k 5 1 streamfunction; (c) k 5 2 vorticity;
(d) k 5 2 streamfunction. The contour intervals and energy growth rates (eigenvalues) are indicated at the top of each plot.

(1984); however, their analysis relied on a low-Reynolds
number expansion, which clearly has limited application
to atmospheric vortices or to our one-celled vortex with
ReV 5 1000. Figure 3 shows the real part of the eigen-
value of the LDM for each azimuthal wavenumber from
k 5 1 to k 5 15, for three cases: 1) with the radial
inflow effects included, 2) with the stretching term [S
in (4.3)] eliminated, and 3) with both the stretching and
radial advection terms [S and 2UDup in (4.3)] elimi-
nated. We can see that for all three cases the one-celled
vortex is asymptotically stable and the trend of the plot
suggests that no unstable modes exist for any azimuthal
wavenumber. The decay rate of these modes is clearly

linear with respect to azimuthal wavenumber, with the
exception that the k 5 1 decay rate appears exception-
ally smaller than the trend of the other LDM decay rates
would indicate. This decay rate linear in k indicates that
it is the interaction with the shear of the swirling flow,
rather than diffusion, that contributes most to the decline
of the amplitudes of these modes.

Figure 3 also shows that the growth rates of the LDMs
in all three cases are virtually identical for all k . 1.
The reasons for this will be explained shortly. For k 5
1, however, we have two additional observations: 1)
removing the stretching term substantially decreases the
growth rate of the LDM, and 2) removing completely
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FIG. 9. The IO growth rates for k 5 1 to k 5 15 in the one-celled
vortex: V—standard case with inflow; 1—with stretching term re-
moved; 3—with stretching and advection removed.

the effects of radial inflow greatly increases the growth
rate, from 22.5 3 1023 to 22.65 3 1026 (i.e, almost
to neutrality).

The two vortex flows we have constructed have cy-
lindrical deformation fields that have two distinct effects
on the perturbation vorticities. First, the radial inflow
advects perturbation vorticity into the vortex core (and
outward from the axis in the two-celled vortex). Second,
the associated deformation field can cause either vor-
ticity amplification (through stretching) or vorticity de-
cay (through compression). A comparison of the am-
plification rate due to vortex stretching with the actual
growth rates suggests that the stretching/amplification
associated with the radial inflow does play a role in the
dynamics. In the case of the one-celled vortex, the max-
imum stretching rate of 0.005 (see Fig. 1c) is indeed
comparable to the change that results when the stretch-
ing is eliminated from the dynamics.

Figure 4 shows vorticity and streamfunction contour
plots of the LDM for the first two azimuthal wave-
numbers (when the effects of radial inflow are included).
These two modes are considerably different. For k 5
1, the LDM is a dipole-like structure whose vorticity
lies entirely inside the core of the vortex. For k 5 2,
the LDM lies at the outer edge of the domain and spirals
inward in the same direction as the mean flow. In fact,
the LDMs for all higher wavenumbers are higher-wave-
number replicas of the k 5 2 LDM.

Why is the k 5 1 LDM distinct from those of all
higher wavenumbers? There are two reasons. First, k 5
1 perturbations experience considerably less dissipation
near r 5 0 than higher wavenumber perturbations—this
is due to the 2k2/r2 term in the diffusive part of (4.3).
Second, the perturbation velocities do not go to zero at
r 5 0, which is to say that only for k 5 1 can there be
perturbation flow across the r 5 0 axis. In the case of
the one-celled vortex, this allows the k 5 1 LDM to

convert more mean-flow vorticity to perturbation vor-
ticity, thereby helping to sustain itself. It is for these
reasons that the decay rate of the k 5 1 LDM is so
small, especially when the radial inflow is neglected.1

Because the higher wavenumber perturbations are there-
fore generally not well suited to persist in the core of
the vortex, their LDMs lie instead as far away from the
core as possible so that they are subjected to as little
diffusion and deformation as possible. For this reason,
the structures and locations of the LDMs for k 5 2 and
higher are entirely dependent on the location of the outer
boundary of the domain. The fact that the LDMs for k
. 1 lie near the outer boundary also explains why elim-
inating the effects of radial inflow has no noticeable
effect on the growth rates—the stretching and advection
are nearly zero in this region (see Fig. 1).

b. The stability of the two-celled vortex

We turn our analysis now to the two-celled vortex
described in section 3c. Figure 5 shows the real parts
of the eigenvalues of the LDMs for azimuthal wave-
number k 5 1 through k 5 15, where we have again
also plotted the same results with stretching removed
and with all radial inflow effects removed. For the case
with inflow, there is a range of instability from k 5 3
to k 5 10. This is a ‘‘classic’’ result, which has been
produced in many previous studies of the stability of
rotating flows, particularly Staley and Gall (1979), Gall
(1985), Steffens (1988), and Peng and Williams (1991).
Our curve is slightly different from these earlier results
due to the presence of diffusion, so that the stable modes
are not neutral but rather have negative growth rates
outside the unstable range.

It is interesting to note that removing the stretching
term increases the growth rate for k 5 1 and actually
destabilizes the vortex for k 5 2, yet substantially de-
creases the growth rates in the previously unstable range
3 # k # 10. Removing both the stretching and the
advection destabilizes the vortex for k 5 1 and k 5 2,
but again decreases the growth rates for 3 # k # 10.
The growth rates for k . 10 are unaffected by radial
inflow, and this is again due to the fact that the LDMs
for these wavenumbers lie near the outer boundary
where there is virtually no stretching or advection.

The vorticity and streamfunction fields for the most
unstable (least damped) mode for the first azimuthal
wavenumber with instability, k 5 3, and the most un-

1 Note added in proof: The LDM for k 5 1 in the one-celled vortex
is in fact a slightly modified version of the stationary solution for
wavenumber one perturbations found by Michaelke and Timme
(1967) for unbounded domains, which is a disturbance whose stream-
function is proportional to the mean flow velocity. Such a disturbance
represents a linear displacement of the vortex center, and is sometimes
called the ‘‘pseudo-mode’’ in the literature. The modification in our
case is caused by the introduction of an outer boundary, which causes
the mode to have a nonzero angular velocity.
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FIG. 10. Vorticity and streamfunction fields for the k 5 1 FTO for t 5 8.98, and its associated RFTO: (a) k 5 1 FTO
vorticity, (b) k 5 1 FTO streamfunction, (c) k 5 1 RFTO vorticity, (d) k 5 1 RFTO streamfunction.

stable wavenumber, k 5 5, are shown in Fig. 6. These
modes are quite similar in structure, consisting of two
concentric rings of ellipse-shaped vorticity perturba-
tions, alternating in sign, located in the transition re-
gion between r 5 1 and r 5 2, with the two rings of
perturbations shifted in phase from each other such that
the inner rings lead the outer rings by almost exactly
half a cycle. These modes operate with a mechanism
that is the same as the two-dimensional modes iden-
tified in the earlier vortex stability studies noted
above—see, in particular, Staley and Gall (1979), Gall
(1983), and Flierl (1988). That is to say, they persist
and/or grow through the familiar mechanism of con-
verting mean flow vorticity to perturbation vorticity

via the uk(]Z/]r) term in (4.3). In Fig. 7, the modes
show another common aspect of classical instabilities
in that the angular velocity (phase speed) of the un-
stable modes is representative of the mean flow angular
velocity in the transition zone, while the decaying
modes have a much lower angular velocity: for k 5 1
and k 5 2, this is because the modes are retrograding
against the mean flow, while for k . 10 it is because
the modes lie near the outer boundary where V is small.
The maximum angular velocity V /r in the two-celled
vortex is V 5 0.23, while halfway through the tran-
sition region the angular velocity is V 5 0.15, which
compares very favorably with the phase speeds of the
unstable modes.
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FIG. 11. FTO growth vs allowed growth time in the one-celled
vortex for (a) azimuthal wavenumber k 5 1; (b) k 5 2.

6. Optimal growth perturbations

As Orr (1907) originally observed, the growth of a
perturbation in linear, inviscid shear flow is determined
solely by how far back against the shear the disturbance
is originally tilted. A perturbation whose phase lines are
tilted all the way back becoming nearly parallel with
the flow could conceivably have unlimited growth. In
more realistic flows this is prevented by diffusion. With
this in mind, it is easy to imagine that the perturbation
that would grow the most in an asymptotically stable
inviscid vortex without radial inflow would be a vor-
ticity perturbation that spirals back against the flow at
an angle such that azimuthal advection would uncoil the
vorticity of the perturbation, reducing its radial wave-
number until the vorticity contours were radially aligned
at the moment of maximum perturbation amplitude. Vis-
cosity would limit the possible maximum growth of such
a perturbation: the tighter the spiral (in either direction)
made by the perturbation, the faster viscosity would
diffuse the vorticity.

The structures of IOs are usually quite different. The

IOs seek out the part of the flow that has the most shear
or deformation, and arrange the vorticity there to create
the fastest possible instantaneous growth in perturbation
energy. This is usually a structure that locally tilts back
against the shear of the flow at an angle of 458, a ge-
ometry that maximizes the eddy fluxes u9y9 , and at the
same time places the perturbation in the orientation lead-
ing to the maximum rate of decrease in wavenumber
from advection by the local difluent component of the
shearing velocity field.

a. Instantaneous and finite-time optimals in the
one-celled vortex

Figure 8 shows the vorticity and streamfunction fields
for the k 5 1 and k 5 2 IOs on our one-celled vortex.
We can see these perturbations have structures very
much like those predicted above: the vorticity contours
spiral back against the shear of the mean flow. The
streamfunction contours show that the perturbation ve-
locities flow back against the shear of the vortex at the
expected angle of 458, which maximizes the eddy fluxes,
and the place where this occurs is in the vicinity of r
5 1, where the maximum shear exists (note that in a
vortex, the ‘‘shear’’ is not the rate of change of velocity
]V/]r but rather the rate of change of angular velocity
]V/]r). The k 5 2 IO is essentially a higher-wavenumber
replica of the k 5 1 IO, and this was found to be true
for all wavenumbers. The normalized IO growth rates
for k 5 1 through k 5 15 are shown in Fig. 9, again
for the three cases examined in our discussion of sta-
bility: with the radial inflow, without the stretching, and
without the radial inflow. The growth rate (with inflow)
increases from 0.42 at k 5 1 to 0.55 at k 5 4 and then
quickly decreases. While such growth rates are known
in inviscid flows to increase asymptotically with wave-
number toward a limit determined by the maximum de-
formation of the mean flow (Howard 1972), the decline
after k 5 4 in our vortex is caused by the increasing
effects of viscosity on higher-wavenumber structures.
Figure 9 also indicates that the stretching and advection
terms make very little contribution to the transient
growth process, which is due to the fact that the de-
formations of the mean radial and vertical velocities are
two orders of magnitude smaller than the shear of the
mean azimuthal velocities. The fact that the elimination
of the advection terms seems to nearly cancel the effect
of eliminating the stretching term is very likely due to
the fact that by incompressibility (3.5) these terms must
be equal in magnitude.

Figures 10a,b show the vorticity and streamfunction
for the k 5 1 FTO for a transient growth time of t 5
8.98. This corresponds to the time it takes for the mean
flow to travel one circuit around the vortex at r 5 1. We
again see the expected result that the perturbation spirals
back against the mean flow, and it does so almost exactly
once. We also note, however, that the vorticity of the
FTO lies not in the immediate vicinity of r 5 1 but rather
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FIG. 12. Initial and fully realized states of the global optimal for k 5 1 in the one-celled vortex: (a) GO vorticity, (b) GO streamfunction,
(c) RGO vorticity, (d) RGO streamfunction.

at a small distance outside of r 5 1. This displacement
is indicative of the effect of radial inflow: as the vorticity
is uncoiled, it is also carried inward toward r 5 1. Figures
10c,d show the structure of this perturbation when it has
reached its maximum energy at t 5 8.98; we call this
structure the realized finite time optimal (RFTO), and
obtain it from the SVD of the propagator as outlined in
section 2. This confirms the hypothesis that the pertur-
bation reaches its maximum energy when the vorticity
contours have been completely uncoiled, and it also
shows that the radial inflow has carried the vorticity into
the core of the vortex during this process.

Figure 11 shows the maximum transient growth in

energy as a function of time for k 5 1 and k 5 2
perturbations in the one-celled vortex. For k 5 1, the
maximum possible normalized energy growth is a factor
of 181, which occurs at the time of t 5 131; the per-
turbation that realizes this growth is called the global
optimal (GO), and its maximal state will be called the
realized global optimal (RGO). We see that the potential
for transient growth of k 5 2 perturbations is substan-
tially less than that of k 5 1 perturbations, with a max-
imum potential growth factor of only 33 occurring at t
5 17. The GO for k 5 1, and its realization, are shown
in Fig. 12. The GO is a structure whose vorticity spirals
far back against the mean flow, and it lies in the vicinity
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FIG. 13. Vorticity and streamfunction fields for the k 5 1 and k 5 2 IOs in the two-celled vortex: (a) k 5 1 IO vorticity,
(b) k 5 1 IO streamfunction, (c) k 5 2 IO vorticity, (d) k 5 2 IO streamfunction.

of r 5 5, which is the furthest extent of the field of
substantial inflow velocities (see Fig. 1a), while the
RGO shows again that this perturbation reaches its max-
imum energy when its vorticity has been advected into
a dipolelike structure in the core of the vortex.

b. IOs and FTOs in the two-celled vortex: The stable
regime

As we saw above, the two-celled vortex we have
generated is stable for azimuthal wavenumbers k 5 1,
k 5 2, and k . 10. Thus we can expect that wave–mean
flow interactions at these stable wavenumbers will be

dominated by the optimal transients. Figure 13 shows
the IOs for k 5 1 and k 5 2. The vorticities of these
perturbations are again arranged to create downgradient
eddy fluxes at the location of the maximum shear in the
mean flow, which lies in the center of the transition
zone between the exterior potential flow and the stag-
nant interior. Figure 14 shows the IO growth rates for
azimuthal wavenumbers k 5 1 through k 5 15, includ-
ing the cases with no stretching and with no radial in-
flow. Comparison with Fig. 5 indicates that the transient
optimals can grow faster than their corresponding LDMs
for all wavenumbers, even when unstable modes are
present (note that the rate of energy increase is equal
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FIG. 14. Maximum instantaneous growth rates vs wavenumber for the first 15 azimuthal wavenumbers in the two-
celled vortex: V—standard case with inflow, 1—with stretching term removed, 3—with stretching and advection
removed.

to twice the modal growth rate). We also see that in the
two-celled vortex, removal of the stretching term has a
significant effect on the growth rate; this is due to the
fact that the stretching term is only one order of mag-
nitude (rather than two as before) less than the shear of
the mean azimuthal velocities. We also see again that
the elimination of advection nearly balances the elim-
ination of stretching.

Figure 15 shows the maximum transient growth as a
function of time for k 5 1 and k 5 2 in the two-celled
vortex. While the growth in energy by a factor of 94
for k 5 1 is substantial, the growth by a factor of 2886
for k 5 2 is tremendous. The initial and maximal states
of the k 5 2 GO can be seen in Fig. 16 (these structures
for k 5 1 were similar). The initial state is the familiar
reverse spiral, also displaced outward from the vortex
core, like those we saw for the one-celled vortex. The
maximal state, however, is considerably different than
those we saw in the one-celled vortex. Rather than form-
ing into a coherent quadripole structure (which we might
expect for the maximal state of a wavenumber two op-
timal), the GO evolves into a structure whose vorticity
field is a lower-wavenumber version of the unstable
modes (see Fig. 6). Why does this occur? As the GO

is deformed and advected into the vortex core, it inter-
acts with the vorticity gradient of the mean flow. As it
does so, it converts mean-flow vorticity into perturba-
tion vorticity, thereby modifying the structure it would
have if the only effect of the mean flow were defor-
mation of the perturbation vorticity field. While any
initial perturbation in any linearized system will indeed
be dominated by the LDM in the limit as t → `, the
reason that we find such large transient growth for low
wavenumbers in the two-celled vortex is that the energy
acquired from the mean flow via the Orr mechanism
accumulates in these very persistent LDMs, rather than
being returned to the mean flow as the perturbation is
sheared over. This result is very similar to what was
found by Smith and Montgomery (1995) in their anal-
ysis of evolving disturbances in an unbounded Rankine
vortex: as an initial disturbance is sheared over, much
of its energy can be trapped in discrete modes and persist
for long times.

c. Transient and long-term growth in the unstable
regime
Are transient growth processes relevant in the unsta-

ble regime? Since the eigenvectors of Tk (for each par-
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FIG. 15. FTO growth as a function of allowed growth time in the
two-celled vortex: (a) azimuthal wavenumber k 5 1, (b) k 5 2.

ticular wavenumber k) are not orthogonal to each other,
an arbitrary perturbation will almost surely project to
some extent onto the most unstable mode, thereby ex-
citing an exponentially growing perturbation. The total
perturbation will then be asymptotically dominated by
the unstable LDM. For linear systems with normal dy-
namical operators, the initial condition that achieves the
greatest long-term growth would not surprisingly be the
LDM itself. It is interesting to note, however, in non-
normal systems such as these vortex/shear flows, the
perturbation that excites the LDM the most for all times
is not the LDM itself, but rather the LDM of the adjoint
operator A† (hereafter referred to as the LDMA). This
was remarked by Farrell (1988) for neutral Rossby
waves, but the argument is general and has been further
discussed by Farrell and Ioannou (1996).

To see this mathematically, first recall that the solu-
tion in time to our linear dynamical system in gener-
alized velocity coordinates (2.5) is

x(t) 5 eAtx(0). (6.1)

Now consider the following standard diagonalization of
the propagator matrix

eAt 5 EeDtE21, (6.2)

where D is a diagonal matrix with the eigenvalues of
A on its diagonal and E is a matrix whose columns are
the eigenvectors of A. We may assume that the eigen-
values and eigenvectors are ordered such that the LDM
lies in the first column of E and its eigenvalue is the
first element of D. For large times the resultant prop-
agator matrix is dominated by the contribution of the
dominant eigenmode, the LDM. Therefore,

At D t 2111lim e 5 E e E . (6.3)kl k1 1l
t→`

The dominance of the LDM is indicated by the fact that
it is the only one of the eigenvectors of A that appears
in this limit. What initial condition maximizes (in a
normalized sense) the response of the LDM for large
times? It is the one that maximizes its inner product
with the rightmost term of (6.3). By Schwarz’s inequal-
ity and our definition of the energy norm (2.6), this is
the complex conjugate of the rightmost term, that is,
( )*. Finally, since the diagonalization of the adjoint21E1l

propagator is
† †A t 21 † D t †e 5 (E ) e E , (6.4)

we observe that our desired initial condition is identical
to the LDM of the adjoint of the dynamical operator A.

Figure 17 shows the logarithm of the energy as a
function of time for three k 5 3 perturbations on the
two-celled vortex: the LDM, the LDMA, and the FTO
for t 5 5. The LDM undergoes a steady exponential
growth rate from t 5 0 onward. The LDMA grows in
energy even more rapidly than the LDM for a finite
period of time, and then settles into the same exponential
growth rate, but with 4.04 times as much energy at later
times than the LDM. The FTO has an even faster initial
growth rate, but after longer times has less energy than
the LDMA. Examination of the LDMA and FTO vor-
ticity and streamfunction fields, as shown in Fig. 18, is
revealing. These structures are similar to the LDM in
the vortex core, but outside of r 5 2 they have the
familiar reverse spiral. Thus we can see that their
‘‘extra’’ energy growth for short times comes from the
transient growth associated with the uncoiling of the
reverse spirals. We note that all the FTOs for growth
times t . 20 (not shown) were identical to the LDMA.
While for long times the structures that will dominate
the perturbations for the unstable wavenumbers are in-
deed the unstable LDMs, the initial condition that leads
the most rapid appearance of the LDM is in fact the
LDMA.

7. Analysis

In this section we will examine two issues not directly
addressed by the identification of the least damped
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FIG. 16. Initial and maximal states of the GO for k 5 2 on the two-celled vortex: (a) GO vorticity, (b) GO streamfunction, (c) RGO
vorticity, (d) RGO streamfunction.

modes and/or the transiently growing optimals. The first
issue will concern the exchange of energy between the
perturbations and the mean flow, and the second issue
will be the effect of radial inflow on transient growth
processes.

a. Wave–mean flow interactions

Energy is exchanged between the mean flow and the
perturbations via eddy fluxes. These eddy fluxes affect
the mean flow through the divergence of the volume-
averaged eddy flux terms (i.e., the Reynolds stresses)
previously neglected in the mean flow equations such

as (3.6). The change to the mean azimuthal velocity
caused by the perturbation eddy flux divergences is
(Carr and Williams 1989; Montgomery and Kallenbach
1997)

]V 1 ]
25 2 (r u9y9) 5 2u9z9 , (7.1)

2]t r ]r

where the overbars refer to azimuthal averages and the
primes refer to the perturbation velocities and vortici-
ties. These terms can be easily calculated to indicate—
in the linear limit where we assume that the actual
change of the mean flow is negligible—where the mean
flow energy exchange is taking place and how the mean
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FIG. 17. Logarithms of the energies vs time of the LDM (solid),
LDMA (dashed), and the t 5 5 FTO (dash–dot) for azimuthal wave-
number k 5 3 in the two-celled vortex.

flow would indeed be changed if the perturbations were
of substantial amplitude. The perturbations themselves,
being asymmetric, have zero net momentum. They
change the kinetic energy of the mean flow by rear-
ranging its momentum via eddy momentum fluxes. Up-
gradient (downgradient) momentum fluxes cause an in-
crease (decrease) in mean flow kinetic energy. This can
be seen from examination of the equation for the rate
of change of perturbation kinetic energy (for the case
we are studying: strictly two-dimensional perturbations
in cylindrically symmetric mean flows)

`dE ]U U ]V V
2 25 2 u 1 y 1 uy 2 2pr dr,E 1 2[ ]dt ]r r ]r r0

(7.2)

where the overbars refer to the azimuthal averages. For
convenience we have neglected the viscous damping
terms. Another useful form of this equation can be found
by integrating the first and third terms in the integrand
of (7.2) by parts

` 2dE ] u U
2 25 u 1 U 2 y 1 u9z9V 2pr dr,E 1 2[ ]dt ]r r r0

(7.3)

where we have used (7.1) to simplify the third term in
the integrand. This equation has a clear physical inter-
pretation since the first and third terms now represent
the products of the eddy flux divergences (which are
accelerations) multiplied by the mean flow velocities,
thereby indicating the interaction of the perturbations
with the mean flow. The second term represents the
work done by the mean flow against the centripetal forc-
es associated with the perturbation azimuthal velocities.
Note that it is always positive when U is negative. The

third term shows the direct interaction of the eddy flux
divergence with the mean azimuthal flow. Since the rate
of change of energy of the perturbations is equal and
opposite to the rate of change of energy of the mean
flow, this term clearly shows how upgradient (down-
gradient) momentum fluxes cause an increase (decrease)
in the kinetic energy of the mean flow.

The eddy flux divergence of azimuthal momentum as-
sociated with the k 5 1 IO in the one-celled vortex is
shown in Fig. 19a. We can see that the immediate effect
of the perturbation is to decelerate the mean flow inside
rmax and to accelerate the flow outside rmax. The accu-
mulated forcing of this perturbation over its lifetime can
be found by simultaneously integrating the evolution of
the perturbation (4.12) and the effect on the mean flow
(7.1). We performed this integration from t 5 0 to t 5
1000, during which the energy of this perturbation de-
creased from E 5 1 to E 5 0.005. The accumulated
forcing on the mean flow is shown in Fig. 19b, where
we can see that the net effect of the wave–mean flow
interaction for this perturbation over its lifetime is to
decrease the azimuthal velocity in the vicinity of r 5 1
and to increase it near r 5 0 and near r 5 2. [Note: this
result should not be confused with the actual deviation
of the mean flow velocities. The symmetric perturbations
to the vortex flow caused by the eddy flux divergences
will themselves evolve according to an advection–dif-
fusion equation similar to (3.6). The behavior of these
perturbations will be addressed in a future paper.]

The same calculation for the k 5 2 IO in the one-
celled vortex gives a different result. While we can see
in Fig. 20a that the instantaneous effect of this pertur-
bation at t 5 0 is to decelerate the mean flow at r 5
1, the long-term effect shown in Fig. 20b is to accelerate
the flow near r 5 1, such that the kinetic energy of the
mean flow actually increases rather than decreases. Why
is this result different? Shepherd (1985) and Farrell and
Ioannou (1993a) have shown for inviscid linear shear
flows that all perturbations, regardless of their initial
configuration, are sheared over and give their energy to
the mean flow via eddy fluxes. Equivalent results were
found by Carr and Williams (1989) and Nolan (1996)
for vortices with 1/r velocity profiles. Thus the net effect
of any perturbation to these flows will ultimately be to
increase the kinetic energy of the mean flow. However,
if the mean flow has a background vorticity gradient,
the transient perturbations may excite neutral or nearly
neutral modes, such as the k 5 1 LDM, which then
serve as a trap for perturbation kinetic energy. In this
case, the energy of transiently growing perturbations is
never returned to the mean flow, but rather lost through
dissipation of the perturbation instead. Our results here
for the k 5 1 and k 5 2 IOs in the one-celled vortex
are examples of each of these two possible outcomes.

In the two-celled vortex, the change in sign of the
background vorticity gradient lends to the persistence
or growth of coherent structures at all wavenumbers.
Through investigation of many different initial condi-
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FIG. 18. Vorticity and streamfunction fields for the t 5 5 FTO and the LDMA for k 5 3 in the two-celled vortex: (a) FTO vorticity, (b)
FTO streamfunction, (c) LDMA vorticity, (d) LDMA streamfunction.

tions, it appears that any perturbation initially config-
ured to project favorably onto the LDM ultimately leads
to a decrease in the kinetic energy of the mean flow.
However, perturbations can be chosen that will ulti-
mately lead to an increase in the kinetic energy in the
mean flow. This is demonstrated in Fig. 21, where we
have used as an initial condition the complex conjugate
of the k 5 11 IO in the two-celled vortex. Taking the
complex conjugate results in a perturbation that spirals
in the reverse direction, so that the initial eddy mo-
mentum flux is maximally upgradient rather than max-
imally downgradient. Since the k 5 11 LDM is not as
persistent as those at lower wavenumbers, the structure

is sheared over and the final result is a net upgradient
flux of momentum and an increase in mean flow kinetic
energy. For all lower wavenumbers with this special
initial condition the opposite result was found.

b. The effects of radial inflow on transient growth

In previous sections we determined how accounting
for the radial inflow changes the stability and optimal
growth rates for perturbations in these vortices. How-
ever, it is perhaps more important to investigate how
the stability of these vortices change as the strength of
the deformation field changes. In the study of atmo-
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FIG. 19. (a) The instantaneous eddy momentum flux divergence of
the k 5 1 IO in the one-celled vortex. (b) The accumulated total
momentum flux divergence from t 5 0 to t 5 1000 for the k 5 1
IO.

FIG. 20. (a) The instantaneous eddy momentum flux divergence of
the k 5 2 IO in the one-celled vortex. (b) The accumulated total
momentum flux divergence from t 5 0 to t 5 1000 for the k 5 2
IO.

spheric vortices it is practically assumed that a strong
radial inflow will hold the vortex together, while a weak-
er inflow may allow the vortex to break apart. In our
case we can examine how important the radial inflow
is in stabilizing the vortex, as a function of the strength
of the inflow itself. In the case of the one-celled vortex,
a weaker radial inflow results in a broader, weaker vor-
tex, that is, rmax increases and ymax decreases; a stronger
radial inflow intensifies the vortex. In the case of the
two-celled vortex, increasing the strength of the defor-
mation field results in a sharper azimuthal velocity gra-
dient in the transition zone from the potential flow to
the stagnant core.

To determine the change in the potential for wave–
mean flow interaction as the radial inflow varies, we
have varied the strength of the radial inflow from half
its original value to twice its original value, while re-
calculating the associated azimuthal velocity profile. For
a radial inflow of half the original strength, we obtain
an azimuthal velocity profile that is of the Burger’s so-

lution type but with an increased rmax 5 1.45 and a
decreased ymax 5 0.5; for twice the radial inflow we
have rmax 5 0.70 and ymax 5 1.01. For each of these
new vortex solutions we have recalculated both the max-
imum finite energy growth and this same growth when
the radial inflow terms are neglected in the dynamics.
The results of these calculations for k 5 1 and k 5 2
for the one-celled vortex are shown in Fig. 22. In both
cases we see the following: first, neglecting the radial
inflow terms results in a substantial overestimation of
the maximum growth. Second, this overestimation in-
creases as the strength of the radial inflow increases.
Third, we find that for k 5 2 and all higher azimuthal
wavenumbers (not shown), the maximum growth (in-
cluding the radial terms) begins to decrease when the
radial inflow becomes strong enough.

Why does the presence of radial inflow velocity sup-
press transient growth? Indeed, this might seem para-
doxical since increasing the radial inflow increases the
maximum deformation rate of the mean flow. However,
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FIG. 21. (a) The instantaneous eddy momentum flux divergence of
the complex conjugate of the k 5 11 IO in the two-celled vortex. (b)
The accumulated total momentum flux divergence from t 5 0 to t 5
1000.

FIG. 22. Comparisons of the maximum transient growth in the one-
celled vortex when the radial inflow terms are included (V’s) or are
not included (3’s), as a function of the intensity of the radial inflow
that maintains the swirling flow: (a) for azimuthal wavenumber k 5
1; (b) for k 5 2.

the radial inflow also has the effect of advecting per-
turbation vorticity through the region of maximum
shear, thereby limiting the extent of the wave–mean flow
interaction.

Figure 23 shows similar calculations as above for k
5 1 and k 5 2 in the two-celled vortex. Since the two-
celled vortex is unstable for these wavenumbers when
radial inflow is neglected, we show the results only for
the case with radial inflow. In this case we see again
that the potential for transient growth begins to decline
for larger relative intensities of the radial inflow. Similar
calculations (not shown) for the high range of stable
wavenumbers for the two-celled vortex, that is, k . 10,
demonstrated that the maximum growth was underes-
timated by neglecting the radial inflow terms. This is
because the mean vorticity to perturbation vorticity
mechanism for growth is less effective for these higher
wavenumbers and the radial deformation is a significant
transient growth mechanism. However, the maximum
growth for these wavenumbers is very small—on the

order of only a factor of 10 or less with increasing k,
and the maximum growth calculated with the radial in-
flow terms was only 5%–10% more than without radial
inflow.

8. Summary and conclusions

We have studied the dynamics of asymmetric pertur-
bations in two-dimensional vortices that are maintained
by radial inflow. The results we have found regarding
stability are consistent with previous work on vortices
of various velocity profiles: the one-celled vortex is sta-
ble for all azimuthal wavenumbers, while the two-celled
vortex has a finite range of unstable wavenumbers due
to the change in sign of the vorticity gradient of the
mean flow. We also showed that the initial conditions
that lead to the greatest perturbation energy for long
times are not the most unstable modes but rather the
most unstable modes of the adjoint operator.

For all wavenumbers in both vortices the fastest in-
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FIG. 23. The maximum transient growth in the two-celled vortex
as a function of the intensity of the radial inflow that maintains the
swirling flow: (a) for azimuthal wavenumber k 5 1; (b) for k 5 2.

stantaneous growth rates were shown to belong not to
the LDMs but rather to the IOs. We also found that for
stable wavenumbers substantial transient growth over
finite times can occur for low-wavenumber perturba-
tions in both the one-celled and two-celled vortex. The
energy source for transiently growing perturbations is
the exchange of energy with the mean flow via eddy
momentum fluxes.

While the immediate effect of all growing perturba-
tions is to decrease the kinetic energy of the mean flow,
we found that the net effect of these perturbations on
the mean flow over their lifetimes varies from case to
case. While most initially growing perturbations result
in a long-term decrease in the mean flow kinetic energy
for all wavenumbers in the two-celled vortex, and for
wavenumber k 5 1 in the one-celled vortex, we found
that most perturbations for k . 1 in the one-celled vortex
ultimately increased the kinetic energy of the mean flow.

The effect of the radial inflow, generally neglected
in previous stability analyses, was also investigated. The
vortex stretching caused by the associated deformation
field was found to stabilize wavenumber 2 perturbations

in the two-celled vortex despite the fact that the effect
of the deformation field is to amplify perturbation vor-
ticity. It was also found that the combination of both
advection and deformation associated with the radial
inflow was necessary to stabilize the two-celled vortex
to wavenumber 1 perturbations. More relevant to the
case of vortices being maintained by a radial inflow with
intensity varying in time, we examined how the wave–
mean flow dynamics changed as the azimuthal velocity
field was adjusted to be in balance with changing radial
inflow velocities. For all wavenumbers in the one-celled
vortex, and for the low, stable wavenumbers in the two-
celled vortex, we found that neglecting the radial inflow
terms greatly overestimated the potential for transient
growth or even destabilized the vortex completely. Fur-
thermore, these measurable effects on asymmetric dy-
namics were found despite the fact that the maximum
radial inflow velocities were at most only 10% of the
maximum azimuthal velocities in the two-celled vortex
and only 1% in the one-celled vortex.

There are two more important conclusions that can
be drawn from our analyses. First, the potential for large
transient growth of disturbances shows that a vortex
need not be formally unstable before significant asym-
metric structures, such as multiple vortices or polygonal
eyewalls, can appear. Such disturbances may appear if,
perhaps by chance, a disturbance is introduced into the
vortex that projects favorably onto the optimals tran-
sients (i.e., it has an upshear tilt). Second, these favor-
ably configured disturbances do not need to be intro-
duced near the vortex core, but rather can be introduced
in the near-vortex environment and still result in large
wave–mean flow interaction (recall the global optimals
shown in Figs. 12 and 16).

Throughout this investigation we have found that
large transient growth in perturbation kinetic energy is
limited to the lowest wavenumbers, in particular to only
k 5 1 for the one-celled vortex and both k 5 1 and k
5 2 for the two-celled vortex. Physically, k 5 1 per-
turbations correspond to a linear displacement of some
or all of the vorticity of the total flow. However, this
translation is important since it corresponds to devia-
tions in the path of the vortex, which has particularly
important applications in the forecasting of hurricane
tracks. It is also generally observed that tornadoes do
not travel in straight lines (see, e.g., Fujita and Smith
1993) and even laboratory vortices (Wan and Chang
1972; Lund and Snow 1993) ‘‘wander’’ considerably,
so it is possible that the transient growth and decay of
wavenumber 1 perturbations is responsible for this phe-
nomenon for both tornadoes and hurricanes. With this
in mind we can see how generalized stability analysis
could identify the characteristic features of disturbances
that are most likely to causes significant changes in the
path and intensity of tropical cyclones and tornadoes.
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