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A remarkable phenomenon in turbulent flows is the spontaneous emergence of coherent large spatial
scale zonal jets. In this work a comprehensive theory for the interaction of jets with turbulence,
stochastic structural stability theory, is applied to the problem of understanding the formation and
maintenance of the zonal jets that are crucial for enhancing plasma confinement in fusion
devices. © 2009 American Institute of Physics. �doi:10.1063/1.3258666�

I. INTRODUCTION

Zonal flows arising spontaneously from drift wave tur-
bulence play an important role in enhancing plasma confine-
ment in fusion devices. Despite the practical and theoretical
importance of obtaining a predictive understanding of this
phenomenon, a comprehensive theory for the dynamics of
jets emergent from plasma turbulence has been lacking. By a
comprehensive theory is understood an analytic system de-
rived from the equations governing the plasma dynamics that
predicts both jet formation from small initial perturbations
and jet equilibration at finite amplitude together with the
structure of both the jets and the turbulence that supports the
jets. In this work such a comprehensive theory based on the
methods of stochastic structural stability theory �SSST� is
described and applied to the coupled drift wave–zonal flow
�DW-ZF� system. This theory provides new prescriptive
strategies for manipulating and controlling the DW-ZF state.

Current theoretical understanding of DW-ZF dynamics is
based in part on analogy between the observed jet/turbulence
interaction and the behavior of solutions to the predator-prey
model. This analogy is founded on statistical random wave
theory and captures the essence of the instability/
equilibration process as well as the existence of limit cycles
and chaotic states. A correct physical theory must explain
this observed behavior and comport with the essential results
of random wave theory, but the predator-prey model is not
itself a solution of the equations and so cannot by itself be
accepted as a comprehensive theory. The modulational insta-
bility is invoked to account for the initial jet formation and
this theory captures the essence of the turbulence/jet interac-
tion but does not address equilibration and therefore cannot
be considered a comprehensive theory. These concepts are
extensively reviewed by Diamond et al.1

The phenomenon of spontaneous jet formation from tur-
bulence is quite general and coherent jets that are not forced
at the jet scale are often observed in turbulent flows with a
familiar geophysical example being the zonal winds of the
gaseous planets.2 This phenomenon of spontaneous jet for-

mation in turbulence has been extensively investigated in
observational and theoretical studies1,3–10 as well as in labo-
ratory experiments.11–17 The mechanism by which these
zonal flows form and are maintained is systematic organiza-
tion of upgradient eddy momentum flux in which the transfer
of momentum occurs directly from the eddy field to the
zonal flow without passing through intermediate scales, in
contrast to the prediction of theories based on two dimen-
sional �2D� turbulence cascades.1,7,18–21

In the DW-ZF system the drift wave perturbations arise
from the internal instability of the imposed density gradient,
from sources external to the intrinsic dynamics of the drift
waves and at a given scale from transfer between scales by
the internal quadratic nonlinear advection. Because these
processes produce perturbations with short time and space
scales compared to the time and space scale of the jet, the
associated eddy dynamics can be simulated using a stochas-
tic turbulence model �STM� in which the nonlinear scattering
and extrinsic excitation are modeled as stochastic.22–27 The
STM provides an analytic method to obtain the dynamics of
the quadratic statistics of a turbulent eddy field associated
with a given jet structure. Coupling a time dependent STM to
an evolution equation for the jet produces a dynamical sys-
tem for the coevolution of the jet and the self-consistent qua-
dratic statistics of its associated turbulence; this is the
method of SSST. The SSST system can be interpreted as the
dynamics of the ensemble mean jet and the ensemble mean
associated turbulence in which the turbulence is modeled by
the ensemble mean perturbation linear dynamics with a sto-
chastic approximation for the nonlinear dynamics. The solu-
tion for the eddy field is in terms of a covariance matrix from
which can be obtained the Gaussian probability density func-
tion approximation for the variance and quadratic fluxes of
the turbulence. The solution trajectory of the SSST equations
often converges to a fixed point state of balance between the
turbulence and the jet; however, limit cycles and chaotic so-
lutions also occur.8,9,28–30 Chaotic trajectories of the SSST
system correspond not to chaos of an individual turbulent
state trajectory, which typically would be associated with a
fixed point of the SSST system, but rather to chaos of the
zonal mean of the turbulent state. A familiar example of the
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manifestation of this chaos is the irregular bursting behavior
seen in drift wave turbulence.16

An equilibrium state of balance between a zonal flow
and its associated field of drift wave turbulence requires that
the momentum flux divergence arising from the turbulence
precisely balance the zonal flow momentum loss to friction,
if any. The requirement of a precise balance between zonal
flow forcing and dissipation, if any, is far more demanding
than that the shear associated with the jet simply suppress the
turbulence while the turbulence produces upgradient mo-
mentum flux. The remarkable fact is that the turbulence,
which depends on the zonal flow, and the zonal flow, which
depends on the turbulence, mutually adjust to produce bal-
anced states. Having the SSST analytic dynamics of the
DW-ZF system allows us to predict parameter values for
which robust equilibrium DW-ZF regimes are maintained, to
predict parameter values for which time dependent periodic
and chaotic DW-ZF regimes occur, to predict transition be-
tween these regimes when two regimes exist at the same
parameter values, and ultimately to predict the breakdown of
the zonal flow regime.

Closer inspection of the density transport mechanism re-
veals that the observed and simulated DW-ZF equilibrium jet
density transport suppression cannot be understood using the
concept of effective diffusion.31 In effective diffusion theory
it is assumed that transport of a passive scalar is proportional
to the scalar gradient with coefficient Deff=vl in which v and
l are the characteristic velocity and spatial correlation scales
of the turbulence. Transport can vary either due to changes in
the characteristic velocity or in the eddy correlation scale. In
this work we solve for the correlation between velocity and
density fluctuations directly revealing turbulent transport
both up and down the mean gradient, in agreement with ob-
servations and simulations,17,32 and implying that the density
transport process in drift wave turbulence is not diffusive in
nature. Instead we find that large scale coherent structures
rather than small scale eddy diffusion are responsible for
density transport.33

Closer inspection of the dynamics of the interaction be-
tween perturbations and zonal flows reveals that understand-
ing reduction in turbulence variance by zonal flows through
the concept of shear suppression by zonal flow advection is
incomplete. Shear suppression has roots in Wentzel–
Kramers–Brillouin theory and the concept of a continuous
spectrum of advected harmonic waves. However, to properly
understand perturbation dynamics in jets a full wave solution
must be obtained because the perturbation dynamics supports
a complete set of large scale coherent modes that are, in
general, not orthogonal and among which exists a subset that
is potentially unstable. Interaction between the zonal jet and
the eddy field systematically stabilizes these modes34–36 dur-
ing the establishment of a statistical equilibrium. Moreover,
the non-normal equilibrium jet dynamics supports a subset of
stable structures that produce robust growth under internally
and externally imposed excitations. These stochastic optimal
�SO� perturbations23 comprise a small subset of structures
but these are the structures responsible for growth of pertur-
bations due to interaction with the zonal shear and density
gradient. Using SSST we solve for the complete normal

mode eigenstructure of the equilibrium jet as well as the SO
and empirical orthogonal function �EOF� �Karhunen–Loeve�
decomposition of the ensemble mean turbulence variance
and cross variance in the velocity and density fields. This
analysis provides full information on the structure and dy-
namics of the perturbations responsible for producing the
turbulence variance and fluxes.

The mechanism of jet formation in plasmas can be stud-
ied for turbulence arising from external, internal, or a com-
bination of sources. The Charney–Hasegawa–Mima equation
provides the simplest model system as it uses only external
turbulence excitation. Zonal jet formation in this model is
identical to that in the equivalent barotropic vorticity
equation.9 However, because in the DW-ZF problem there
exists an internal instability associated with the density gra-
dient this problem is more comprehensively modeled using
the modified Hasegawa–Wakatani �HW� equations which
govern plasma dynamics in a 2D slab model. These equa-
tions are similar, although not identical, to the baroclinic
two-layer model.28 In this work we use the HW equations to
study DW-ZF dynamics.

The SSST equations incorporate a STM but these equa-
tions are themselves deterministic and autonomous with de-
pendent variables the zonal flow and the ensemble mean co-
variance of the turbulence. It follows that the perspective on
stability provided by these equations differs from the more
familiar perspective based on the perturbation stability of the
zonal flow. In fact, the primary bifurcation in these equations
has no counterpart in zonal flow stability analysis; it is rather
a cooperative instability in which the perturbation zonal flow
organizes the background turbulence to produce flux diver-
gences configured to amplify the jet leading to an emergent
turbulence-zonal flow instability that need not coincide with
perturbation instability of the jet. The SSST equations ap-
proximate the nonlinear zonal mean dynamics for the
DW-ZF flow system and this system in many cases supports
equilibration of the emergent jets and their consistent turbu-
lence fields at finite amplitude. These finite amplitude equi-
libria in turn lose structural stability as a function of param-
eters and this instability is associated either with bifurcation
to another equilibrium or with loss of a stable equilibrium
state. While it is true that loss of modal jet stability by an
equilibrium state as a function of a parameter also implies
loss of structural stability, the converse is not true. For this
reason bounds on zonal jet amplitude based on modal insta-
bility of the jet are not tight and can often be improved by
analysis of the structural stability of the jet.

A gradient driven flow with constant density gradient is
assumed in the examples below for simplicity although the
particle flux is calculated and could be used with an appro-
priate density gradient forcing parametrization to obtain
equilibria in which the density gradient participates in the
equilibration. However, as equilibrium is approached the
fluxes are typically suppressed implying long time scales for
changes in the equilibrium density gradient by flux diver-
gence and the likelihood that external driving mechanisms
dominate density gradient variation.
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II. FORMULATION

A. The HW drift wave turbulence equations

We use the modified HW equations.37 These equations
model the turbulence of the edge region of a tokamak plasma
with fractional density decreasing in the radial direction x at
a constant rate �, so that n�x�=n0e−�x, and in a constant
background magnetic field B=Boẑ in the toroidal z direction.
The HW equations govern the dynamics of the electrostatic
potential e� /Te and the ion density n /n0 in a Cartesian ap-
proximation of the radial-poloidal, x-y, plane.

The ion vorticity, �=��, and the density fluctuations n
solve following Numata et al.:37

�t� + J��,�� = ���� − n�� + ��� , �1a�

�tn + J��,n� = ���� − n�� − ��y� + ��� , �1b�

with Jacobian J�f ,g����xf���yg�− ��yf���xg�. The fields are
decomposed into zonal means and departures from zonal
means,

� = �̄ + ��, n = n̄ + n�, �2�

with the zonal mean, denoted by a bar, defined as the mean
in the poloidal direction y,

f̄ = Ly
−1�

0

Ly

f�x,y,t�dy . �3�

The flow velocities are

u = − �y�, v = �x� . �4�

The parameter � controls the strength of the electron
resistivity that couples the electrostatic field with the ion
density perturbations. For �=0 Eq. �1a� corresponds to the
hydrodynamic 2D vorticity equation while Eq. �1b� corre-
sponds to the advection-diffusion of n� as a passive scalar in
the presence of a mean fractional radial density gradient −�.
In the limit �→� the density and electrostatic field couple
rigidly and obey the Charney–Hasegawa–Mima equation.38

The dynamics of this equation, which governs the formation
of zonal flows in both the geophysical and the plasma con-
text, has been studied in recent theoretical work on zonal
flow generation.3,8–10 Hereafter, we treat the more general
quasiadiabatic case with �=1 and allow for instability by
including an ion density gradient �, which will be treated as
a variable parameter.

In the nondimensionalization of the equations lengths
are scaled by the Larmor radius �s=�Te /mi	ci

−1 and time by
the electron cyclotron frequency 	ci=eB0 /mi. A typical Lar-
mor radius, �s=1 mm, is obtained for a magnetic field of 1 T
and electron temperature Te=95.6 eV; also for these values
	ci

−1=10−8 s / rad and the corresponding velocity scale �s	ci is
95.6 km /s. The channel is taken doubly periodic in both x
and y.

The zonal average of Eq. �1a� gives the equation for the
zonal jet,

�tv̄ = − u��� − rmv̄ , �5�

where v̄=D�̄ and D��x. The zonal flow is damped linearly
at the mean collisional damping rate rm, which will typically
be taken to be rm=10−4 although we will also present results
in the collisionless limit, rm=0

The nonzonal components obey the equations

�t�� = − v̄�y�� + �D2v̄��y�� + ���� − n�� + ���� + F���� ,

�6a�

�tn� = − v̄�yn� − ��y�� + ���� − n�� + ��n� + F�n�� ,

�6b�

with nonlinear scattering term,

F�f� = − �x�u�f� − u�f�� − �y�v�f� − v�f�� . �7�

These equations can sustain turbulence without external forc-
ing due to the radial density flux, u�n�, in the presence of the
mean density gradient.37 We now briefly review the energet-
ics of these equations. The total energy E is the sum of the
zonal mean kinetic energy,

Ē =
1

2
�

0

Lx

v̄2dx , �8�

and the eddy energy,

E� =
1

2
�

0

Lx

������2 + n�2�dx . �9�

From the zonal mean Eq. �5� we obtain

dĒ

dt
= 
e − 2rmĒ , �10�

where


e = − �
0

Lx

v̄u���dx �11�

is the time rate of change of the zonal mean energy due to
the eddy induced mean zonal acceleration −u���. Similarly,
we obtain from the perturbation equations �6a� and �6b�

dE�

dt
= − 
e + 
n − 
� − 
� + F , �12�

where


n = ��
0

Lx

u�n�dx �13�

is the rate of perturbation energy gain due to perturbation
density flux down the mean density gradient. This term pro-
vides the internal energy source for the turbulence. The term


� = ��
0

Ly

��� − n��2dx , �14�

corresponding to resistive coupling, is always dissipative as
is the diffusion,
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� = �
0

Ly

������2 + ��n��2�dx . �15�

The term F is the rate of energy input by external excitation.
This external energy input rate is constant if the excitation is
delta correlated and state independent.

B. The SSST system governing DW-ZF dynamics

We parametrize the nonlinear scattering term �7� in the
eddy equations �6a� and �6b� by stochastic forcing, which is
the STM closure.39,40 The STM accurately simulates both the
structure of the eddy field and of the quadratic fluxes in shear
turbulence including that of the Earth’s atmosphere, which is
a particularly well observed turbulent medium.26,27,41–43

We represent the perturbation fields using Fourier com-
ponents in the poloidal direction y,

�� = 	
k

�̂k�x,t�eiky, n� = 	
k

n̂k�x,t�eiky , �16�

and discretize the equations in the radial direction x, so that
the state �k= ��̂k , n̂k�T is prescribed by the values, for each
Fourier component, of the electrostatic potential and the per-
turbation density on an equally spaced grid. Under the sim-
plifying assumption that the stochastic forcing has suffi-
ciently short temporal correlation that it can be approximated
as white noise, the second moment statistics of the fluctuat-
ing field �k are fully described by the covariance matrix
Ck= 
�k�k

†� �
·� denotes ensemble averaging� which evolves
according to the deterministic Lyapunov equation,

dCk

dt
= Ak�v̄�Ck + CkAk

†�v̄� + Qk, �17�

in which Qk is the covariance representing the ensemble av-
erage distribution of the stochastic forcing in the radial
direction23 and Ak�v̄� is the linear operator in Eqs. �6a� and
�6b� which depends affinely on the zonal flow v̄�x , t�. The
operator Ak in Eq. �17� in matrix form is

Ak = ��k
−1�− ik diag�v̄��k + ik diag�D2v̄� + �I + ��k

2� − ��k
−1

�− ik� + ��I − ik diag�v̄� − �I + ��k
 , �18�

in which I is the identity, diag�v̄� is the diagonal matrix
with the diagonal element values v̄ at the grid points,
�k=D2−k2I is the Laplacian in matrix form for wavenumber
k, and �k

−1 its inverse. If Qk represents scattering by the
advective nonlinearity rather than external sources of excita-
tion, then a dissipation can be added to the linear operators to
ensure that no net energy is introduced into the system
�because the nonlinear terms only redistribute energy�. Also,
Qk can be made an appropriate function of the amplitude of
the perturbation variance in order to accurately parametrize
the quadratic nonlinearity of the advective Jacobian. More
comprehensive closures of this sort have been used in other
contexts;30,44 however, it is sufficient for our present pur-
poses to use the simplest parametrization in which the sys-
tem is stochastically excited with state independent forcing
and the behavior of the system is investigated as a function
of the amplitude of this excitation.

The Lyapunov equation �17� determines Ck and this co-
variance in turn determines the ensemble mean vorticity flux,


u����� = 	
k

1

2
R�− ik
�̂k�k�̂k

�*�� = 	
k

k

2
I�diag�Ck�k

†�� .

�19�

However, it is the zonal mean vorticity flux that appears
in the zonal flow equation �5� but under the ergodic assump-
tion the zonal mean can be replaced by the ensemble mean,


u����� = u����. �20�

This requires that there be many independent realizations of
eddy activity in the poloidal direction, and in that limit we
obtain the ensemble mean equations,

�tv̄ = − 	
k

k

2
I�diag�Ck�k

†�� − rmv̄ , �21a�

dCk

dt
= Ak�v̄�Ck + CkAk

†�v̄� + Qk. �21b�

The equation for the turbulence covariance, Eq. �21b�, and
the equation for the mean zonal flow, Eq. �21a�, together
comprise a closed nonlinear system for the evolution of the
zonal flow under the influence of its consistent field of tur-
bulent eddies. Although the effects of the ensemble mean
turbulent fluxes are retained in this system, the fluctuations
associated with the turbulent eddy dynamics are suppressed
and the dynamics becomes autonomous and deterministic.
These SSST equations can be interpreted as the dynamical
equations for the evolution of a quadratic �Gaussian� ap-
proximation to the dynamics of the probability distribution
of the turbulent DW-ZF system. This concept invites novel
perspectives such as that of chaos of the zonal mean state of
a turbulent system as distinct from chaos of a realization of
the system. We show examples of zonal mean state chaos in
DW-ZF turbulence below. However, the SSST system trajec-
tory is often not chaotic but instead asymptotes to a fixed
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point equilibrium, and in these cases the dynamics of
DW-ZF equilibria emerge with great clarity in the SSST
system.

As another illustration of the insight provided by this
system we note that zonal jets arise in SSST as easily ana-
lyzed linear instabilities. This jet forming instability is an
example of a new class of instability in fluid dynamics; it is
an emergent instability that arises essentially from the inter-
action between the zonal flow and the turbulence. One may
think of a perturbation zonal flow organizing the surrounding
turbulence to produce a momentum flux divergence that am-
plifies that perturbation zonal flow. The particular perturba-
tion zonal flow structure that organizes the turbulence to ex-
actly amplify its own structure is obtained as an
eigenfunction of the perturbation SSST system linearized
about a marginally stable SSST equilibrium. This instability
equilibrates at finite amplitude and this finite amplitude
SSST equilibrium, consisting of the zonal flow and associ-
ated consistent eddy field, can often be connected by con-
tinuation in an appropriate parameter, such as the density
gradient, to nearby finite amplitude equilibrium states.

In addition to simply continued equilibria there also exist
equilibria that are isolated to variation of a given parameter
as, for instance, a strong zonal flow equilibrium exists at a
moderate density gradient and turbulence intensity that can-
not be connected by continuation starting from a weak zonal
flow equilibrium at a small density gradient. However, exter-
nal turbulence excitation can be used as a control parameter
to promote the system to such an isolated equilibrium state.
In addition to parameter control we may also perturb the
zonal flow to promote the system to an isolated equilibrium
state. Promoting the DW-ZF system to different regime
states by parameter control is analogous to instigating a
laminar/turbulent transition in shear flow turbulence where
the Reynolds number is the control parameter.

C. Parameters

Unless otherwise indicated calculations were per-
formed with 64 points in the x direction and 8 harmonics
in the �y� direction comprising wavenumbers k
= �k0 ,3k0 ,5k0 ,7k0 ,9k0 ,11k0 ,13k0 ,15k0� with k0=0.15 in a
doubly periodic channel with Ly =2� /k0 and Lx=Ly /4. The
stochastic forcing is taken to have an identity covariance in
vorticity corresponding to a one grid point correlation and is
normalized so that the energy input by the stochastic forcing
is the same for all poloidal wavenumbers. The excitation of
the electrostatic field and the density field is correlated in
order to facilitate the adjustment of the two fields �similar
results are obtained using uncorrelated forcing�. The ampli-
tude of the stochastic forcing is given in terms of the equiva-
lent urms velocity that would be maintained by the forcing
with no zonal flow and with �=0. Dissipation parameters
used are �=10−2, �=1, and 0rm10−4.

III. DW-ZF BEHAVIOR IN PARTICULAR REGIMES
OF DYNAMICAL INTEREST

A. Formation of zonal jets starting
from a nonequilibrium state

The starting point for a systematic investigation of
DW-ZF dynamics is the nonlinear SSST system initiated in a
state lying on its attractor. However, the system is commonly
thought of as being initiated far from its attractor in a state of
high turbulence intensity but without the corresponding finite
amplitude equilibrium jet. There then ensues a rapid adjust-
ment process in which the system builds a jet corresponding
to the turbulence and in the process places the system on the
SSST attractor. In order to study this adjustment process con-
sider the example of the turbulence field associated with a
single poloidal wavenumber in equilibrium with a strong sto-
chastic excitation but without its consistent zonal jet. The
turbulence field is that obtained from the stochastically ex-
cited STM but without coupling to the zonal flow equation.
If the zonal flow equation is coupled to the STM at this point
to form the interactive SSST system, there ensues rapid for-
mation of a consistent zonal jet. We show this rapid devel-
opment of a jet from a strong initial turbulent field at the
single poloidal wavenumber m=5 in Fig. 1 for �=0 and no
stochastic excitation. We also show the unstable case with
�=1 and in both cases the development of the zonal jet is
rapid because of the feedback between the eddies and the
growing zonal jet. If as an experiment the eddies are required
to develop on a fixed jet structure that is not continuously
modified by their dynamics then the resulting fluxes build the
jet much more slowly revealing that rapid jet formation is
due to the cooperative DW-ZF interaction. The build up of
the jet and the concurrent suppression of the eddy energy
occur due to shearing of the eddy field by the jet, a process
discussed by Diamond et al.1 and that is seen both in
simulations37 and observations. Because the eddy momen-
tum flux is upgradient and increases with both the shear29,45

and the variance, an exponential or faster growth of shear
with time occurs.

Similar development occurs when there is stochastic
forcing, and as a result the turbulence has a full spectrum. An
example with �=1 of jet emergence from small amplitude
random initial conditions in an unstable flow with substantial
stochastic excitation is shown in Fig. 2 and the process of its
approach to equilibrium is shown in Fig. 3. The eddy in-
duced zonal acceleration reaches its peak during this initial
development �cf. Fig. 2�d��. The rapid suppression of the
eddy variance �cf. Fig. 2�c�� is caused by energy transfer to
the zonal flow and by increased dissipation 
� due to in-
creased disequilibrium of the electrostatic field �� and the
perturbation ion density fluctuations n� �cf. the energetics
equation �12��.

After the initial development of the zonal jet by the
mechanism of antidiffusive shear momentum transport as de-
scribed above there follows a period of adjustment in which
the SSST system attempts to stabilize the zonal flow and to
establish, if the parameters allow it, a steady state equilib-
rium corresponding to a fixed point of the SSST equations.
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This stabilization process is shown in Fig. 3 as it sequentially
stabilizes the perturbation operator Ak. Let 	 denote an ei-
genvalue of Ak with real part 	r and imaginary part 	i. In
Fig. 3 the real and imaginary parts of the temporal eigenval-
ues of Ak, kci=	r and kcr=−	i, are shown in terms of the
wave phase speed cr and growth rate 	r indicating this sup-
pression of instability by the evolving zonal flow jet. As the

jet adjusts to equilibrium during this phase the flow is domi-
nated by large structures and the adjustment has a full wave
modal character unlike during the initial period of jet forma-
tion from a state far removed from the system attractor in
which the dynamics is shear wave antidiffusion dominated
being associated essentially with rapid distortion of the ini-
tial perturbation field.
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FIG. 1. Initial jet formation by the rapid adjustment process starting from a state of strong turbulence for the cases �a� �=0 �no instability� and �b� �=1 �strong
instability�. Shown are eddy kinetic energy �dashed line� and mean zonal kinetic energy �solid line� as a function of time. The eddy field is limited to poloidal
wavenumber m=5 and there is no stochastic excitation.
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FIG. 2. �Color online� Transient development of an equilibrium zonal jet. �a� Time development of the mean kinetic energy of the zonal flow, Em / �n0Te� �solid
line�, the mean eddy kinetic energy Ke / �n0Te� �dashed line�, and the total particle flux over the channel 
n	ci / �n0Te� �dash-dotted line�. �b� Zonal velocity
V / ��s	ci� as a function of the radial direction and time. �c� Eddy kinetic energy, log10�Ke / �n0Te��, as a function of the radial direction and time. �d� Eddy
induced zonal flow acceleration, −
u���� / ��s	ci

2 �, as a function of the radial direction and time. The parameters are �=1, rm=10−4	ci and the stochastic
excitation has equivalent rms velocity of 0.34�s	ci.
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B. Structural instability of the zero zonal flow state
as a function of the amplitude of the stochastic
excitation in the absence of drift wave instability,
�=0

We turn now to dynamics on the attractor of the SSST
DW-ZF system and first study the case �=0 in which there is
no drift wave instability and eddy variance is maintained
solely by external excitation. In the absence of zonal flow the
SSST equations �21a� and �21b� are translationally invariant
in the radial direction and the vorticity flux u��� vanishes,
and as a result the zero zonal flow is an equilibrium of the
SSST equations for any stochastic excitation and associated
turbulence level. The SSST equations can be linearized about
this zero state v̄E=0 and the eddy covariance that corre-
sponds to a chosen stochastic excitation of this zero state,
CkE, obtained from the steady state Lyapunov equation.
About this state perturbation equations can be obtained for
the perturbation zonal velocity �v̄ and perturbation eddy co-
variances �Ck in the form

� �v̄

�Ck
� = L�v̄E,CkE�� �v̄

�Ck
� . �22�

The growth rate and structure of the most rapidly grow-
ing eigenmode of L provide insight into the mechanism of
zonal jet emergence and equilibration in turbulence.8,9 Zonal
jets arise as finite amplitude nonlinear equilibria proceeding
from the most rapidly growing eigenmode of L linearized
about the zero state. Note that this jet forming instability
does not, in general, coincide with loss of stability of the Ak

operators which determine the stability of a finite amplitude
zonal flow to eddy perturbation.

The SSST system can be linearized about finite ampli-
tude SSST equilibria as well as about the zero state and the
bifurcation structure about these finite equilibria can be ex-

amined as a function of parameters to determine, e.g., the
circumstances under which jet breakdown occurs. It should
be noted in this context that equilibria of the SSST system
are necessarily perturbation stable. Consider as an example
the SSST stability of the zero zonal flow state, �CkE , v̄E=0�,
with �=0. In this case the zonal jet emerges as increase in
stochastic excitation, Qk, causes the turbulence level to ex-
ceed a threshold at which point L becomes SSST unstable.
As the amplitude of the excitation, Qk, is increased further
this bifurcation connects to finite amplitude equilibria in
which the eddies maintain finite amplitude zonal jets. The
bifurcation diagram of this zonal flow as a function of exci-
tation amplitude is shown in Figs. 4�a� and 4�c� together with
the associated nonlinearly equilibrated zonal jets. For weakly
supercritical excitation the structure of the zonal flow is
nearly that of the most unstable mode of the L operator, but
as the excitation increases the velocity of the zonal flow as-
ymptotes to a constant structure as shown in Fig. 4�d�.

We can understand an important aspect of the dynamics
of this asymptotic structure by noting that as the stochastic
excitation increases the zonal flow acceleration associated
with the ensemble mean Reynolds stress divergence,


u���� =
1

2	
k

R�ûk�̂k� , �23�

is comprised of a sum of low poloidal wavenumber fluxes
that decelerate the jet and high wavenumber fluxes that ac-
celerate the jet. As excitation and turbulence level increase
the vorticity flux of each component of this sum increases
while the sum tends to the small residual required to balance
the zonal flow dissipation because the low wavenumber
downgradient and high wavenumber upgradient contribu-
tions very nearly cancel.29 This dynamic can be seen in Fig.
5 in which the structure of the vorticity fluxes associated
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FIG. 3. �Color online� Evolution of the zonal flow and its associated spectrum for the example in Fig. 2. Left panels: zonal flow structure at T=10,30 and at
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with the equilibrium jet in Fig. 4�d� is shown. In Fig. 5�a� it
is seen that wavenumbers m=1,3 ,5 oppose the jet and
nearly cancel the upgradient contribution from the higher
wavenumbers. This cancellation becomes all the more com-

plete as the excitation increases and the equilibrium zonal
flow assumes asymptotic form. Because the total vorticity
flux vanishes in the collisionless limit, rm=0, these equilibria
are also the equilibria in this limit �as shown in Fig. 5�b��.
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FIG. 4. �Color online� �a� Maximum zonal flow velocity as a function of stochastic excitation for �=0. Stochastic excitation is measured by the urms that
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This demonstrates that in turbulence with vanishing colli-
sional damping of the zonal flow there are nonvanishing
equilibria that are independent of the turbulence intensity
and have the universal structure shown in Fig. 4�d�. It should
be noted that while this asymptotic zonal flow does not de-
pend on the turbulence intensity for a fixed spectrum of ex-
citation, it is sensitive to the spectral distribution because the
fluxes are upgradient for high wavenumbers and downgradi-
ent for low wavenumbers. For example, if only low wave-
numbers are excited no finite equilibria result for any rm as
all fluxes oppose the jet. Conversely, if only the high wave-
numbers are excited equilibria arise for rm�0 associated
with upgradient fluxes but in this case the equilibrium zonal
flow increases secularly with excitation increase until the jet
became structurally unstable.

We note, in the examples shown and in agreement with
observations and simulations, that the kinetic energy is con-
centrated in the energy of the zonal jet while the eddy kinetic
energy is greatly suppressed �cf. Fig. 6�.

C. Zonal flow equilibria as a function of the amplitude
of stochastic excitation in the presence
of drift wave instability, �>0

Introduction of unstable density stratification ��0
makes the zero state perturbation unstable and necessarily
structurally unstable for any stochastic excitation. These un-
stable eddy perturbations augment the turbulence and facili-
tate formation of zonal jets. An example with �=1 of jet

emergence from small amplitude random initial conditions in
an unstable flow with substantial stochastic excitation are
shown in Figs. 2 and 3.

The radial distributions at various poloidal wavenumbers
of the equilibrium particle flux and of the acceleration by the
Reynolds stress are shown in Figs. 7�a� and 7�c�. The eddy
induced acceleration of the zonal flow by small wavenumber
eddies is downgradient, opposing the jet, while the accelera-
tion due to larger wavenumbers is upgradient, as for the case
�=0. This cancellation implies, as for the case with �=0,
that the equilibrium flow asymptotes to a fixed structure as
the amplitude of the forcing increases and that this
asymptotic flow is also the equilibrium flow in the collision-
less limit, rm=0. Similar equilibria with zero collisional
damping have also been seen in turbulence simulations.46

The asymptotic equilibrium flow shown in Fig. 8 is found to
depend only weakly on �. For rm=0 this is the universal
equilibrium flow for all forcing amplitudes and for all �.
However, this equilibrium is structurally unstable for large
values of �, as will be discussed.

The eddy kinetic energy peaks at the gravest poloidal
scale, m=1. It is important to note that it is at large scales
that most of the eddy energy resides and also it is the large
scales that are responsible for the particle flux �the particle
flux peaks for m=3 as shown in Fig. 7�b�� as is also found in
turbulent simulations.33 The dominance of large scales in the
eddy variance and fluxes is consistent with these scales being
the least damped �cf. Fig. 3�, however, the eddy structure
does not assume the structure of the least damped modes. We
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show the structure of the least damped mode and the distinct
structure of the top EOF of the covariance matrix �this is the
eigenfunction associated with the largest eigenvalue of Ck�
for the gravest poloidal scale m=1 in Figs. 9�e� and 9�f�. We
also show the first SO which is the structure of the excitation
that would produce, if the flow was forced stochastically
with this structure at unit amplitude, the highest eddy energy
at statistical equilibrium �cf. for a discussion, Ref. 23�. The
difference in the structure of the top EOF, the least damped
mode, and the SO reveal the degree of nonorthogonality of
the modes of the operator which is related to their non-
normality as these would be identical if the system were
normal �cf. for a discussion of this point, Refs. 47 and 48�.

The non-normality of the HW system is central to its
dynamics. In order to appreciate its role consider the fre-
quency spectrum of the total eddy variance resulting from
excitation unbiased in time and space of the linearized HW
equations. This can be obtained by Fourier transforming the
perturbation equations �6a� and �6b� written in the form

d�̂k

dt
= Ak�̂k + F� , �24�

where Ak is given in Eq. �18�, � is Gaussian white noise and
F gives the radial structure of the forcing related to the noise
covariance Qk in Eq. �17� by Qk=FF†, to obtain

�k�	� = Rk�	�F�̂�	� , �25�

where variables that depend on 	 denote the Fourier ampli-
tudes, i.e.,

�̂k�	� =
1

2�
�

−�

�

�̂k�t�e−i	tdt , �26�

and �̂�	� is the Fourier amplitude of the Gaussian noise. The
resolvent R�	� determines the structure of the response and
is given by

Rk�	� = �i	I − Ak�−1. �27�

We form the correlation matrix

Ck�	� = 
�̂k�	��̂k�	�†� = Rk�	�QkRk�	�† �28�

and proceed to calculate the perturbation energy power spec-
trum as a function of phase velocity as

E�c� = 	
k

trace �Mk
1/2Ck�	/k�Mk

1/2� . �29�

Matrix Mk is the energy metric

Mk =
dx

4
�− �k 0

0 I
 , �30�

with dx the grid spacing, defined so that Ek= �̂k
†Mk�̂k is the

perturbation energy. The power spectrum is shown in Fig. 10
both for �=0 and �=1 along with the equivalent normal
response which is obtained by calculating the power spec-
trum by replacing Ak by a diagonal matrix with elements its
eigenvalues. If the forcing covariance were the identity the
equivalent normal response would be given by the resonance
formula,
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j

1

�i	 − ikcj�2
, �31�

where ikcj is the jth eigenvalue of Ak. The equivalent normal
power spectrum is equal to the power spectrum when Ak is a
normal matrix and the forcing is an identity, otherwise the
power spectrum exceeds the equivalent normal power spec-
trum and the difference reveals the degree of non-normality.
The difference reflects the excess power that is maintained
by the system against friction because of the non-
orthogonality of the eigenmodes.47,48 Note that the power
peaks at phase speeds near the maximum and minimum ve-
locity of the zonal flow. An asymmetry develops as � in-
creases with power becoming concentrated in the prograde
jet reflecting the increased instability of the prograde jet as
compared with the retrograde jet when ��0. Because the
frequency response arises primarily from the gravest poloidal
wavenumber this double peak in the turbulence spectrum as
a function of phase speed is reflected in the frequency spec-
trum with a double peak at 	=kminv̄max, where kmin is the
poloidal wavenumber corresponding to the gravest mode and
v̄max is the maximum velocity of the zonal flow. Similar
strongly peaked spectra indicative of coherent large scale
structures in zonal jet equilibria have been observed.49

The particle flux at equilibrium reflects the structures
producing it. This flux reaches a maximum as a function of
poloidal wavenumber at m=3 as seen in Fig. 7�b�. The flux is
downgradient where the jet is prograde and becomes upgra-
dient where the jet is retrograde. The difference between the
upgradient and downgradient particle fluxes leads to a small
downgradient residual which is responsible for the eddy en-
ergy source. The regions of upgradient flux show that the

particle flux is produced by large coherent structures rather
than resulting from random advection by small eddies as
would be the case if it were diffusive.

D. Zonal flow equilibria for �>0

The dependence of zonal flow equilibria on the ampli-
tude of the stochastic excitation in the presence of an internal
energy source ��=1� is similar to that of zonal flows in the
case without an internal energy source ��=0�. We find equi-
libria in the collisionless limit, rm=0, and these exist for all
forcing amplitudes. These equilibria are indicated by a
dashed line in the bifurcation diagram in Fig. 11�c� along
with the equilibria that result for rm=10−4. The equilibria for
nonzero damping tend to the equilibria for rm=0 as the sto-
chastic excitation increases. This asymptotic is reflected in
the eddy induced zonal flow acceleration which asymptotes
as the stochastic excitation increases �shown in Fig. 11�b��.
The eddy kinetic energy at equilibrium increases with the
amplitude of the stochastic excitation and is minimized for
zero collisional damping, rm=0. The particle flux, measured
by the average value 
n /Lx, increases with stochastic excita-
tion and for zero mean collisional damping the particle flux
is increasing quadratically with stochastic excitation accord-
ing to 
n /Lx=0.0265urms

2 . From this it is clear that it would
be desirable to operate a device at low stochastic excitation
levels and with reduced mean collisional damping if maxi-
mizing confinement is the goal. All the equilibria of Fig. 11
are structurally stable for the chosen parameters. However,
the basin of attraction of the equilibria is not the whole
space. Also note that there are no equilibria with rm=10−4 for
stochastic excitations smaller than urms=0.065.
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2 �, as a function of radius and
time. The parameters are �=1, rm=0 and the stochastic excitation has equivalent rms velocity of 0.34�10−7�s	ci. For these values there exists an equilibrium
zonal flow with a limited basin of attraction, and this equilibrium state cannot be approached from initial states with small zonal flows.
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Stochastic excitation, which augments the turbulence, is
important for the equilibration process. In the absence of
stochastic excitation the eddy field is dominated by the fast-
est growing modes and the structure of the covariance is not
of high enough rank to include the diversity of structures
required to produce equilibration. At zero or very low sto-
chastic excitation a vacillation regime is found as occurs for
slightly supercritical states in baroclinic turbulence,50 while
for sufficiently high excitation and associated turbulence lev-
els one obtains equilibria. These equilibria for substantial
stochastic excitation �i.e., urms�0.1� are not only structurally
stable but also have a basin of attraction that spans the whole
space. However, as the excitation and the supported turbu-

lence is reduced the basin of attraction of the equilibria
shrinks and finally at a critical value equilibria cease to exist.
Operationally, states with low stochastic excitation and small
particle fluxes can be approached by first obtaining an equi-
librium by increasing the stochastic excitation and then adia-
batically adjusting the parameters to reach these isolated in
parameter space states.

The vacillation regime mentioned above is not a vacilla-
tion of the trajectory of a single realization of the turbulence
but rather a vacillation regime in the trajectory of the prob-
ability density function of the turbulence in the �Gaussian�
SSST approximation.

We show in Fig. 12 a state of chaotic DW-ZF fluctua-
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FIG. 13. For the case shown in Fig. 12: �a� particle flux at a single location as a function of time; �b� zonal flow kinetic energy; �c� eddy kinetic energy; �d�
average particle flux.
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tions at �=1 with very weak forcing �producing equivalent
urms=O�10−7� / ��s	ci�� and zero mean collisional damping.
We have determined that there exists an equilibrium state but
this equilibrium state has a small basin of attraction and can-
not be approached from the SSST initial conditions chosen in
this example �which are low turbulence levels, and very
small zonal flow�. A similar chaotic state persists for these
parameters when the collisional damping is raised to
rm=10−4, but for that damping there is no SSST equilibrium
underlying this state �cf. Fig. 11�c��. In Fig. 12�a� we see the
initial development of the zonal flow, followed by an adjust-
ment period, but unlike the case with strong stochastic exci-
tation shown in Fig. 2, which adjusted to equilibrium by
stabilizing the perturbations, the instability remains and al-
ternating periods ensue of high eddy activity �low zonal
flow� and low eddy activity �high zonal flow�. The fluctua-
tions settle to a chaotic bursting pattern in the zonal flow and
the eddy variables as shown in Fig. 13. The eddy variables,
the particle flux at a specific location, the eddy kinetic en-
ergy, and the integrated particle flux have a sawtooth struc-
ture in which a slow build up of the eddy variance associated
with the underlying instability is followed by a rapid collapse
of the eddy fields as the zonal flow develops and converts the
eddy energy to mean zonal energy over an advective time
scale. The mean zonal kinetic energy exhibits a sawtooth

behavior in which the mean develops very rapidly and then
slowly adjusts under the influence of the weak induced mean
eddy accelerations. Such sawtooth structures have been com-
monly observed and simulated.1,51

For the same parameters that we obtained the chaotic
regimes shown in Fig. 13, there exists an isolated stable
equilibrium with a limited basin of attraction. This equilib-
rium state can be elicited by impulsively introducing any
SSST zonal flow that is stable at these parameters. Immedi-
ately upon introduction of the zonal flow the eddy energy
and the particle flux are quenched and the flow asymptoti-
cally relaxes to the equilibrium flow as shown in Fig. 14. If
the parameters do not support an equilibrium DW-ZF state
then the zonal flow eventually breaks down and a chaotic
regime ensues. For example, if the collisional damping is
raised to rm=10−4	ci there is no equilibrium at this amplitude
of stochastic excitation and in time O�1 /rm� the imposed
zonal flow reverts to a chaotic state.

Regime transition can be controlled using stochastic ex-
citation as a control parameter. As the excitation increases
the chaotic bursting gives way to a quasiperiodic regime and
by further increasing the stochastic excitation a fixed point
DW-ZF equilibrium jet state is established as shown in Fig.
15. Having obtained an equilibrium jet state we then reduce
the stochastic excitation �shown in Fig. 16� and find that the
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FIG. 17. Equilibrium state diagnostics as a function of mean collisional damping. �a� Particle flux. �b� Maximum vorticity flux. �c� Maximum equilibrium
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jet persists as the stochastic excitation is reduced and both
the eddy kinetic energy and the particle flux vanish with the
excitation. This equilibrium state exists at the same param-
eter values for which periodic and chaotic behaviors are ob-
tained. Hysteretic transition between a steady zonal flow
state and a chaotic turbulent state is common in turbulent
systems such as sheared boundary layer flows which exist in
laminar and turbulent states at the same parameter values.

Dependence of zonal flow, eddy variances, and fluxes at
equilibrium on mean collisional damping is shown Fig. 17;
the particle flux increases with mean collisional damping, as
does the eddy energy while the zonal flow velocity de-
creases, as is also found in turbulence simulations.14

E. Loss of structural stability at large �

We now investigate zonal flow equilibria as a function of
�. These equilibria, as already discussed, are most easily
initialized at high stochastic excitation amplitude and low
mean collisional damping. We study the dependence of these
equilibria on � at high turbulence levels �with equivalent
urms=0.34 / ��s	ci��. The maximum zonal flow speed is
shown in Fig. 18�a� as a function of � and the mean particle
flux averaged over the whole domain is shown in Fig. 18�b�.
The particle flux is seen to initially increase linearly with �.
The equilibria are globally attracting up to about �=1.5, for

the parameters of this problem, but the basin of attraction
contracts as � is increased until the flow becomes structurally
unstable at �=2.534, and no equilibria exist for larger values
of �. Although equilibria exist for ��1.5 these equilibria
cannot be reached from the above listed fixed parameters
starting from any initial condition, but they can be reached
by first establishing an equilibrated state at a lower value of
� and then increasing � adiabatically; although operationally
these states are most readily established by first going to
higher stochastic excitation, corresponding to a higher level
of turbulence, then increasing � and finally reducing the
excitation.

The equilibrated flows and the corresponding minimum
damping decay rate of the least damped mode at each poloi-
dal wavenumber m are shown in Fig. 19 for the critical
�c=2.534 and for the smaller unstable stratifications
�=2.52 and �=2.0425. As the critical value of �c is ap-
proached the poloidal, m=5 wave, tends toward instability.
However, as �→�c the damping decay rate of the least
damped mode approaches, for the chosen parameters
kcimax→−0.12	ci while the fluxes and the equilibrium zonal
flow tend to diverge as �c is approached and no equilibrium
flows can be sustained for ���c and transition to a time
varying state occurs. This result shows that the jet first loses
structural stability as a function of � rather than modal
stability.
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IV. DISCUSSION

There are a number of points we wish to emphasize in
connection with the above results.

�1� A novel concept arising from SSST is that of the struc-
tural stability boundary for zonal flow breakdown as dis-
tinct from breakdown related to shear instability of the
zonal flow.

�2� Multiple DW-ZF regimes are predicted to exist in pa-
rameter space including a regime of steady zonal flows
as well as regimes of periodic, quasiperiodic, and cha-
otic bursting or “sawtooth” behavior. These regimes pro-
vide opportunity for placing and manipulating confine-
ment devices to be in a desired dynamical state between
high and low confinements.

�3� SSST predicts that isolated DW-ZF equilibria at high �
are not connected continuously to lower � states but that
these states can be reached either using external turbu-
lence excitation or finite amplitude state perturbation to
promote the system between these equilibria.

�4� A mechanism for introducing and modulating turbulence
levels is predicted to provide a powerful control param-
eter for placing the DW-ZF system in desired confine-
ment states.

�5� In the limit of vanishing zonal flow collisional damping
a universal DW-ZF state is supported in which a precise
balance between downgradient momentum transport by
small wavenumbers and upgradient transport by high
poloidal wavenumbers occurs. This asymptotic equilib-
rium predicts that band limiting turbulence can prevent
formation of stable equilibrium zonal flows.

�6� Density fluxes are not diffusive but rather are primarily
produced by large scale structures. Robust fluxes both
up and down the mean gradient occur, and it follows that
particle transport analysis requires a full wave solution.

V. CONCLUSION

Emergence of zonal jets in turbulent flow and the rela-
tion of these jets to the statistical equilibrium of the turbulent
state is a problem of great theoretical and practical interest.
This problem is particularly compelling in the case of turbu-
lent plasmas because of the relationship of zonal jets to the H
states that limit turbulent transport of particles and heat in
magnetic confinement fusion devices. DW-ZF interaction dy-
namics is responsible for the generation and regulation of
these zonal flows so it follows that prospects for predicting
and controlling the H state require improvement in funda-

0 2 4 6 8 10 12 14 16

−0.5

−0.4

−0.3

−0.2

−0.1

0

m

k
c

i/
ω

c
i

0 1 2 3 4 5 6 7 8 9 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x/ρs

V
/
(ρ

s
ω

c
i)

FIG. 19. �Color online� Approach to structural instability as a function of �. Top: zonal flow velocities as the critical �c=2.534 is approached. Bottom: the
corresponding maximum growth rate of perturbations as a function of poloidal wavenumber m. Solid line: �=2.534; dashed line: �=2.52; dash-dotted line:
for �=2.0425. The parameters are rm=10−4 and the stochastic excitation has equivalent rms velocity of 0.34�s	ci.
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mental understanding of the mechanism underlying the sta-
tistical steady state of zonal jets in drift wave turbulence. In
this work we applied the methods of SSST to the HW model
to study the emergence, stability, and effect on transport of
zonal jets in the DW-ZF system. We find robust zonal jet
formation in agreement with both experiment and simulation
and obtain parameter requirements for jet formation and
breakdown. We find multiple regimes including chaotic, pe-
riodic, and steady and show that externally imposed turbu-
lence and finite amplitude zonal flow perturbations can be
used to control regime transition. We find suppression of
particle transport by zonal flows and show that this transport
is not diffusive in nature. These results provide a basis for
predicting and controlling confinement regimes in DW-ZF
turbulence.
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