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ABSTRACT

Forecast reliability is known to be highly variable and this variability can be traced in part to differences in
the innate predictability of atmospheric flow regimes. These differences in turn have traditionally been ascribed
to variation in the growth rate of exponential instabilities supported by the flow. More recently, drawing on
modern dynamical systems theory, the asymptotic divergence of trajectories in phase space of the nonlinear
equations of motion has been cited to explain the observed loss of predictability. In this report it is shown that
increase in error on synoptic forecast time scales is controlled by rapidly growing perturbations that are not of
normal mode form. It is further noted that unpredictable regimes are not necessarily associated with larger
exponential growth rates than are relatively more predictable regimes. Moreover, model problems illustrating
baroclinic and barotropic dynamics suggest that asymptotic measures of divergence in phase space, while applicable
in the limit of infinite time, may not be appropriate over time intervals addressed by present synoptic forecast.

1. Introduction

Richardson’s vision of predicting the weather by in-
tegrating the equations of motion (Richardson 1922)
remains a central preoccupation of meteorology today;
and the discipline could not hope for a more objective
measure of its progress than is provided by the daily
forecast verification. Despite the availability of a vast
synoptic dataset augmented by surface, airplane, and
satellite observations and use of the most powerful
computers, the goal of providing reliable forecast be-

yond a few days has proved elusive. In an effort to .

comprehend the apparent difficulty of this problem
studies have been conducted beginning with the first
modern NWP efforts to assess the limits of predict-
ability (Thompson 1957). With the exception of Lor-
enz (1969), these have concentrated on the sensitivity
of models to perturbations using direct integration of
initially nearby states (Charney et al. 1966; Smagorin-
sky 1969; Lorenz 1982; Dalcher and Kalney 1987,
Chen 1989). These studies probe behavior of models
directly and are augmented in some cases by compar-
ison of model results with observations. Lorenz’s search
for analog states in observations provided a direct
measure of predictability, unfortunately no close an-
alogues were found. Results of these studies can be
summarized by the error equation:

(1.1)
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in which E is some measure of error such as the rms
500 hPa deviation between forecasts, « is an exponen-
tial error growth rate, and v enforces saturation at the
variance of uncorrelated realizations. Identification of
« with exponential instability is plausible because val-
ues of the order of a few days for doubling are found
that compare approximately with the growth rate of
unstable waves although there is fairly wide variation
in both these quantities. However, such a simple ex-
planation is not likely to be complete because it is
known that the error growth is distributed irregularly
in space and time (Lorenz 1965; Hoffman and Kalnay
1983) and does not correlate with instability measures
(Kallen and Huang 1988; Palmer 1988). Moreover,
the doubling time is an integral average quantity that
is not easily associated with what are often highly lo-
calized variations in stability measures. Plots of increase
in error with time (Hoffman and Kalnay 1983; Chen
1989) tend to rise smoothly to saturation suggesting
that alternative two-parameter functions may serve as
well as (1.1).

In the study referred to above, Palmer (1988) finds
predictability of the ECMWF forecast model varies
with the flow regime, and when unpredictable regimes
are isolated they have enhanced response to pertur-
bations but there is no corresponding enhancement of
exponential instability. This finding is at least com-
patible with results on the excitation of baroclinic flows
in which perturbation development is found even in
the absence of exponential instability (Farrell 1985,
1989).

The predictability problem is intrinsically linear in
its early stages. Nonlinearity affects the evolving basic
state that is perturbed and ultimately it also affects the
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saturation of the perturbation growth. Yet, for suffi-
ciently small perturbations there is an interval in which
the tangent linear equations are valid. While progress
being made in nonlinear dynamics offers hope for a
complete theory of predictability including the satu-
ration stage, well-known methods suffice for under-
standing the linear interval. In this work, linear small
error theory is applied to the study of predictability. A
simple baroclinic shear model and a barotropic channel
model with a localized jet are used as examples.

;2. Linear theory of predictability

The dynamics of small errors that forms the theo-
retical basis of this work was introduced into the study
of predictability by Lorenz (1965) and used recently
by Lacarra and Talagrand ( 1988) [see also Dutton and
Wells (1984)]. Consider the state of the atmosphere
indicated by a point in an appropriate phase space.
Nonlinear equations of motion govern the trajectory
of the system from an initial time £, to a later time ¢,
but for sufficiently small perturbations of the initial
state at ¢ and for a correspondingly restricted interval
of time 7 = t; — [, the equations governing perturba-
tions are linear; the tangent linear system linearized
about the unperturbed trajectory.

Explicitly, the nonlinear equation:

av

@ F(¥)
with solution Wq(¢) is associated with the linear error
equation:

(2.1)

9 _ Ly,

dt
in which L = (dF /¥ )(¥,(2)) is in general a function
of time. In the present study ¥, is restricted to station-
ary solutions making the error equation autonomous
and also a discretization is performed so that L can be
written as a matrix and ¢ as a vector. The resolvent of
(2.2)at ¢ = 7 is denoted by A, so that Y(7) = AY(0).
A measure of the magnitude of ¢ that distinguishes
between large and small errors requires definition of a
norm |y| = (y*By)'/? where B denotes a positive
definite quadratic form and a superscript star denotes
the Hermitian transpose. In a related study of optimal
excitation, Farrell (1988, 1989) found results were
sensitive to the choice of norm, and the reasons for
this are of interest. Traditionally B = | is chosen, |
denoting the identity matrix. There are drawbacks to
this choice of the rms streamfunction deviation to
measure perturbations: in baroclinic problems it em-
phasizes waves that propagate from lower regions where
the density is high into.the stratosphere growing pri-
marily as a result of the exponential density stratifi-
cation. In both baroclinic and barotropic dynamics the
rms streamfunction norm permits disturbances with
large localized velocity to be considered small pertur-

(2.2)
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bations because derivatives of the streamfunction, cor-
responding to velocity, do not enter directly in the def-
inition of the norm. Although previous work on the
predictability problem has tended to use a measure
based on the rms streamfunction, often height of the
500 hPa surface, in this study B is chosen to be the
operator which, in the volume integral, returns total
perturbation energy.

Error dynamics can be viewed as the evolution along
the solution trajectory of the initial error, spherical in
the energy norm, into an ellipse in that norm according
to:

oT[A*BA,1¢; = \pTBg;. (2.3)

Axes of the error ellipse at time 7 are proportional to
\:'/? and the corresponding eigenvectors ¢; are a lin-
early independent B orthogonal set that span the space
of perturbations and can be ordered by magnitude, the
largest A being the factor by which the energy of the
optimal ¢ increases over the time interval 7. The ¢;
are a linearly independent set of functions into which
the energy of an initial perturbation is partitioned by
B projection. The spectrum \; provides information
needed to understand predictability in the linear re-
gime, for instance the volume of the error ellipse at ¢
= 7 is proportional to [T%; X;!/2. This volume is con-
stant in the absence of dissipation but becomes more
contracting with greater damping. Values of A; > 1 are
associated with perturbations that increase in energy,
while perturbations with A; < 1 decay. It is of interest
to know the size of the subspace of growing pertur-
bations and whether it is dominated by a few distur-
bances. The optimal excitation, which is associated with
the largest eigenvalue, is the most amplifying distur-
bance and it will turn out not to have the form of an
exponential normal mode. The structure into which
this perturbation evolves at time 7 is the preferred re-
sponse of the system on this time scale, its structure is
also of interest. The sum (1/N) Z¥ ), is the factor by
which perturbation variance increases under the as-
sumption that every perturbation is excited equally.
Even if error ellipse volume is contracting, some \;’s
may be large enough so that total variance increases.
By solving for the spectrum on the interval 0 < 7 < 79,
an assessment of the growth of error for an ensemble
excitation can be found and compared with the pre-
diction of a constant exponential growth as in the small
error limit of (1.1).

3. Predictability of baroclinic shear flow

Although the theoretical basis for understanding
predictability of small errors is general and applies to
any set of dynamical equations, it is useful to restrict
a preliminary investigation of its implication to sim-
plified dynamics and well known examples. Many
studies in the past addressed global predictability, often
with a full GCM. While those results are directly ap-
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plicable to the NWP forecast problem, the intricacies
of highly coupled 3D dynamics, often including mi-
crophysics, complicates interpretation. The first ex-
ample studied here is the quasi-geostrophic baroclinic
shear problem. The physical situation being modeled
is baroclinic development on time scales appropriate
to synoptic forecast such as an event of cyclogenesis.

Assuming constant density scale height and includ-
ing the beta effect the nondimensional perturbation
quasi-geostrophic potential vorticity equation for the
scaled streamfunction:

s 2 Y
v=y(2,1) Ve e cos(1y) (3.1)
is:
.\ N &2
(5 + ikU)[¢z‘z‘ - (S2 - 8:+ —)w]
+ zk(g + 28~ 055){0 =0. (3.2)

Boundary conditions include Ekman convergence at
the lower boundary:

%(@ﬁﬁ&)—i&(ﬁf—f)&w, £=0. (3.3a)

6%({05 +8¢) — ikUsy =0, £=2. (3.3b)

The first meridional mode with y=0aty=x(x /
2/) is_assumed, and the nondimensionalizations 7
= tAV; k= kH/Ve_o, Z = z/H are made. We define

the total wavenumber & = Vk2 +/ 2, and the square
ratio of the Coriolis parameter to the Brunt-Vaisild
frequency ¢ = fu2/ N%; then we scale ¢ by a characteristic
value, €5 = fo?/No%, so that ¢ = ¢/¢. The problem is
characterized by the nondimensional beta parameter
B8 = BH/Ae¢y, the Ekman parameter:

~ IN { v \'?&?
=—(—| = .
AH(Zfo) % (3.4)
and the stability parameter:
~ 1 €5
S=—-={—-1 .
() oo

where » is the vertical eddy viscosity coeflicient and A
is a mean value of the shear.

Tildes are dropped in sequel.

We choose parameter values appropriate to the
midlatitude troposphere: fo = 104 s~!, N= 107257,
H=10kmA=3ms'km and8=16X 107!
m™! s~!. This results in 8 = 0.53. The meridional
wavenumber / = 2.0 corresponds to a 3100 km wave-
length typical of midlatitude cyclogenesis. With these
values, a unit of nondimensional time is 9.3 h.

This problem, together with its boundary conditions,

BRIAN F. FARRELL

2411

can be written in matrix operator notation using cen-
tered differences on N points and assuming the solution
form ¢, = Eje!®**" cos(ly) as:

Léj = wjéj,
where E; denotes the j’th of N eigenvectors of L.

The vertical structure of the physical streamfunction
modes is:

(3.6)

E, = PE; (3.7)
where,

ezm/2

Omn-
V €(zpm)

Assuming a fixed wavenumber X, the evolution in time
of an initial physical perturbation y(0)e™** cos(ly) can
be expressed as:

P=

(3.8)

W) = A ¥¢(0) (3.9)

where A, is the resolvent. Using E, the matrix having

the physical eigenvectors as columns, and A,
= 6mne(ikx+wmt),

A, = EAE7. (3.10)
Area average energy is given by K = y*By with:

B= —"—%’—) [a?D + (P'A)*(P'4)],

(3.11)
where D = e ?§,,, and A denotes the finite difference
z derivative operator.

Zonal wind and static stability distribution are cho-
sen to model the troposphere and lower stratosphere
with zonal wind approaching a constant above one
scale height and static stability increasing by a factor
of 4 at this simulated tropopause:

z— 15
1 + tanh
tan( 05 )

Ulizy=z-(z-1.5) 2‘

(3.12a)
z— 1.5 '
0.15

1+ tanh(

e'(z)=1+3 (3.12b)

2

Given this wind and static stability it remains to
solve (2.2) for the eigenvalues A; and the eigenvectors
¢;. The spectrum of excitation for the undamped case
with 7 = 6 corresponding to 55.8 h is shown in Fig. 1
for N = 100. Notice the symmetry of the spectrum
indicating that volume in phase space is conserved in
this norm. There is one unstable mode in the problem
with the indicated growth. Clearly neither the dimen-
sion of the space of growing perturbations nor the rate
of error growth is well represented by the exponential
normal mode.
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FIG. 1. Spectrum of .perturbation energy growth in undamped
baroclinic shear flow over six time units corresponding dimensionally
to 55.8 h. Growth of the unstable mode would result in the value
indicated by the cross. Symmetry of the spectrum is clear in this log
plot implying that error ellipse volume is conserved in this energy
measure.

Plots of the spectrum similar to Fig. 1 made at lower
resolution reveal that the additional modes populate
the region of near zero A; as resolution is increased,
suggesting that N = 100 provides sufficient resolution
for the values of 7 used here. It is possible to assess
from a plot such as Fig. 1 a lower bound on the reso-
lution required in a numerical model by examining
the structure of the appreciably growing perturbations
and choosing a number of collocation points or spectral
componeénts necessary to resolve these perturbations.

The spectrum of excitation with » = 10 m2 s~ (T
= 0.075) for which there is no growing exponential
normal mode instability is shown in Fig. 2. Error ellipse
volume is not conserved. While the number of growing
perturbations is nearly equal to the number of those
decaying, an estimate of the effective dimension of the
error dynamics could be made by counting the appre-
ciably growing perturbations, as there is a fairly robust
separation between these and their less favored com-
panions. -

Development of the perturbation associated with the
largest A is shown in Fig. 3. This most rapidly growing
perturbation resembles the scenario of an upper level
disturbance overtaking a lower level depression referred
to by Petterssen and Smebye (1971) as type B cyclo-
genesis.

In both these examples a small number of pertur-
bations dominate the error growth, and a conceptual
problem arises if the simplest assumption for calculat-
ing the growth of variance is made: equal excitation of
the perturbations. The rapidly growing perturbations
are represented at low resolution, and as the resolution
is increased more slowly, growing and damped modes
enter the variance sum, making the apparent predict-
ability an increasing function of resolution. It seems
necessary to limit the form of allowed perturbations,
perhaps by appeal to observation, so that projection
on contracting subspaces is limited in order to make
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an estimate of variance growth that is convergent with
increasing resolution. One rational way of doing this
would be to distribute the error according to the ob-
served spatial spectrum of synoptic scale variance. A
simpler alternative is suggested by the dominance of
error growth by a subset of perturbations: the growth
ordered perturbations are partitioned into 1) a lower
subset of contracting and slowly growing perturbations
with total variance equal to that of the original per-
turbation and 2) the remaining dominant upper subset
responsible for most of the growth in variance. There
are six perturbations in the latter for the example in
Fig. 3. »

Growth of error variance calculated from the largest
and the rms of the six largest perturbations is plotted
as a function of 7 in Fig. 4. Following an initial ad-
justment, the growth in variance is nearly linear in
time rather than exponentjal as in the error growth
model (1.1). Plots of error variance as a function of
time obtained from numerical experiments often dis-
play a similar interval of linear growth at small error
amplitude (Hoffman and Kalnay 1983; Chen 1988).
It is important to recognize that the perturbations that
dominate the variance differ at each 7, unlike an ex-
ponential normal mode dominated growth that would
have the structure of the mode at all times.

A centered difference approximation to the growth
rate:

_1AK
T K Ar

is plotted as a function of 7 in Fig. 5. Notice that the
growth rate is a function of time rather than a constant
as would be expected for exponential increase.

It is important to realize that the error growth rate
for the ¢t > oo asymptotic of this model with realistic
damping is zero, as there are no growing e¢xponential
normal modes. Asymptotic measures of divergence for

250
200

150
A

100

50

C e,

00 —

FIG. 2. Spectrum of perturbation energy growth in Ekman damped
baroclinic shear flow (I' = 0.075) for the energy norm at time 7 = 6
corresponding to 55.8 h. Dominance of a few perturbations with
large growth can be seen more easily with this linear energy scale.
‘There are no unstable modes.
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FIG. 3. Development of the perturbation associated with greatest growth in the Ekman damped baroclinic shear
problem. Normalized maximum value of perturbation streamfunction and energy are indicated at each time.

nearby states fail in this case to capture essential fea- Consider whether variance on the “slow manifold”
tures of error dynamics on the synoptic forecast time (Leith 1980) of synoptic scale motions is primarily ex-
scale. ternally forced or internally generated. This question
is closely related to the problem of transition from or-

50.0r dered to turbulent flow and the dynamics maintaining

a turbulent state. It is clear from both the above ex-
ample and the next example that perturbation variance
can be initiated and maintained by amplification of

400} perturbations and that stochastic disturbances grow
08
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FIG. 4. Error growth as a function of 7 in the Ekman damped F1G. 5. Instantaneous growth rate as a function of 7 for the baro-

baroclinic shear problem calculated from the single most rapidly clinic shear flow with Ekman damping, single most rapidly growing
growing perturbation, solid; and the rms growth of the six fastest  perturbation, solid; rms growth of the six fastest growing perturbations,
growing perturbations, dashed. dashed.
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under the fairly general circumstance that perturbations
not be predominantly restricted to the contracting sub-
space. In this view the background large scale flow is
thought of as an amplifier rather than as an unstable
oscillator. Maintenance of variance results from wholly
exogenous stochastic excitation or, complementarily,
from closing the feedback loop connecting the input
of the amplifier to its output by a parameterized process
of induced excitation organized by the amplifying dis-
burbances. A concrete example of these processes oc-
curs in the atmosphere where surface concentrations
of potential vorticity and temperature gradient become
involved in cyclogenesis events. These potential vor-
ticity perturbations can often be traced to diabatic pro-
cesses such as the formation of coastal fronts aug-
mented by production of potential vorticity associated
with latent heat release before and during the cyclo-
genesis. These are examples of external perturbations
injecting potential enstrophy onto the slow manifold
of approximately quasi-geostrophic synoptic scale dy-
namics, but these processes are in turn, to some extent,
induced by the large scale flow in a manner at least
suggestive of a feedback.

4. Predictability of a barotropic jet

The ideas advanced above should be extended to a
fully resolved GCM but there are numerous obstacles
to this project, not the least of which is the prohibitive
computational demands of the technique used here
when it is applied to models with many more degrees
of freedom. It is possible however to extend the com-
putation to a barotropic jet localized in two dimensions.

The barotropic vorticity equation governs barotropic
flow confined by rigid horizontal boundaries and is
regarded as applying at some midtropospheric level of
nondivergence when used to model atmospheric dy-
namics. Linearized about a basic state flow ¥, the
equation is:

d d 0
— VY + |-V, —+ ¥, — |V?
a” ¥ ( Yox 7 6y) v

+ (¢, VP, + Y,V =0 (4.1)
in which distance is nondimensionalized by the half
channel width, and time is nondimensionalized by the
ratio L /U where U is the maximum velocity difference
across the channel. Typical atmospheric values would
be 1000 km and 30 m s~ resulting in 9.3 h per time
unit. Periodic boundary conditions are used in x and
channel boundaries require ¥ = constant along walls

aty = =1.
A localized jet is defined by
tanh(yd(x))
=—{0.ly+ ————= 4.2
v (0 T anh(5(0) ) (42)
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x~— 2.
x)=1+ 1.5<[1 + COS[zw(T—)]]/2.> s
0. <x<4.

The spectrum of error growth in the norm associated
with kinetic energy:

R =204 +¥:2) (4.3)
is shown for a total of 450 perturbations resulting from
discretization on 30 zonal and 15 meridional grid
points in Fig. 6. The subset of growing perturbations
is larger in this example and the separation between
the dominant and slower growing perturbations is less
distinct than in the baroclinic model. Development of
the perturbation with the largest growth in six units of
nondimensional time corresponding to 56 h is shown
in Fig. 7. Orientation of low and high centers in relation
to the jet during development corresponds to obser-
vations of a process referred to as “trough phasing” in
the synoptic literature. Rotation of the troughs from a
“positive” toward a “negative” tilt, which continues
after the last time shown in the figure, is characteristic
of such development.

There is an unstable mode in this undamped model
that e-folds in 7.5 nondimensional time units, corre-
sponding to 70 h, and its growth is indicated in Fig. 8.
It is worth noting that because the instability is con-
vective rather than absolute, imposition of a Rayleigh
damping sponge layer with a time scale of one non-
dimensional unit confined to the interval 3. < X < 4.
eliminates the instability. With this damping the de-
crease in growth of the optimal perturbation at 7 = 6.
is only 17%.

Increase in error variance K'/? as a function of 7 is
shown for the most rapidly growing and rms of the
dominant 20 perturbations in Fig. 8. A linear increase
in rms variance similar to that found in the baroclinic
example is found. While the growth of the optimal

25.0

200
15.0

A

100

50

.\

FIG. 6. Spectrum of eigenvalues for the kinetic energy norm in
the localized barotropic jet with 7 = 6 which corresponds to 55.8 h.
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FIG. 7. Development of the perturbation with the greatest growth in energy for the barotropic localized jet at r = 6,
which corresponds to 55.8 h. Streamfunction of the localized jet is superposed. The process of trough phasing and
transfer from positive to negative tilt of trough lines during the development can be seen.

perturbation greatly exceeds that of the unstable mode
at 7 = 6., even the rms of the first 20 perturbations is
larger, indicating that equal excitation of all the per-
turbations is on average considerably more effective as
a means of increasing error than is the direct excitation
of the unstable mode.

5. Conclusions

Keeping in mind the limitations of this study, our
results for small error growth on stationary states sug-
gest some implications for predictability:

i) Increase of error variance over time scales appro-
priate to synoptic forecast is determined by the growth
of a set of perturbations that are not of exponential
normal mode form.

FIG. 8. Error growth as a function of 7 calculated using the single
most rapidly growing perturbation, solid; rms growth of the twenty
fastest growing perturbations, dashed; and the growth of the unstable
mode, dash dot.

ii) The set of robustly growing perturbations is much
larger than the set of exponential modes but smaller
than the set of all perturbations.

iii) An estimate of resolution necessary to accurately
model error dynamics over a prescribed time interval
can be made by requiring that the perturbations grow-
ing appreciably over that interval be resolved.

iv) The most rapidly growing perturbations evolve
into structures that can be identified with the preferred
responses of the system.

v) Error growth as determined by the rms variance
of appreciably growing perturbations is not exponen-
tial, and in the examples, increases approximately lin-
early with time over time scales associated with syn-
optic forecast.

vi) Asymptotic measures of nearby phase space tra-
jectory divergence, while applicable as ¢t - o, fails to
capture the relevant error dynamics on synoptic fore-
cast time scales in the models studied here.

vii) Examples demonstrate that provided a straining
flow is sufficiently underdamped, there will be system-
atic amplification of a large subset of imposed broad-
band disturbances regardless of the flow’s exponential
stability.

While the theory above can be extended to nonsta-
tionary flows in which the resolvent and its adjoint are
obtained by integration of the time dependent tangent
linear equation and its adjoint equation (Lacarra and
Talagrand 1988). The computational burden entailed
in isolating the complete spectrum of perturbations
appears to be great.

Two major limitations of this study are restriction
to small error dynamics that permits the use of linear
error equations and the assumption of a stationary basic
state that permits these equations to be autonomous.



2416

However, understanding the dynamics of small errors
is an important step toward a full theory of predict-
ability. Moreover, while autonomous equations are less
rich in dynamics than the time dependent equations
resulting from linearization about an evolving trajec-
tory, in a study of an evolving barotropic flow the sta-
tionary basic state approximation was found to give
accurate results, at least for the most rapidly growing
perturbation (Lacarra and Talagrand 1988). The es-
sential reason for this is that the rapidly growing per-
turbations in the model grow on short time scales com-
pared to the time scale of basic state change, so that
ignoring change in the basic state does not severely
affect perturbation development.
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