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ABSTRACT

We examine the role of interior potential vorticity perturbations in surface frontogenesis using the two-
dimensional semigeostrophic Eady model. Fronts form rapidly for properly configured small disturbances even
at zonal wavenumbers for which no exponentially unstable modes exist. While lack of exponential growth does
not preclude frontal development, the strength of the disturbance must exceed an amplitude threshold for frontal
formation. In practice, the finite amplitude constraint is not severe requiring meridional winds of a few meters

per second.

Model integrations illustrate the variety of frontogenesis phenomena that arise from interior potential vorticity
perturbations including formation of near surface vertical velocity maxima.

1. Introduction

A ubiquitous feature of large scale atmospheric
weather systems at midlatitudes is surface concentrated
zones of sharp transition in velocity and temperature
called fronts. These fronts have velocity and temper-
ature contrasts ranging from a few to as much as 50
m s~! associated with temperature contrasts of up to
20 K. The across-front scale is typically much smaller
than the along-front scale with 10 km and 1000 km,
respectively, being representative. Frequently fronts
become indistinct a few kilometers above the surface;
however, there are cases of fronts that have been ob-
served to extend through the depth of the atmosphere
(Sanders 1983). The fronts considered in this paper
are surface concentrated.

Originally the front was viewed as a discontinuity
in temperature and velocity, and this idea formed the
basis of the polar front model advanced by the Nor-
wegian school ( Bjerknes 1919). In this model the large
scale eddies of the atmosphere were thought to develop
on the front in analogy with the Kelvin-Helmbholtz in-
stability. Upper-air observations made in the 1930s and
1940s revealed continuous sloping zones of rapid tran-
sition in temperature and velocity fields rather than
discontinuities (Bjerknes and Palmen 1937; Palmen
and Newton 1948). These and later observations of
surface fronts by Sanders (1955) gave an entirely dif-
ferent picture than that suggested by the polar front
model.
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Building on observational advances in the gathering
of upper air data were advances in theoretical under-
standing of basic energy conversions in continuously
stratified rotating fluid systems. The demonstration by
Eady (1949) and Charney (1947) that such fluids pos-
sess hydrodynamic instabilities proved fundamental to
understanding the origin and development of cyclones.
Fronts associated with cyclones are now viewed as
consequences of baroclinic wave intensification. Thus,
the original idea that cyclones developed on fronts was
replaced by the idea that fronts arise as a result of in-
tensifying cyclones.

Frontogenesis in association with an intensifying
baroclinic wave was examined by Williams (1967 ) us-
ing a primitive equation model and this simulation
exhibited rapid frontal collapse and possessed a sloping
cross-frontal circulation. This work showed that the
primitive equations are sufficient to capture the physics
of frontogenesis, but the awkwardness of working with
the full equations motivated the search for a balance
approximation that would provide equations contain-
ing the essential frontogenetic mechanism. Hoskins and
Bretherton (1972) developed such a system, which is
referred to as the semigeostrophic equations. Using this
approximate equation set, they investigated both the
deformation and baroclinic wave frontogenetic mech-
anisms and found rapid formation of fronts and sloping
cross-frontal circulations in agreement with primitive
equation simulations.

In this work the frontogenetic process associated with
a growing baroclinic wave is examined as an initial
value problem. The standard paradigm for under-
standing baroclinic instability in the atmosphere results
in an eigenvalue problem for the growth rates and ei-
genfunctions of unstable normal modes (Charney
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1947; Eady 1949); an approach that focuses attention
entirely on individual unstable normal modes. In the
Eady model the exponential normal modes are suffi-
cient to represent all disturbances with uniform poten-
tial vorticity. In this special case, Williams (1967),
Hoskins and Bretherton (1972), Hoskins (1975) and
Hoskins and West (1979) studied baroclinic wave
frontogenesis. Recently, however, Farrell (1984) has
stressed the importance of the transient growth phase
of baroclinic development in which the potential vor-
ticity is not uniform in the Eady model and has argued
that explosive cyclogenesis results from transient pro-
cesses. Expressed in a modal context, transient growth
comes about through a cooperative interaction between
all the modes and looking only at single modes, such
as the most unstable mode, is highly restrictive. The
distinction between these mechanisms for growth of
baroclinic waves persists in the frontogenetic context
in which the dynamics is essentially nonlinear. Interior
potential vorticity gradients have long been associated
with cyclogenesis (Eliassen and Kleinschmidt 1957;
Hoskins et al. 1985) and this role is becoming more
widely appreciated (Hoskins et al. 1985). In this work,
surface frontogenesis with interior potential vorticity
perturbations is examined within the framework of a
two-dimensional semigeostrophic Eady model.

2. Model formulation and description

The flows considered are dry and inviscid with time
scales long compared to gravity and acoustic wave pe-
riods. This separation of time scales justifies filtering
the gravity wave modes by using a balance approxi-
mation. The semigeostrophic equations are adopted as
being less restrictive than the quasi-geostrophic ap-
proximation, while retaining advection by the ageo-
strophic wind fields. Retaining these advections is
known to produce frontal features characterized by an
infinite relative vorticity and collapsed isotherms at the
vertical boundaries in a finite period of time ( Williams
1967; Hoskins and Bretherton 1972). In contrast,
quasi-geostrophic models are able to produce surface
fronts of finite vorticity in finite time. The rapidity of
the frontal formation process is often considered to be
of key importance and a fundamental reason for
choosing the semigeostrophic balance approximation.
The semigeostrophic approximation used here is based
on the work of Hoskins and Draghici (1977).

In this work we anticipate meridionally elongated
frontal zones with coriolis forces induced by meridional
flow along the front geostrophically balanced against
cross-frontal pressure gradients. Accelerations along the
front are not small compared to coriolis forces induced
by cross-frontal flow. The governing equations for in-
viscid adiabatic flow that is Boussinesq and hydrostatic
are:

_ %
ax’

fo, (2.1a)

v
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%E+(ug+uag)%%+vg% w%’f »
+ (U + ugg) = — z—i’, (2.1b)
‘z—(f:%, (2.1¢)
%L;g %‘5:0, (2.1d)
fuy = — g—f, (2.1e) -
%ﬁ+(ug+uag)§§+vg%+wz—z=0, (2.1f)

where ¢ is the geopotential, § = T(p,/p)*'% the po-
tential temperature, 6, a constant reference potential
temperature, z = (c,00/8)[1 — (ps/p)*], where k = (y
— 1)/, a vertical coordinate nearly equal to height in
the troposphere and v the ratio of specific heats. Here,
u, and v, denote the geostrophic wind fields, and u,,,
v,e and w denote the ageostrophic wind fields.

The two-dimensional Eady model is a useful sim-
plification of the above system that results from the
restriction to a two-dimensional wave field superim-
posed upon a hydrostatic basic state consisting of a
zonally homogeneous constant shear in thermal wind
balance with a constant meridional temperature gra-
dient. Early research (Williams 1967; Hoskins and
Bretherton 1972) revealed that this model captured
the role of the ageostrophic wind fields in the formation
of surface fronts and predicted frontal structures re-
sembling observational data. The model produces the
infinite relative vorticities and strong convergent winds
at surfaces in finite time that constitute the paradigm
for surface frontogenetic processes.

The two-dimensional assumption is restrictive be-
cause there is no change in the basic state flow during
the development of a disturbance. In this model the
basic state acts as an infinite reservoir of potential en-
ergy, and the conversion between energy of the basic
state and energy in the disturbance field is not limited
by the amount of potential energy in the basic state or
by modification of the basic state.

The basic state is

U, = Sz,
I/_’g= 0, UagZ 0, Vag= 0, W=0,
N0222

®(y,z) = —fSyz +

+ 8z,

_ 0 Ny26
oy, z) = —EOfSy+—0§—°z +0,, (22)

and exactly satisfies Eqs. (2.1).

The basic state is perturbed with the amplitude of
the disturbances not assumed to be small. In accord
with the two-dimensionality constraint on the distur-
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bance field discussed above, we seek x-periodic solu-
tions to Egs. (2.1) in the form:

Usora = Up + tge(x, 2, 1), (2.3a)
Vieta = Vg(X, 2z, 1), (2.3b)
Wioa = W(X, 2, t), (2.3¢)
O = O(y, 2) + 0(x, 2, 1), (2.3d)
B = B(y, 2) + B(x, 2, 1). (2.3e)

If we transform the horizontal coordinates (x, y) to
the geostrophic coordinates (X, Y) via the relation:

X=x+v,/f,

Y=y—ul/f (2.4a)

the resulting system of equations simplify considerably
since advection by the ageostrophic wind u,, is now
1mphclt in these coordinates and is no longer explicit
in the substantial derivative (Eliassen 1962; Hoskins
and Bretherton 1972). If we further define a modified
geopotential,

3=¢+507 (2.4b)
the geostrophic and hydrostatic relations (2.1a, 2.1c,
and 2.1e) become simple in these coordinates,

g 0P 0P a®

=—=—, —, fvg =

6y 0Z Y X
Thus (2.4) constitutes a canonical transformation of
the system (2.1). Introducing upper case Z = z and
T = ¢ to be in accord with the variables X and Y; sub-
stituting (2.3) into the system (2.1); using the potential
vorticity equation for Q, in place of the along front
momentum equation and transforming the ageo-
strophic fields (u,, w) to the star representation
(u%,, w*) results in the following system:

fitg = — (2.5)

(_é)_ + SZ—)Qg + w Qg 0, (2.6a)

T
(%+ Sz—a%)o—%s% on Z=0,1, (2.6b)
| 92—42+N02
0, =% e (2.6c)
f2§5

The starred ageostrophic velocities and the unstarred
ageostrophic velocities are obtained via the expressions:

H*"‘*’ﬂ

R (2.7a)
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2
* = 2.7
w 3 (2.7b)
w = Jw* (2.7¢)
w 9%*®
Ugg = UGy — F m R (2.7d)
1
J_l_'_l_a_zg. (2.7¢)
f2 aXZ

After solving this system in (X, Z) coordinates, the
variables are transformed back to real physical space
according to the geostrophic transformation:

: 1
x=X—]—,vg(X, Z,T).
The J in Eq. (2.7¢) denotes the Jacobian of the
transformation between the real (x, y) and geostrophic
(X, Y) coordinates. It also equals the ratio of the ver-
tical component of absolute vorticity to f:

1 dv,
J=1+~—= 7 g‘ 1 +- Tox
Regions in geostrophic space where J is greater than
unity correspond to x-contracted regions in real space;
whereas regions where it is less than unity correspond
to x-elongated regions in real space.

General solution to the initial value problem (2.6,
2.7) is made difficult by the nonlinearity of the equa-
tions. Analytic solutions in terms of known functions
have been found for the limited class of problems in
which the potential vorticity, O, is uniform throughout
the troposphere This class of problems is briefly re-
viewed in section 3. Because a general solution for
nonuniform potential vorticity has not been found, the
method of solution adopted in this paper is compu-
tational and an outline of the solution procedure fol-
lows.

The system (2.6) s 1ntegrated in a zonally periodic
rectangular domain bounded in the vertical by rigid
lids representing the earth’s surface and tropopause. A
sketch of the computational domain is given in Fig. 1.
The Q, and 6§ equations are advanced temporally with

(2.7)

< 7=H
N= constant
F = constant

19

‘15

/Uz)=57

X 7

Z=0

FIG. 1. Sketch of the two-dimensional Eady model geometry
defined in section 2.
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an Adams-Bashforth predictor-corrector method. An
upwinded difference is used for the vertical advection
of potential vorticity and centered differences are used
on all remaining spatial derivatives. Time increments
are typically 15 minutes to insure numerical stability.
The elliptic equations (2.6c¢, 2.6d) are solved via a pre-
conditioned picard iteration scheme of the form,
*G"

d? e
(+1)
(5 3230
]

=F+K [(l - Q)

with appropriate boundary conditions (discussed be-
low). The sequence G, [ =0, 1, 2, - -, represents
successive iterates for ¢ or ®; F represents the non-
homogeneous term for either (2.6¢, 2.6d), and KX is
linear in its arguments. A fast cyclic reduction method
is used for the solution of each Poisson equation. With
a time increment of 15 minutes, 5 digit accuracy for
both Poisson equations is achieved in usually no more
than 4 iterations. We use 65 grid points in both hori-
zontal and vertical directions.

Boundary conditions require that all fields remain
periodic in X and that the vertical velocity w (and
therefore w*) vanish at the rigid lids Z=0and Z=H
or, equivalently, that the cross-frontal streamfunction
¥ be zero on the rigid boundaries. A third condition
concerns the inversion of the elliptic equation (2.6¢).
Evaluating the adiabatic equation on the rigid bound-
aries (Z = 0, Z = H) and using the condition that w*
= 0 yields an evolution equation for 8 = (6,/g)(0®/
dZ) on the rigid boundaries. The values of 6 are then
used as Neumann boundary conditions along the rigid
boundaries for the solution of (2.6¢) for the geopoten-
tial ®. The predicted fields (Q,, #) are minimally cor-
rected at each time step to insure solvability of this
Neumann problem: solvability is equivalent to enforc-
ing global conservation of potential vorticity.

The initial condition for the integration is a specified
geopotential ® throughout the entire domain, including
its values on the rigid lids. The potential vorticity can
then be computed via (2.6c). The ageostrophic wind
fields, consistent with the initial geopotential, are ob-
tained by inverting (2.6d) for ¢ and using the relations
given in Egs. (2.7). The integration proceeds by time-
advancing both the potential vorticity and adiabatic
equations [(2.6a) and (2.6b), respectively] and then
solving the diagnostic equations for the updated geo-
potential ® and cross-frontal streamfunction y. This
process is repeated for each time-step.

Denoting dimensional variables by tildes, our choice
of scaling is:

Qg = 00, = No’Qy
X=LgX=Q\*Hf'X
HZ

N
[
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T=QW*s7 ' f T
U, = SHU,
Ve = SHuv,
tloe = SHutg,
W= QgO"ZfSHw
¢ = SQ)*H*®
0 1
~ HSQY0. (2.8)

A list of representative values for these variables is given
in Table 1. Note that L is a Rossby deformation radius
with the square of the Brunt-Viisild frequency replaced
by the potential vorticity. A unit of nondimensional
time corresponds to 9.25 hrs.

The resulting nondimensional system of equations
contains the single parameter,

S 1
——==Ro=—=.
Vo, = Vw

This ratio can be identified with either the Rossby
number or the inverse square root of the Richardson
number, and for the parameter values in Table 1, the
value is Ro = 0.3. Examination of the equations reveals
that the parameter dependence of the system on the
Rossby number can be eliminated through the follow-
ing scaling transformation on the geopotential &:

& = Rod.

* Relations between the dimensional fields and the
nondimensional (hat) variables are listed in Table 2.
For the parameter-free system, the potential temper-
ature scale is 30 K and both the zonal and meridional
velocity scale is 100 m s~!, whereas the ageostrophic

TABLE 1. Representative values of parameters for the
two-dimensional Eady model given in Eq. (2.8).

Q=N =10"s7
= 10 km
f=10"s""
S$=3ms"' km™

Lg = QMHf' = 1000 km
U=8SH=30ms™!
U =SH=30ms™
w = Qn*fSH = 30 cm s~!
T=LRU" = VRif™" = 9.25 hrs

g =" SHQ'/2

$ = SQ;,,;ZH2 = 3000 m? s~
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TABLE 2. Relation between dimensional (tilde) fields and
nondimensional hatted variables defined in section 2.

Q%ZSHZ
Ro

= SHv, = HQM*b, = (100 m s7")d,

$ = Q)2SH*® = = QiPH*® = (10° m? s ™)

§ =E°Q&,HB = (30 K)b

iz = SHilz = (30 m s™")il,g

= Qa2 fSHW = (30 cm s~y

velocity scaling for u,, and w remains the same as be-
fore, namely 30 m s~! and 30 cm s ™!, respectively. We
will hereafter drop the hat notation. ’

The anomalous part of the potential vorticity is best
displayed explicitly by writing

Qs=¢g,+ 1.

‘In terms of the anomalous potential vonicity g, the
dimensionless equations for the dlsturbance fields be-

come:
(%sza;)qw waaz =0, (29a)
(a(;~+za§()"=§, on Z=0,1, (29b)
(g + 1) g;"i g;q: = 4, (2.9¢)
2 [(qg+1) ¢] az¢2=_ ?,;. (2.9d)

The boundary conditions on the geopotential ® are
that it remain periodic in X and satisfy 6 = 3®/6Z
along the horizontal boundaries Z = 0, 1. The bound-
ary conditions on the streamfunction y are that it be
periodic in X and vanish on the horizontal boundaries

=0, 1.

The dimensionless starred ageostrophic velocities
and the unstarred ageostrophic velocities are obtained
via the expressions:

W
u:g=+(.Es
.. _ 9
X’
w= Jw*
o = % — 9°®
“w e 0ZdX ’
1
J 1 giq_’ (2.10)
ax?
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The dimensionless transformation between geostrophic
and physical coordinates is

x=X—-0{X,Z,T). (2.10f)

Although all dimensionless fluid parameters have
been eliminated from (2.9-2.10), the nonlinearity of
the system implies that the amplitude of the geopoten-
tial ® will remain an implicit parameter. In addition,
the solution will depend on the structure of the initial
perturbation. Thus, the general solution has both an
amplitude and structural dependence, and it is the ob-
jective of this work to explore both dependencies.

3. Normal mode surface frontogenesis reviewed

The traditional Eady problem is recovered from the
system (2.9-2.10) under the assumption that g, is
identically zero throughout the flow field and squares
of small quantities can be neglected. The approximate
Jacobian is unity so there is no advection by the zonal
ageostrophic wind field. The resulting equations be-
come

d d
= == = 1
( +Z<3X)0 ax’ on Z=0,1, (3.1a)
® 9%
(97§+6_Z_2—0’ (3.1b)
2 2
N N _ 9%
ax?Taz:T taxe (3.1¢)

Boundary conditions on ® and y remain the same. In
this limit there is no distinction between geostrophic
and physical coordinates, and the starred velocities are
equal to the nonstarred velocities.

Solutions to the above system (3.1a, 3.1b) are then
sought in the form ® = E(Z) expl[ik(X — ¢T)] and
the resulting system becomes an eigenvalue problem
for the eigenfunctions £(Z) and eigenvalues c:

d’E
?d?—kE 0, (3.23)
dE
(Z——c)———E 0, on Z=0,1. (3.2b)

Instability of this flow occurs when the imaginary
part of ¢, denoted hereafter as ¢;, is positive. The re-
lationship between ¢; and ¢, (the real part of ¢) and the
wavenumber k is given in Fig. 2. The salient features
to note are

(i) The growth rate kc; achieves a maximum value
of approximately 0.3098 at k = 1.61 and the associated
mode is called the most unstable mode. This growth
rate corresponds to a doubling time scale of T = 2.24.
In dimensional terms for our choice of parameters this
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FIG. 2. Phase speed ¢, and growth rate ¢; as a function of zonal
wavenumber k for the normal modes of the Eady problem. All of
the Eady normal modes satisfy g, = 0.

corresponds to 74, = 20.6 hours and an approximate
X scale of 3900 km.

(ii) The phase speed ¢, for the most unstable mode
equals 0.5 and corresponds to a dimensional speed of
15ms™L.

(iii) The wavenumber beyond which no unstable
modes exist is approximately k = 2.4 and will hereafter
be referred to as the short wave cutoff. In dimensional
terms, the X scale of the short wave cutoff is approxi-
mately 2600 km.

Solutions of the above form can be applied in a more
general, nonlinear context by noting that each solution
and any linear combination of them also satisfy the
full nonlinear equations (2.9~2.10). Superposition of
solutions is allowed since the governing equations (3.1)
are linear in geostrophic space and it is only in the
transformation back to real coordinates

x=X-v,(X,2Z,T), (3.3)
that the nonlinearity enters. The advection by u,, is
implicit in the coordinate transformation and does not
play an active role in the dynamics in geostrophic space.

The classical Eady frontogenesis solution consists of
the most unstable normal mode solution. It was first
simulated by Williams ( 1967 ) with the primitive equa-
tions and later with the semigeostrophic equations in
geostrophic space by Hoskins and Bretherton (1972).
The results of integrating our model with the most un-
stable mode are presented in Fig. 3. The initial con-
dition used had a maximum surface § perturbation of
2.22 K and a maximum surface v, perturbation of
6.3ms™", _

The computation of all results presented in this paper
was terminated when the Jacobian attained a cut-off
value. For the most unstable normal mode, a cut-off
of J = § was used, and for the examples discussed in
section 4 the cut-off value was J = 10. The physical
basis for the upper limit on the Jacobian comes from
requiring self-consistent solutions to the semigeo-
strophic system: for the approximation to be valid it
is necessary that the local Richardson number be ev-
erywhere greater than a quarter. A front with near in-
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finite relative vorticity across it will not satisfy this con-
dition. Despite such a local breakdown of the approx-
imation, the solutions described by the semigeostrophic
approximation are believed to remain valid except in
the immediate vicinity of the breakdown (Cullen and
Purser 1984). The fields shown in Fig. 3 refer to phys-
ical (x, z) coordinates and represent vertical and hor-
izontal cross sections of the relevant fields at successive
times. The important characteristics of this solution
have been well documented elsewhere but for future
reference we list what we believe to be the most im-
portant phy]sical aspects:

1) Extremal values. The fields @, v,, 0, J, and u,,
all assume their maximum and minimum values along
the horizontal boundaries z = 0, z = 1. The solutions
corresponding to g, = 0.0 in the Eady model can there-
fore be interpreted as “boundary modes.”

2) Jacobian. The maximum of J increases from
1.11 to 5.0 after 6.6 advection times. For Ro = 0.3 this
corresponds to a dimensional time of 61 hours or 2.5
days. From the relation between the relative vorticity
and the Jacobian, this corresponds to a relative vorticity
of4f.

3) Meridional geostrophic flow. The maximum of
v, increases from 0.06 to 0.5 in the same time period.
The dimensional maximum velocity at the final time
occurs at the surfaces Z = 0, 1 andis 50 m s~!. Regions
with cyclonic vorticity (i.e., dv,/dx positive) have been
contracted while anticyclonic regions have been ex-
panded due to the advection by .

4) Perturbation potential temperature. The maxi-
mum of 4 increases from 0.074 to approximately 0.57.
In dimensional terms, this corresponds to an increase
from 2.2 to 17 K. The temperature gradient across the
frontal region near x = 3 is 30 K in 1000 km. The
location of the zonal extrema for 6 corresponds to the
vertical extrema of v, in accord with thermal wind bal-
ance.

S) Ageostrophic winds. The maximum of zonal
ageostrophic velocity u,, increases from 0.54 to 0.43
while the vertical velocity w increases from 0.018 to
0.16. In dimensional terms with Ro = 0.3, this corre-
sponds to an increase in u,, and w of 1.6 m s~ to 13
ms~!'and 0.54 cm s~ to 4.8 cm s, respectively. The
cross-frontal circulation is symmetric with regard to
the strength of the ascent and descent velocities and
also to the zonal ageostrophic velocities.

6) Phase speed and growth rate. The numerical
simulation confirms a phase speed of 0.5 and a dou-
bling time of 2.24 advection times.

In summarizing the classical frontogenesis solution
we point out two important consequences of the uni-
form potential vorticity assumption. The first is that
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FIG. 3. Dynamics of the most unstable Eady mode with a zonal wavenumber k = 1.61. Shown are contour plots of

w, 0, v,and Jat T = 0 and T = 6.6 nondimensional advection times with contour levels indicated on each plot. Solid
lines denote positive values and dashed lines denote negative values. The minimum and maximum values of x given

transformation x = X — v(X, Z, T').

in parentheses at the bottom of each group of contour plots changes with time because of the geostrophic coordinate




2844

the system of equations becomes linear when expressed
in the geostrophic coordinates thereby allowing super-
position of elementary solutions. The second and
physically interesting point is that for the exponentially
growing solutions a singularity of the system (in the
sense discussed above) is guaranteed regardless of the
initial amplitude of the disturbance: one might have
to wait a long time for a singularity to develop, but the
exponential growth of the perturbation will eventually
render the denominator in the Jacobian zero in finite
time. For disturbances that have uniform potential
vorticity and possess wavenumbers to the left of the
short wave cutoff, the initial amplitude of the distur-
bance is not critical in determining whether a singu-
larity will develop. On the other hand, as shown in the
upcoming section for wave disturbances whose wave-
numbers lie to the right of the short wave cutoff, the
amplitude of the disturbance plays an important role
in determining if the disturbance is capable of inten-
sifying into a front.

4. Transient frontogenesis

When interior potential vorticity gradients are pres-
ent in the model the classical frontogenetic solutions
consisting solely of normal modes no longer comprise
the general solution. For the Eady problem, Pedlosky
(1964) showed that the normal modes of section 3
must be augmented by a continuous spectrum in order
to completely represent a general disturbance. Obser-
vations show that the potential vorticity is not uniform
in the troposphere and therefore frontogenesis models
that assume uniform potential vorticity may neglect
important physical processes. Mathematically speak-
ing, there is a marked difference between uniform and
nonuniform potential vorticity semigeostrophic flows.
With uniform potential vorticity, the system (2.9) is
linear in geostrophic space and the nonlinearity is im-
plicit in the coordinate transformation back to real co-
ordinates. However, in the nonuniform case the system
(2.9) is explicitly nonlinear due to vertical advection
of potential vorticity and also because the potential
vorticity plays the same role as the static stability in
both balance equations (2.9¢, 2.9d).

The physical importance of potential vorticity
anomalies have been discussed by Farrell (1984). In
the Eady problem it was shown that the continuous
spectrum gives rise to transient baroclinic development
which can be rapid. For disturbances whose wavenum-
bers lie to the left of the short wave cutoff the transient
solutions can have instantaneous growth rates much
greater than the exponentially growing modes although
in the (linear) quasi-geostrophic problem the expo-
nential solutions dominate the = co asymptotic limit.
In Farrell (1984), it was argued that explosive cyclo-
genesis results from such transient processes stressing
the initial value approach to understanding baroclin-
ically developing systems. With a few simple examples,
we explore some of the dynamical consequences of
transient baroclinic development when ¢, is nonzero
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in the frontogenetic two-dimensional Eady initial value
problem.

A configuration commonly observed to precede ex-
plosive cyclogenesis consists of a positive upper-level
potential vorticity disturbance upshear of a positive
potential vorticity disturbance near the surface. The
Presidents’ Day Storm of Februrary 1979 is a well-
documented example of explosive cyclogenesis follow-
ing an initial flow configuration of this type. Obser-
vational accounts of this storm can be found in the
works of Bosart (1981) and a recent numerical study
by Whitaker et al. (1988). An initial configuration of
this kind is qualitatively represented by a plane wave
disturbance in the geopotential ® leaning approxi-
mately 50 degrees from the z axis against the shear and
is similar to the one discussed by Farrell (1984). The
perturbation is:

BX, Z,0) = Bup sin(kX + mZ)  (4.1)

Figure 4 corresponds to a simulation with & = 2.5, m
= 3.0 and ®,,,, = 0.025. From Fig. 1, this choice of £
lies slightly to the right of the short wave cut-off beyond
which there are no exponentially unstable modes. Di-
mensional values implied by this choice of parameters
are meridional wind speeds v, and potential temper-
ature disturbances # of approximately 6 m s™! and 2
K. The strength of this disturbance is therefore com-
parable to the normal mode disturbance of section 3.
The salient features of the solution are discussed below.

1) Potential vorticity. The potential vorticity
anomaly g, generally follows the mean flow and is
sheared, although advection by both u,, and w strongly
distorts the initial plane wave structure.

2) Extremal values. The initial fields ®, v,, 6 and
J do not assume their maximal values on the horizontal
boundaries as in the case of a normal mode but are
constant along the lines kx + mz = constant. After 2.8
advection times, corresponding to a dimensional time
of approximately 25 hours, these fields become most
intense at the horizontal boundaries and look quali-
tatively similar to a superposition of upper and lower
normal modes whose upper mode is displaced up-
stream of the lower one.

3) Jacobian. The maximum of J increases from
1.15 to 10.0 after 2.8 advection times. This corresponds
to a relative vorticity of 9f.

4) Meridional geostrophic flow. The maximum of
v, increases from 0.06 to 0.38 along the horizontal
boundaries in the same time period and results in a
final dimensional velocity of 38 m s, The differential
in velocity across the front at x = 0.5 is nearly
70ms™". :

5) Perturbation potential temperature. The maxi-
mum of # (not shown) increases from 0.06 to 0.39 in
the same time period corresponding to an increase from
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FiG. 4. Dynamics of the plane wave initial condition (4.1) with a zonal wavenumber k = 2.5. Shown are contour
plots of w, g, v, and Jat T = 0. and T = 2.8 nondimensional advection times with contour levels indicated on each
plot. Solid lines denote positive values and dashed lines denote negative values. The minimum and maximum values
of x given in parentheses at the bottom of each group of contour plots changes with time because of the geostrophic
coordinate transformation x = X — v,(X, Z, T').



2846
approximately 1.8 to 11.7 K. The temperature gradient

across the frontal region near x = 0.5 is 20 K in
1300 km.

6) Ageostrophic winds. The maximum of u,, in-
creases from 0.08 to 0.42 while w increases from 0.04
to 0.22. This corresponds to an increase in u,, from
24ms ' to 12ms and in increase in w from 1.2
cm s~! to 6.6 cm s~'. The cross-frontal circulation is
symmetric with regard to the strength of the ascending
and descending velocities and zonal ageostrophic
winds.

7) Growth rate. For this choice of k there are no
exponentially growing solutions and hence the modes
excited by the initial condition (4.1) are entirely neutral
in the exponential sense. Névertheless the excited neu-
tral modes rapidly intensify since, with phase aligned
against the shear, they are properly configured to tap
the available potential energy of the mean state. A crude

growth rate for this solution can be obtained, for ex- -

ample, by simply assuming that the geostrophic wind
v, grows exponentially with a starting value of 0.06
and a final value of 0.38 at 1 = 2.8 advection times.
This simple calculation gives a growth rate of approx-
imately 0.66, which is more than twice the maximum
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growth rate for the Eady normal modes. Despite the
lack of exponentially growing normal modes for this
disturbance, the neutral modes develop rapidly into a
mature front.

The system (2.9-2.10) generally has a dependence
on the amplitude of the geopotential ®. This is easily
illustrated for the current example by integrating the
same initial condition (4.1) with a ninety percent re-
duction in amplitude: ®,,,, = 0.0025. The results of
integrating the model with this reduced initial condition
are shown in Fig. 5. The results shown correspond to
T = 7.7 and all fields refer to physical (x, z) coordinates.
The most interesting features are:

1) Potential vorticity. The potential vorticity field
g, follows the mean flow and is sheared. The zonal and
vertical advection of potential vorticity is practically
absent with not much distortion of g, phase lines.

2) Jacobian. The maximum in the Jacobian in-
creased from 1.011 to only 1.2 after 8 advection times.
This implies a relative vorticity maximum of 0.2 f lo-
cated along the horizontal boundaries.
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FIG. 5. Resultant fields at 7 = 7.7 nondimensional advection times for the plane wave initial condition
of Fig. 4 reduced by 10 in magnitude.
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3) Phase structure. From the contour plot for v, it
is clear that the baroclinic growth stage for this per-
turbation is complete since it is aligned almost vertically
and no longer properly configured to extract available
potential energy from the mean state. The solution
structure is qualitatively the same as in the first example
resembling a superposition of an upper and lower neu-
tral mode. At subsequent times the upper mode passes
the lower mode.

In order for neutral disturbances to intensify into a
mature front, the strength of the initial disturbance
must be sufficiently great. How to choose the initial
amplitude to render the transformed relative vorticity
dv,/dX = f at some later time by inspection is not
obvious since 1) these solutions have ever changing
structures and 2 ) the growth of relative vorticity results
after baroclinic conversion of available potential energy
to perturbation energy. However, as shown in the first
example, these initial disturbances did not require un-
usually high amplitudes.

The third example addresses the structural aspect of
the g, anomaly used as an initial condition. Recently
Farrell (1989) formulated the problem of finding per-
turbations that optimally excite a chosen mode as a
variational problem. For exciting the lower level Eady
neutral mode at zonal wavenumber k to the right of
the short wave cutoff, a near optimal initial condition
in the energy norm is given by the approximate adjoint
of the mode:

q’(Xa Z9 k9 Cry Ci EO; T= 0)
(Z — (¢, + 1d))

where ®(- - -) denotes a neutral normal mode as de-
fined in section 3. A wavenumber of k = 3 is chosen
and 6 is a nonzero parameter taken to equal —0.15 in
this example. The main effect of 4 is simply to control
the tilt angle that the perturbation makes with the z
axis.

The initial fields consistent with this disturbance are
plotted at the top of Fig. 6a. The maximum of g, is
0.59 and the minimum is —0.53. The dimensional val-
ues of v, and 0 are 1.9 m s~! and 1.26 K, respectively.
The results of the integration at successive times are
shown in Fig. 6a and Fig. 6b, at 36 and 54 hours, with
fields referred to physical (x, z) coordinates and are
discussed below. '

b, = Re (4.3)

1) Jacobian and potential vorticity. The maximum
of Jis 10.0 at 6.1 advection times and it occurs on the
lower surface near x = 0.9. This implies a relative vor-
ticity of 9 /. The potential vorticity anomaly generally
follows the mean flow and is sheared as shown at 4
advection times; the advection by the vertical and zonal
velocities is beginning to distort the anomaly by raising
the region where g, is negative and lowering the region
where g, is positive. At 6.1 advection times the negative
anomaly has almost rolled on top of the positive
anomaly with the latter being pushed downward into
the lower surface z = 0.
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2) Extremal values. The extremal values of the ini-
tial fields &, q,, v,, J, § and w are located along the
line given by Z = 0.338 that corresponds to the location
of the extrema of the geopotential. At 4 advection times
the extrema in the fields &, v,, J, 8 and u,, occur only
on the lower surface Z = 0. From the plot of v, at 4
advection times, the disturbance along the lower surface
is qualitatively similar to a lower neutral (normal)
mode although there is much more structure evident.
At 6.1 advection times the initial disturbance has in-
tensified to frontal strength and the extremal values
are located on the lower surface. By this time there is
a relatively weak disturbance along the upper surface
and the resemblance of a lower neutral normal mode
persists despite distortions by ageostrophic winds.

3) Meridional geostrophic flow and perturbation
potential temperature field. The maximum of v, in-
creases from 0.019 to 0.26 at T = 6.1 resulting in a
final dimensional velocity of 26 m s ™!, The differential
in velocity across the front is approximately 45 ms™'.
The magnitude of 6 (not shown) increases from 0.04
t0'0.27 in the same time period corresponding to an
increase from 1.2 to 8.1 K. The temperature gradient
across the frontal region is 15 K in 800 km.

4) Ageostrophic winds. The maximum of u,, in-
creases from 0.024 to 0.25 while w increases from 0.01
to 0.145. In dimensional terms with Ro = 0.3, this
corresponds to an increase in #,, from 0.72 m s7! to
7.5 m s~! and an increase in w from 0.3 cm s ™! to0 4.35
cm s~!. The strengths of the ascending and descending
regions are approximately equal and the vertical lo-
cation of wp,,x and wp, is along the line Z = 0.33.

5) Phase structure and growth rate. The contour
plot for v, at 6.1 advection times shows a structure
slightly tilted against the shear that would, if continued,
extract an additional small amount of available poten-
tial energy from the mean state. The integration for
this example was not continued beyond 6.1 advection
times. As in the first example, there are no exponen-
tially growing solutions for k = 3 and hence the modes
excited by the initial condition (4.3) are entirely neutral
in the exponential sense. This predominantly lower- .
level neutral wave rapidly intensifies since its phase
tilts against the shear and is therefore properly config-
ured to tap the available potential energy present in
the mean state. Once again, a crude growth rate for
this solution is obtained simply by assuming that the
geostrophic wind v, grows exponentially with a starting
value of 0.02 and a final value of 0.26 at 1 = 6.1 ad-
vection times. This simple calculation gives a growth
rate of approximately 0.42, which is nearly thirty per-
cent greater than the maximum growth rate for the
Eady normal modes. Thus, despite the lack of expo-
nentially growing normal modes for this energetically
near optimal disturbance, the neutral modes develop
rapidly into a mature front.
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FIG. 6b. Same as in Fig. 6a but shown are the resultant fields at T = 6.1 nondimensional advection times
for the optimal disturbance defined by (4.3) with a zonal wavenumber k = 3.

As a final example consider the same initial condi-
tion (4.3) keeping 6 = —0.15, but this time increasing
the zonal wavenumber to k = 6. In this case ¢, = 0.167
and the amplitude is chosen to give a dimensional v,
surface maximum of 3.8 m s~! and a nondimensional
g, maximum of 0.46. The maximum of the potential
vorticity field occurs along the line Z ~ 0.16. The dy-
namics are summarized in Fig. 7 where we show the
fields (w, g,, voand J) at T = 0, and three nondimen-
sional advection times. The behavior is similar to the
previous example except that the maximum in the w
field occurs much closer to the lower surface. The Ja-
cobian at T = 4 is 12.1 corresponding to a relative
vorticity of 11.1f with 25 m s™! across the cyclonic
vorticity frontal zone. The maximum ascending ve-
locity increases from 0.5 cm s ™! t0 1.93 cm s ™! by four
advection times and is located along the line Z = 0.16.
Like the previous example this disturbance produces
a modest frontal zone despite the lack of sustained ex-
ponential growth.

Previous investigations (Hoskins and Bretherton
1972) focused only on the most rapidly growing ex-
ponential normal mode that gives vertical velocity

maxima, Wpay, in the midtroposphere. Subsequent in-
vestigators (Blumen 1979; Mak and Bannon 1984)
considered boundary layer frictional convergence and
diabatic processes in an attempt to account for the in-
tensity and near surface location of wy,,, above frontal
zones—common characteristics of surface fronts
(Sanders 1983). However, even with the inviscid dry
model we find that the location of wy,, above a frontal
zone need not always occur in the midtroposphere.
Specifically, for nonuniform potential vorticity flows
the location of w,,,, is a strong function of the vertical
structure of the interior potential vorticity field. In both
of the above examples the vertical location of Wy co-
incides with the maximum of g, and is near the lower
surface.

5. Discussion and conclusion -

The intensification of baroclinic disturbances with
nonuniform potential vorticity into surface frontal
systems has been examined for the two-dimensional
semigeostrophic Eady initial value problem. Of the four
initial conditions presented in section 4, three devel-
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oped into mature surface fronts. The disturbances cho-
sen had zonal wavenumbers exceeding the short wave
cutoff so that no exponentially growing solutions were
present. Lack of exponential growth for these distur-
bances did not hinder frontal development but instead
required the strength of the disturbance exceed an am-
plitude threshold. In practice, however, the finite am-
plitude constraint required for surface front formation
is not severe as illustrated by the examples of section
4. The location of the vertical velocity maxima above
the surface frontal zone is found to depend upon the
vertical structure of the potential vorticity field. The
latter two examples exhibit vertical velocity maxima
near the lower surface. For disturbances having wave-
numbers to the left of the short wave cutoff the solution
may comprise two phases. The first phase is a transient
growth that is replaced in the second phase by expo-
nential growth in the ¢ = oo limit. In the semigeo-
strophic Eady model the rapidity of the transient de-
velopment illustrated in section 4 suggests, even for
these wavenumbers, that moderately strong distur-
bances could intensify into a strong front before tran-
sition to the exponential growth phase.
"~ The model results reported in section 4 motivates
further frontogenesis research using the initial value
approach. For example, a problem of both physical
and mathematical interest is to formulate a variational
analogue of the energetic optimal problem for front-
ogenesis. The problem would be to determine the dis-
turbance that yields maximum frontogenesis (i.e., large
relative vorticity) in a given time period.

The model used in this paper has limitations of
which perhaps the most important are:

(i) the neglect of wave mean flow interactions

(ii) the neglect of moisture in the lower atmosphere

(iii) the neglect of friction along the horizontal sur-
faces. :

The two-dimensional Eady model precludes all in-
- teraction of the disturbances with the mean flow. For
a more realistic three-dimensional problem there gen-
erally will be a change in the basic state as the distur-
bances extract available potential energy from it. This
interaction would modify the instantaneous growth rate
of the disturbances and could significantly alter the
resulting frontal structures formed.

Recent work on the effect of moisture in the two-
dimensional Eady problem (Emanuel et al. 1987)
demonstrates the increase of growth rate, destabiliza-
tion of waves near the short wave cutoff, and intensi-
fication of the ascending vertical velocity due to release
of latent heat as moist air is lifted and condenses. In
this paper, we considered the dynamics of dry air on
the grounds that a full understanding of the dynamics
associated with dry potential vorticity anomalies at fi-
nite amplitude was lacking. An important direction
for future study is to include the effects of moisture.

The final limitation of the model concerns the lower
surface boundary condition. Significant progress has
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been made (Blumen and Wu 1982, 1983) for the semi-
geostrophic balance approximation in formulating a
self-consistent boundary condition that would be ap-
plied at the top of an Ekman layer. Inclusion of an
Ekman layer in the traditional Charney model along
the rigid boundary Z = 0 leads to important changes
in the growth rates of the exponentially unstable modes
(Farrell 1985). Depending on the value of the effective
viscosity, the growth rates may be significantly reduced.
For instance, with values of the effective viscosity on
the order of 5 m? s™!, the maximum growth rate at
wavelengths of 3000 km is reduced to zero, but Farrell
(1985) demonstrated the robust behavior of transient
baroclinic development and showed its insensitivity to
the presence of an Ekman layer. Similarly, the addition
of Ekman pumping in the Eady model significantly
reduces the growth rates of exponentially growing so-
lutions although the transient modes continue to ex-
hibit rapid baroclinic development. Applying this rea-
soning to the damped frontogenesis model suggests that
transient solutions would be the predominant fronto-
genetic agents. However, it is clear that the presence
of an Ekman layer at the lower surface would raise the
amplitude threshold determining whether a front will
form since the disturbances would have to overcome
frictional dissipation in the boundary layer.

The importance of the initial value problem is that
it allows exploration of a great variety of possible frontal
developments, permitting study of both amplitude and
structural sensitivity of disturbances leading to front-
ogenesis. The two-dimensional semigeostrophic Eady
model is the accepted paradigm for surface frontogen-
esis in association with intensifying baroclinic waves.
Surface fronts presented here are characterized by
strong horizontal wind shears but have relatively weak
thermal contrasts across them. Nevertheless, despite
the Eady model’s inability to produce strong thermal
contrasts, it is a simple phenomenological model for
understanding the previously unexplored role of inte-
rior potential vorticity in dry surface frontogenesis.
Further observations of tropospheric potential vorticity
anomalies are indicated to determine realistic potential
vorticity structures, the dynamics of which are central
to the formation of atmospheric fronts.
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