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ABSTRACT

Temporally distributed deterministic and stochastic excitation of the tangent linear forecast system gov-
erning forecast error growth and the tangent linear observer system governing assimilation error growth is
examined. The method used is to determine the optimal set of distributed deterministic and stochastic
forcings of the forecast and observer systems over a chosen time interval. Distributed forcing of an unstable
system addresses the effect of model error on forecast error in the presumably unstable forecast error
system. Distributed forcing of a stable system addresses the effect on the assimilation of model error in the
presumably stable data assimilation system viewed as a stable observer. In this study, model error refers
both to extrinsic physical error forcing, such as that which arises from unresolved cumulus activity, and to
intrinsic error sources arising from imperfections in the numerical model and in the physical parameter-
izations.

1. Introduction

A comprehensive understanding of the dynamics of
linear systems is fundamental to physical science and,
while linear systems arise in a wide variety of contexts,
in this work we have in mind the particular examples of
the dynamics of perturbations to the tangent linear
forecast and data assimilation error systems. Among
important problems in dynamical system theory is un-
derstanding the response of a linear system to forcing
distributed in time. In the context of linear forecast
error systems, temporally distributed forcing is used to
account for the effect of model error on forecast pre-
dictability; while in the case of a data assimilation sys-
tem it addresses the effect of model error on state iden-
tification for model initialization.

Because the forecast system is nonnormal as well as
time dependent, its study requires the methods of gen-
eralized stability theory (GST; Farrell and Ioannou
1996a,b). These methods have heretofore been applied
inter alia to the problem of cyclogenesis (Farrell 1982,
1989), the problem of transition to turbulence of
boundary layer and laboratory channel flows (Farrell
1988a; Butler and Farrell 1992; Reddy and Henningson

1993), the maintenance of the turbulent state in labo-
ratory shear flows (Farrell and Ioannou 1993b; Bamieh
and Dahleh 2001; Jovanović and Bamieh 2001), the
control of boundary layer and channel shear flow tur-
bulence (Bewley and Liu 1998; Farrell and Ioannou
1998; Kim 2003; Högberg et al. 2003a,b), and in numeri-
cal weather prediction to determine the impact of un-
certainties in the initial state on the forecast (Farrell
1988b; Lacarra and Talagrand 1988; Farrell 1990; Mol-
teni and Palmer 1993; Buizza and Palmer 1995). How-
ever, as the initialization of forecast models is improved
with the advent of new data sources and the introduc-
tion of variational assimilation methods, the medium
range forecast will become increasingly affected by un-
certainties resulting from incomplete physical param-
eterizations and numerical approximations in the fore-
cast model, and by the necessarily misrepresented
subgrid-scale chaotic processes such as cumulus convec-
tion that act as temporally stochastic distributed forcing
of the forecast error system. These influences, referred
to collectively as model error, conventionally appear as
an external forcing in the forecast error system. Im-
proving the understanding of model error and specifi-
cally identifying forcings that lead to the greatest fore-
cast errors is centrally important in predictability stud-
ies. In analogy with the optimal perturbations that lead
to the greatest forecast error in the case of initial con-
dition error, these continuous error sources will be
called optimal distributed forcings.
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Two distinct dynamical representations for model er-
ror will be considered. The first is deterministic distrib-
uted forcing and the second is stochastic distributed
forcing. The underlying theory for the deterministic
case is based on analysis of the dynamical system as a
mapping from the space of input forcings to the space
of output states (Dullerud and Paganini 2000). This
theory enabled Glover (1984) to obtain the optimal
truncation of a dynamical system by using a singular
value decomposition of the map between past forcings
and future responses of the system (cf. Zhou and Doyle
1998). The singular values of this map, called Hankel
singular values, have recently been used to truncate the
linearized fluid equations and construct a reduced-
order Kalman filter for use in meteorological assimila-
tion (Farrell and Ioannou 2001a,b).

The link between distributed forcing and the growth
of forecast errors is direct, but of equal interest is the
role of distributed forcing in limiting the accuracy with
which a system state can be identified. In order to ad-
dress this problem we consider the data assimilation
system viewed as a Luenberger observer (Luenberger
1971). Such an observer is necessarily asymptotically
stable in contrast to the forward forecast problem,
which is generally asymptotically unstable.

Recently D’Andrea and Vautard (2000) obtained ap-
proximate optimal temporally distributed deterministic
forcings of the forecast error system (which they refer
to as forcing singular vectors) and Barkmeijer et al.
(2003) obtained the optimal temporally distributed de-
terministic forcing of the forecast error system over
fixed spatial structures. In this paper, we extend the
study of distributed forcings of the forecast error sys-
tem by finding efficient methods for obtaining the exact
solution of the optimal temporally distributed deter-
ministic and stochastic forcing of the forecast and as-
similation systems.

First we introduce the norms used to measure the
forcing and the error state, and review the method used
to obtain the optimal deterministic forcing that pro-
duces the greatest error state norm at a given time. The
optimal problem for stochastic forcing and for impul-
sive forcing is then solved. Finally, examples are shown
for optimal deterministic, stochastic, and impulsive
forcing in forecast systems and observer systems.

2. Optimal deterministic forcing of linear systems

The problem of obtaining the forcing of a time-
varying system over the time interval [0, T ] that leads to
the greatest state norm at time T has been solved in the
context of control theory (see, i.e., Dullerud and Paga-
nini 2000). Because of the novelty and power of the
methods used to solve this problem, and their relation
to methods used for obtaining optimal truncation of
meteorological systems (cf. Farrell and Ioannou
2001a,b), it is useful to review this solution.

We seek the deterministic forcing f(t) of unit norm
on t � [0, T ] producing the greatest state norm at time
T that is, it maximizes the square norm of the state
||�(T)||2, assuming the state is initially zero, �(0) � 0,
and that � obeys the linear equation:

d�

dt
� A�t�� � f�t�. �1�

The forcing f(t) is taken to be in L 2([0, T]), that is, a
square integrable vector function on the interval [0, T ]
with an inner product:

�f, g�L2
� �

0

T

fH�t�g�t�dt. �2�

The square norm in this space is

||f||L 2
2 � �

0

T

fH�t�f�t�dt. �3�

The state � is in CN, that is, an N dimensional complex
vector. We choose the Euclidean inner product for the
state vectors:

��1, �2� � �1
H�2, �4�

where H denotes the hermitian transpose. The square
of the norm in this space is

||�||2 � �H�. �5�

We have employed the subscript L2 to denote the inner
product of square integrable functions in order to dis-
tinguish it from the inner product of vectors.

With these norms we seek the forcing, f, maximizing
the forcing normalized final state at time T:

Rd �
||��T�||2

||f||L 2
2 . �6�

The state � at time T is obtained for any forcing, f, by
the linear map �:

��T � � �f � �
0

T

��T, t�f�t�dt. �7�

In (7) �(T, t) is the propagator associated with the
linear dynamical system (1).

In order to obtain the optimal distributed forcing,
some auxiliary results are needed. First the adjoint of
the mapping � is required. The adjoint of � is denoted
�* and it maps a state �1(T) to a forcing g(t) defined
over the interval [0, T ], with the property that

��*�1�T�, f�t��L2
� �g�t�, f�t��L2

� �
0

T

gH�s�f�s�ds

� ��1�T�, ��T��. �8�

This adjoint map �* is (cf. Farrell and Ioannou 2001a):

�*�1�T� � �H�T, t��1�T�. �9�
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Composition of the mapping � and its adjoint �*
maps system states to system states. This is a rank N
mapping that can be seen using (7) and (9) to have
matrix representation:

C � ��* � ��H�T, t� � �
0

T

��T, t��H�T, t�dt, �10�

which is also the finite-time state covariance matrix un-
der the assumption of temporally white noise forcing
with unit covariance I. The covariance matrix C in (10)
is hermitian, and is assumed to be full rank. The co-
variance can also be obtained at time T by integrating
from t � 0 to t � T the Lyapunov equation:

dC
dt

� A�t�C � CAH�t� � I, �11�

with the initial condition C(0) � 0 (cf. Farrell and
Ioannou 1996a).

Now we define the projection operator:

P � �*C	1�. �12�

Operator P maps forcings to forcings. This linear map is
an orthogonal projector on the space of functions be-
cause it is hermitian and satisfies the property:

P2 � P. �13�

Indeed,

P2 � �*C	1��*C	1� � �*C	1� � P. �14�

Also note the property:

�P � �. �15�

Indeed,

�P � ��*C	1� � CC	1� � �. �16�

Consider a forcing f, its projection Pf, and its orthogo-
nal complement (I 	 P)f. Then (15) establishes that
forcing (I 	 P)f makes no contribution to the state at
�(T).

Assume that at time T, the system is in state �, and
consider all the forcings f that could have produced this
state, that is, all f with the property �f � �. That there
exist forcings for which any chosen state � can be
reached at time T requires that the system be control-
lable, but this is ensured by the full rank of C, which in
the control literature is referred to as the controllability
Grammian (Brockett 1970).

All the forcings, f, that produce state � have the same
projection Pf. To show this, note that by assumption:

�f � �, �17�

and by (15) the projected forcing Pf also produces the
state � so

�Pf � �. �18�

Multiplying (18) by �*C�1 gives

�*C	1�Pf � �*C	1�. �19�

But the left side of (19) is P2f � Pf. Hence all f that
produce state � have the same projection:

Pf � �*C	1�. �20�

It is now easy to see that the forcing Pf is the minimal
forcing producing the state �. To show this, we decom-
pose the forcing into its orthogonal complements:

f � Pf � �I 	 P�f. �21�

Because

P�I 	 P� � 0, �22�

we have

||f||L2
2 � ||Pf � �I 	 P�f||L2

2 � ||Pf||L2
2 � ||�I 	 P�f||L2

2 , �23�

and it follows that

||f||L 2
2 � ||Pf||L 2

2 � ||�*C	1�||L 2
2 � �HC	1�, �24�

which proves that the forcing

f�t� � �*C	1�, �25�

is the minimal forcing to produce state �. It is easy to
verify that this forcing produces �:

���*C	1�� � ���*C	1�� � CC	1� � �. �26�

Using (24) the maximization (6) over functions, f, can
be transformed to a maximization over states, �(T):

max
f�t�

||��T�||2

||f�t�||L 2
2 � max

��T�

||��T�||2

��T�HC	1��T�
. �27�

This equation shows that the optimal over forcings (lhs)
is equal to an optimal over states (rhs). Note that the
form of the second optimization is reminiscent of the
covariance or Mahalanobis metric often used in pre-
dictability analysis (Palmer et al. 1998) suggesting the
interpretation of optimals weighted by the Mahalanobis
metric as structures that are most easily forced.

Quotient (27) is maximized for unit forcing by the
state:

�opt�T � � 
�1�1, �28�

where �1 is the maximum singular value of C and �1 is
the corresponding singular vector of C [�1 is conven-
tionally called the top empirical orthogonal function
(EOF) of C]. The optimal unit forcing is obtained from
(9) and (25):

fopt�t� � �*C	1�opt�T� � �H�T, t�C	1
�1�1

�
1


�1

�H�T, t��1, �29�
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and the optimal value of the quotient (27) is clearly �1.
It is also clear from (29) that the optimal forcing struc-
ture at optimizing time, fopt(T), is identical to the op-
timal state �1. If the system is asymptotically stable, �1

remains finite as T → �, and if the system is autono-
mous as well as stable, �1 asymptotes to a constant;
while if the system is asymptotically unstable, �1 grows
exponentially as T → �. n the limit of small optimizing
time C � O(T) and therefore (27) approaches zero
linearly in time, a result that can be traced to the qua-
dratic weighting of the forcing by || · ||2L 2

, which has the
effect of penalizing concentration of forcing in time.

If �1 and �2 are two distinct singular vectors of C, the
corresponding forcings f1,2(t) � �*C�1�1,2 are orthogo-
nal because

�
0

T

f1
H�t�f2�t� dt � �1

HC	1��*C	1�2 � �1
HC	1�2

�
1
�2

�1
H�2 � 0. �30�

The optimal forcing and the associated state of the
system can be obtained simultaneously by integrating
the following coupled forward and adjoint systems
backward over the finite interval from time t � T to the
initial time t � 0:

d�

dt
� A�t�� � f,

df
dt

� 	AH�t�f, �31�

with �(T) � 
�1�1 and f(T) � �1/
�1. The initial
state �opt(0) � 0 is recovered as a consistency check.

Consider forcings, f, with || f ||2L 2
� 1. The states these

produce will lie on an ellipsoid with axes of length 
�i

in the directions of the orthonormal �i, where �i are the
singular vectors of C with corresponding singular values
�i. The corresponding forcings

fi�t� �
1


�i

�H�T, t��i, �32�

which produce the extremal states �i(T) � 
�i�i are
an orthonormal finite dimensional set of functions that
span the space of minimal forcings. These forcings in-
duce a characterization of �(T) and its excitation by
distributed forcing analogous to the characterization in-
duced by the evolved optimals and the optimal initial
conditions in the initial condition excitation problem.
For this reason we extend the characterization of opti-
mality to all the forcings that render the Rayleigh quo-
tient (6) extremal. A distinction between optimal dis-
tributed forcings and optimal initial conditions is that
the set of optimal distributed forcings, fi, is the minimal
spanning set of forcings that produce nonzero states at
t � T, but the set of optimal forcings, fi, do not span the
whole space L 2([0, T]). However, the optimal forcings

do split the whole of L2([0, T]) into two orthogonal
components: the range of P, PL2([0, T]), comprises lin-
ear combinations of the orthogonal set of fi which span
the forcings that contribute to the state at T, and
the orthogonal space of functions in the kernel of P,
(I 	 P)L2([0, T]), which do not contribute to the state at T.

An arbitrary forcing f may be projected on its mini-
mal component Pf with the property that only this com-
ponent of the forcing produces a nonzero state at the
optimizing time T.

Specifically, an arbitrary state �(T) can be expanded
in the basis of the orthonormal eigenvectors, �i, of the
finite-time covariance matrix C(T):

��T � � �
i�1

N

�i�i, �33�

where

�i � �i
H��T �. �34�

Then the minimal forcing,

f � �
i�1

N
�i


�i

fi, �35�

is the only relevant forcing for producing this state.
Further, because �i generally fall rapidly with i, most
states are difficult to reach; for instance by (35), states
�(T) that project on �i with small values of �i require
large-amplitude forcing. It follows that calculation of
the first few eigenvectors, �i, of the finite-state covari-
ance C(T) and the optimal forcings, fi, that produce
them, suffices to characterize the potential influence of
model error on the forecast and assimilation systems. In
this way the decomposition of forcings into contributing
and noncontributing spaces can be made independent
of the state dimension N, when N is large, by taking the
spanning set for the contributing space to be restricted
to the forcings with substantial �i.

3. Optimal constant spatial structure for stochastic
forcing of a linear system

In the previous section we obtained the optimal de-
terministic forcing for producing a specified state and
the maximum state norm at a given time. However,
situations arise in which the forcing is not known pre-
cisely but can be characterized statistically. A common
characteristic of statistically specified, physically de-
rived forcing is that the forcing is stochastic with a short
correlation time when compared to the characteristic
time scales of the linear operator. Given such a stochas-
tic time dependence we seek the constant spatial forc-
ing structure producing the greatest expected state
square norm at a chosen time. This situation is formu-
lated using the following stochastic equation:

d�

dt
� A�t�� � f��t�, �36�
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where f is a column vector specifying the spatial struc-
ture and �(t) a temporally white noise scalar function of
unit variance satisfying ��(t1)�(t2)� � �(t2 	 t1).

The optimal spatial structure, fopt, of the stochastic
forcing is to be found under the assumption that its
temporal behavior is a white noise process, �(t). This
contrasts with the deterministic optimal forcing prob-
lem studied above, in which the optimal response was
found over both the spatial and temporal structure of
the forcing.

The problem of obtaining the fixed spatial structure
of temporally white forcing that excites the greatest
expected square state norm in the asymptotic limit
t → � has been addressed previously (Farrell and
Ioannou 1993a,b, 1996a; Kleeman and Moore 1997).
This structure is the stochastic optimal. The problem of
obtaining the analogous finite-time stochastic optimal
under both certain and uncertain dynamics was studied
by Farrell and Ioannou (2002a,b). We will now briefly
review how the stochastic optimal is determined.

The ensemble expected square norm of the state at
time T is

��H�T���T�� �

��
0

T

ds1�
0

T

ds2�H�s1�fH�H�T, s1���T, s2�f��s2��
�37�

� fH B�T�f, �38�

where the matrix B(T) is

B�T� � �
0

T

�H�T, s���T, s� ds. �39�

The matrix B(T) can be obtained by integrating from
t � 0 to t � T the equation,

dB
dt

� AH�t�B � BA�t� � I, �40�

with the initial condition B(0) � 0.
It is immediate from (38) that the singular vectors of

the hermitian matrix B are the finite-time stochastic
optimals. The finite-time stochastic optimal associated
with the largest singular value of B is the unit norm
spatial forcing structure that, when excited white in
time over the interval [0, T ], produces the greatest ex-
pected square norm of the state at time T. This unit
norm spatial structure results in unit variance forcing in
(36). This largest expected square state response, when
normalized by the forcing covariance, is

��H�T���T��opt

fopt
H fopt

�
fopt
H B�T�fopt

fopt
H fopt

� �1, �41�

where �1 is the largest singular value of B(T) and fopt

the corresponding singular vector. The forcing normal-
izations in (41) are not the same as in the deterministic

case. Deterministic forcings are normalized by the forc-
ing’s integrated square amplitude as in (3). Such a nor-
malization is not appropriate for white noise forcing
because white noise realizations are unbounded in
square amplitude. The normalization in (41) assures a
unit variance forcing in (36), which is appropriate for
white noise forcing.

4. Optimal impulsive forcing on an interval

Consider an impulsive forcing applied at a point in
time, t0:

d�

dt
� A�t�� � f��t 	 t0�, �42�

where f is the spatial structure of the forcing. It is as-
sumed, as previously, that the state is initially zero,
�(0) � 0, and that the forcing is applied at a point in the
interval so that, 0 � t0 � T, where T is a final time.

We seek the time t0 and the forcing spatial structure
f of unit norm, corresponding to unit impulse, resulting
in the greatest state norm at T, that is, we seek to maxi-
mize the quotient:

Rp �
�H�T���T�

fHf
. �43�

The state at time T is

��T� � ��T, t0�f. �44�

Consequently, we seek the spatial structure that maxi-
mizes

Rp �
fH�H�T, t0���T, t0�f

fHf
. �45�

The maximum value of Rp is the square of the largest
singular value �2

1, of the propagator �(T, t0), which is
also the square of the norm of �(T, t0), denoted
||�(T, t0) ||22. The forcing applied at t0 producing the
greatest state norm at T is the top singular vector of the
propagator �(T, t0), which is the deterministic global
optimal initial condition corresponding to optimizing
time T 	 t0. Therefore, the optimal point forcing has
the structure of the global optimal initial condition over
t � [0, T ] and is applied at the global optimal time in the
past. If we denote by tgo the time t for which ||�(T, t) ||2
is maximum, that is, the time at which the global opti-
mal growth is achieved, then the forcing is applied at
t0 � tgo. It is clear that the optimal point forcing is
identical to the optimal initial condition at t0.

Given an arbitrary final state �(T) the optimal im-
pulsive forcing to produce �(T) is obtained by finding

min
t��0,T�

||��t, T���T� ||, �46�

in which �(t, T) � �	1(T, t), and taking t0 as the time
of this minimum and f � �(t, T)�(T)�(t 	 t0) as the
impulsive forcing that optimally excites state �(T).
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A related problem is finding the minimum constant
amplitude time-varying structure over an interval that
produces a given state. The solution is to force the nor-
malized function obtained from the backward propaga-
tor:

f�t� � ��t, T���T���
0

T ||��t, T���T� ||
||��s, T���T� || ds. �47�

5. Examples

a. A scalar system example

Consider the one-dimensional and necessarily nor-
mal system:

d�

dt
� 	� � f�t�. �48�

From (28) and (29) and the fact that a one-dimensional
system is self-adjoint, it follows that the deterministic
unit norm forcing maximizing the state at optimizing
time T is

fopt�t� �� 2	

e2	T 	 1
e	�T	t�, �49�

and the corresponding maximum state at optimizing
time T is

�opt�T� ��e2	T 	 1
2	

. �50�

The optimal forcing for this example is shown in Fig.
1a for a representative stable case (� � 	1) and in Fig.
1b for a similar unstable case (� � 1); both for T � 5.
Note that the forcing in the stable case is concentrated
near the optimizing time at the end of the interval,
because forcing at earlier times would excite the decay-
ing state and, as a result, be suboptimal. In the unstable
case the forcing is concentrated at the start of the in-
terval to take advantage of the growth. This is a general
property of optimal forcings. The square norm of the
state at the optimizing time T as a function of T is
shown for the stable case in Fig. 1c (case labeled deter-
ministic). For small T the square norm of the state is
|�opt(T) |2 � T but for large T it asymptotes to 1/2�. The
optimal forcing at optimizing time T has norm fopt(T) �
1/
� while the optimal state norm is �opt � 
� with
an optimal finite-time variance:

� �
e2	T 	 1

2	
. �51�

FIG. 1. For the one-dimensional system (48): (a) unit norm optimal forcing as a function of
time for the stable case with � � 	1 and T � 5, (b) unit norm optimal forcing for the unstable
case with � � 1 and T � 5, (c) square of the final state for the optimal deterministic, stochastic,
and impulsive forcings at optimizing time T as a function of the optimizing time for the stable
case with � � 	1. The optimal deterministic and the optimal stochastic responses coincide.
(d) A decomposition of f (t) � 1 into the component contributing, Pf, and the component not
contributing, f 	 Pf, to the state at t � 5; also for � � 	1.
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As in this example, it is generally the case that in
stable normal systems the optimal forcing extends over
a time interval of the order of the decay time of the
system while in nonnormal systems the optimal forcing
assumes the temporal extent of the system’s global op-
timal as will be shown. The expected square norm of
the state at T for unit covariance stochastic forcing is
easily seen to be

�|��T� |2�opt �
e2	T 	 1

2	
, �52�

which is identical to the optimal deterministic state
square norm. This is shown in Fig. 1 for a � 	1. Also
shown in Fig. 1 is the norm of the state for optimal
impulsive forcing, which is identical to the optimal ob-
tained from any unit initial condition on the interval.
Because in the case of a stable normal system the am-
plitude of the states decays monotonically after they are
excited, the optimal point for impulsive forcing is at the
optimizing time T itself and consequently the optimal
response is equal to 1 for all choices of T.

Assume that in this simple scalar system we are given
a forcing f(t). To find the part of f(t) that influences the
state at T, we need only to calculate the projection of
f(t) on the space of optimal forcing that according to
(12) is

Pf � e	�T	t�
2	

e2	T 	 1
�

0

T

e	�T	s�f�s�ds. �53�

The part of f(t) that does not influence the final state is
f 	 Pf. For example if the forcing were constant, f(t) �
1, only the projection,

Pf � 2
e	T 	 1

e2	T 	 1
e	�T	t�, �54�

produces a contribution to the state at T, while f 	 Pf
produces no contribution. This decomposition of f(t) �
1 into contributing and noncontributing components is
shown in Fig. 1.

b. The Reynolds system example

Consider the two-dimensional highly nonnormal
Reynolds system that models streak formation in
boundary layers:

d�

dt
� A� � f�t�, �55�

with stable matrix A:

A � � 	1 10
0 	2�. �56�

The square norm of the state at time T produced by
optimal deterministic forcing over the interval t � [0, T ]
is shown as a function of T in Fig. 2. The response is
much higher than that found for a normal system with
the same eigenvalues because of the nonnormality of
the system [e.g., (56)]. The variance equation for the
above system is

FIG. 2. For the Reynolds system example: the optimal square norm of the state ||�opt(T ) ||2
at optimizing time for deterministic, stochastic, and impulsive forcing as a function of op-
timizing time T. For comparison, the optimal growth for unit norm initial conditions, ||eAT ||2,
is also shown. Note that the optimal stochastic response coincides with the optimal determin-
istic response in this two-dimensional example.
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d||� ||2

dt
� �H�AH � A�� � �f�H � � fH�. �57�

The first term �H(AH � A)� represents the variance
tendency from the background mediated by the non-
normality of A while (f�H � �fH) is the variance ten-
dency directly accumulated from the forcing. These two
terms are plotted in Fig. 3c as a function of time for
the forcing that leads to maximum state norm at time
T � 5 in system (55). Note that the variance obtained
directly from forcing is far less than the variance ob-
tained from nonnormal processes.

Because this is a two-dimensional example, the state
at t � T produced by the optimal stochastic and deter-
ministic forcing are identical.1 The optimal norm of the
state produced by impulsive forcing and, for compari-
son, the optimal initial value growth ||eAT ||2 are shown
as a function of T in Fig. 2. Note that the norm of the

state produced by optimal impulsive forcing follows the
optimal growth curve until T reaches the global optimal
time tgo (which occurs for this case at tgo � 0.67), then
for T � tgo it maintains this constant value. The optimal
impulsive forcing is applied at time t � T 	 tgo and has
the structure of the global optimal initial condition.

The structure of the forcing as a function of time is
shown in Fig. 3a and the corresponding evolution of the
state norm is shown in Fig. 3b. The forcing is seen to
peak tgo units of times prior to the optimizing time T.

6. Modeling data assimilation as a stable
observer system

Consider assimilating data taken from the exact so-
lution of a nonlinear system, xt. The forecast error ef �
xf 	 xt obeys the following equation:

def

dt
� Aef � f�t�, �58�

in which model error is represented by f(t) and A is the
tangent linear system about xt. Forecast error typically
grows exponentially when averaged over a sufficiently
long time due to the Lyapunov instability that inher-
ently results from the time dependence of A (Arnold
1998; Farrell and Ioannou 1999). However, a Lyapunov

1 The reason is that in two-dimensional systems the eigenvalues
of the covariance matrix C and the stochastic optimal matrix B are
equal because the B and C matrices possess two invariants: they
have the same trace and also satisfy the relation ℜ [trace (AC)] �
ℜ [trace (AB)], which can be easily verified from their respective
Lyapunov equations (ℜ denotes the real part). The eigenvalues of
C and B are, in general, different for nonnormal systems with
dimension greater than two.

FIG. 3. For the Reynolds system example: (a) time development of the components of the
optimal forcing f � (f1, f2) that optimize the state energy at T � 5; (b) corresponding evolution
of the square norm of the state; (c) variance tendency due to nonnormal processes �H

opt(t)
(A � AH)�opt(t) and to forcing fH

opt(t)�opt(t) � �H
opt(t)fopt(t) as a function of time. The variance

tendency due to nonnormal processes exceeds variance tendency due to forcing.
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stable system related to (58) can be constructed to
model the process of state estimation for forecast ini-
tialization, a process referred to as data assimilation.
This can be done because a data assimilation system is
equivalent to a system in which the matrix A in (58) is
modified by the introduction of observations so that the
solution to the modified system, xa, converges to the
system state, xt, in a statistical sense (Luenberger 1971).
The effect of model and observational error on data
assimilation can be analyzed quite generally using this
representation of a data assimilation system as a Luen-
berger observer.

Assume that observations, yob of the state are taken
at various locations and introduced into the model. Let
the observations be related to the true state of the at-
mosphere, xt, as

yob � Hxt � R1�2w, �59�

where H is an observation matrix, R is the observational
error covariance, and w is a vector of white noise pro-
cesses. Given an observational platform, yob is available
while the truth xt is not available.

Assimilate these observations to obtain an analysis,
xa, with analysis error ea � xa 	 xt satisfying the Luen-
berger observer system:

dea

dt
� Aea � K�yob 	 Hxa� � f�t�

� �A 	 KH�ea � KR1
2w � f�t�. �60�

The above equation defines the assimilation system
model. Ideally, the gain, K, is chosen to minimize the
analysis error variance trace (�eaeH

a �).
Unlike the forecast error system, a Luenberger ob-

server system is asymptotically stable. Any gain, K, that
stablizes A 	 KH results in an observer with bounded
error, this error being forced by a combination of model
error f(t) and observational error R (cf. 60). It is imme-
diately evident that in the absence of model and obser-
vation error the analysis will converge to truth. Good
gains, K, do not just stabilize the operator but simulta-
neously reduce the nonnormality of the tangent linear
operator so that the minimum of trace (�eaeH

a �) is main-
tained by the combination of observational and model
error. The optimal gain under the assumption of Gaus-
sian error statistics is the Kalman gain (Kalman 1964;
Zhou and Doyle 1998). A suboptimal observer, such as
might be associated with an operational forecast sys-
tem, can be modeled as a stabilizing K not equal to the
Kalman gain. Just as analysis of the tangent linear fore-
cast system reveals how initialization error and distrib-

FIG. 4. For the observer-stabilized Eady model: the square norm of the optimal state at
optimizing time T for unit norm deterministic distributed forcing; the optimal expected square
norm of the state for statistically steady stochastic forcing; and the optimal square norm of the
state for impulsive forcing. The zonal wavenumber is k � 1.5 and the Rayleigh damping
coefficient is r � 0.15. The Eady model is stabilized by the asymptotic Kalman gain, obtained
under the perfect model assumption and with unit observation error variance. The unobserved
system is unstable with dimensional growth rate 1/2.3 day	1. The decay rate of perturbations
in the observer system is 1/2.6 day	1.

468 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 62



uted forcing contribute to forecast error, so does analy-
sis of the observer system reveal how model and obser-
vation error contribute to analysis error.

We are now equipped to study the effect of distrib-
uted error on data assimilation and will begin by seek-
ing the deterministic and stochastic forcings leading to
the greatest deviations of the estimate xa from the true
state xt as measured by the norm of e.

7. The Eady assimilation and forecast system
model example

Consider as an example error system the Eady model
(Eady 1949) with a zonal wavenumber chosen so that
the model is unstable. Introduce continuous observa-
tion of the error streamfunction at the channel center
and construct a stable Kalman observer under the as-
sumption of zero model and unit observation error. Un-
der these assumptions, a single continuous observation
at the channel center suffices to make this optimal ob-
server asymptotically stable.

The nondimensional linearized equation for stream-
function perturbations � in the Eady model is

�D2�

�t
� 	ik z D2� 	 r D2�, �61�

in which the perturbation is assumed to be of form
�(z, t)eikx, where k is the zonal wavenumber. The per-

turbation potential vorticity is D2�, with D2 � �2/�z2 	
k2 and the perturbation potential vorticity damping rate
is r. This model is Boussinesq with constant stratifica-
tion on an f plane and has periodic boundary conditions
in the zonal, x, direction and a solid lid at height z � H.
The zonal flow is U(z) � z. Horizontal scales are non-
dimensionalized by L � 1000 km; vertical scales by H �
fL/N � 10 km; velocity by U0 � 30 m s; and time by
T � L/U0, so that a time unit is approximately 9.25 h.
Midlatitude values are chosen for the Brunt–Väisälä
frequency, N � 10	2 s	1, and Coriolis parameter, f �
10	4 s	1. The coefficient of Rayleigh damping has value
r � 0.15 corresponding to a decay rate of 1/2.5 day	1.

Conservation of potential temperature at the ground,
z � 0, and tropopause, z � 1, provides the following
boundary conditions:

�2�

�t�z
� ik� 	 r

��

�z
at z � 0, �62�

�2�

�t�z
� 	ik

��

�z
� ik� 	 r

��

�z
at z � 1. �63�

The model is discretized using N � 21 points in the
vertical and expressed in the matrix form:

d�

dt
� A�. �64�

FIG. 5. Optimal deterministic square state norm at T � 40 in the observer-stabilized Eady
model accounted for by each of the 21 orthogonal forcing structures. There are two dominant
responses to deterministic forcing, suggesting the generally valid result that a few forcings
account for most assimilation error. The parameters are as described in Fig. 4.
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In (64) generalized velocity coordinates � � M1/2�
were used so that the Euclidian square norm of the
system state corresponds to error energy. The error
energy is �H� � �HM�, and for a vertical discretiza-
tion increment �z the metric M is

M � 	
�z

4
D2. �65�

The assimilation system in generalized velocity vari-
ables is governed by the operator Aa � A 	 KH, where
K is the Kalman gain for observation at the channel
center given by K � XHHR�1, where X satisfies the
continuous-time algebraic Ricatti equation under the
perfect model assumption (cf. Zhou and Doyle 1998):

AX � XAH 	 XHHR	1HX � 0, �66�

and H � PM�1/2 is the observation matrix, in which, for
our example, P is a row vector with one nonzero ele-
ment corresponding to the grid point at the channel
center, and R is the observation error covariance matrix

(which is a scalar in our example). In contrast, the un-
stable forecast system is governed by the operator A.
We seek in both the stable assimilation and the un-
stable forecast system the optimal deterministic and
stochastic forcing leading to the greatest error at time T.

a. The observer-stabilized Eady model

Let Aa be the matrix of the observer-stabilized Eady
model for zonal wavenumber k � 1.5. While the unob-
served Eady model at this wavenumber is unstable with
dimensional growth rate 1/2.5 day	1, the observer-
stabilized model has a minimum dimensional decay rate
1/2.6 day	1. The square norm of the state at time T
produced by optimal distributed forcing over the inter-
val t � [0, T ] is shown as a function of T in Fig. 4. The
square norm of the state at T produced by each of the
21 orthonormal optimal forcings is shown in Fig. 5. Two
EOFs and their associated forcing structures account
for most of the perturbation dynamics suggesting the
generally valid conclusion that a few forcings account

FIG. 6. For the observer-stabilized Eady model: (a) time development of the norm of the
deterministic forcing that optimizes the energy of the state at T � 40. The norm of the
retarded propagator ||eAa(T	t) || giving the optimal growth attainable from an initial state is also
shown. Note that the optimal deterministic forcing is concentrated in the interval of the
supreme of the maximum norm of the retarded propagator. (b) The corresponding time
development of the norm of the state ||�opt(t) ||, the variance tendency due to nonnormal
processes �H

opt(t)(A � AH)�opt(t), and the variance tendency due to forcing fH
opt(t)�opt(t) �

�H
opt(t)fopt(t). The forcing is normalized so that || fopt(T) ||L 2

� 1. The parameters are the same
as in Fig. 4.
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for most of the error and the majority of the forcings
make relatively little contribution.

The norm of the distributed forcing that maximizes
the state norm at T � 40 is shown as a function of time
in Fig. 6a along with the optimal growth ||eAa(T	t) ||. The
norm of the forcing follows the optimal growth curve
and is maximized at T 	 tgo, where tgo is the time for
which the maximum of the norm of the propagator eAat

occurs (in this case the maximum occurs at tgo � 7). The
corresponding growth of the error state energy, the en-
ergy tendency by nonnormal processes, and the energy
tendency produced by forcing are shown in Fig. 6b.

The evolution in structure of the first deterministic
optimal is shown in the left panels of Fig. 7. The cor-
responding evolution in structure of the state is shown
in the right panels. At optimizing time both the state
and the optimal forcing assume the structure of the first
eigenvector of the finite-time covariance matrix at time
T, C(T).

The error norm produced by optimal stochastic forc-
ing, and the response to optimal impulsive forcing are
shown as a function of T in Fig. 4. The norm of the error
due to impulsive forcing follows the deterministic initial
state optimal growth curve reaching at time tgo � 7 the
global optimal norm after which it assumes the constant
value of the global optimal growth. For optimizing
times T � tgo the optimal impulsive forcing occurs at

time t � T 	 tgo and has the structure of the global
optimal initial condition. This structure and that of the
stochastic optimal are shown in Fig. 8. If the spatial
structure of the white noise forcing is taken to be that of
the stochastic optimal shown in Fig. 8a then the result-
ing state covariance at optimizing time is primarily
composed of the first three eigenvectors of C(T) shown
in Fig. 9.

b. The unstable Eady forecast model

The error in the unstable Eady model at k � 1.5
grows exponentially. The error norm for optimal dis-
tributed, stochastic, and impulsive forcing are shown in
Fig. 10. The optimal stochastic forcing and the optimal
deterministic forcing produce almost identical error at
time T because the system is unstable and excitation of
a single structure, the adjoint of the mode, is respon-
sible for nearly all the error at time T. The time devel-
opment of the norm of the optimal deterministic forc-
ing for optimizing time T � 20 is shown in Fig. 11. The
forcing is concentrated at the beginning of the interval
in order to take advantage of the instability. The struc-
ture of the forcing and the error at various times are
shown in Fig. 12. At the optimizing time the structure
both of the error and the forcing is that of the fastest
growing mode, at earlier times the forcing has the struc-
ture of the adjoint of this mode. The stochastic optimal

FIG. 7. For the observer-stabilized Eady model: (left) temporal evolution of the structure of
the deterministic optimal forcing Re [f(z, t)eikx] for T � 40. The optimal forcing is shown from
the bottom to the top at times t � 20, 30, 35, 40. (right) The corresponding structure of the
optimal state Re [�(z, t)eikx]. The parameters are as described in Fig. 4.
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and the optimal impulsive forcing (which consists of
forcing at the initial time of and with the structure of
the optimal initial condition that maximizes perturba-
tion growth at T � 20), although formally different, in
this strongly unstable example have both assumed the
structure of the adjoint of the most unstable mode of
the model, which is shown in the second panel from the
top on the left-hand side of Fig. 12.

8. Conclusions

In this work we have studied the response of a linear
dynamical system to distributed deterministic and sto-
chastic forcing. Specific atmospheric applications of this
study are to the presumed unstable forward forecast
error system and the necessarily stable data assimila-
tion system that are each continually perturbed by dis-
turbances that degrade the forecast and assimilation,
respectively. These disturbances may be physical in ori-
gin and may also arise from numerical model deficien-
cies. The disturbances may be deterministic or stochas-
tic. We analyzed the effect of temporally distributed
forcing on stable and unstable error systems by obtain-
ing a spanning set of optimal distributed forcings over a

chosen interval making use of the adjoint system propa-
gator applied to the finite-time covariance matrix
eigenvectors. In the stable case modeling a data assimi-
lation system, the optimal forcing is concentrated near
the end of the interval of the optimization, while in the
unstable forecast error system the optimal forcing is
concentrated near the beginning of the interval. The
optimals use both accumulation of forcing variance as
well as variance transfer from the mean in their growth
process, although transfer from the mean was dominant
in the examples. The structure of the response to the
optimal distributed forcing is the first eigenvector of the
finite-time covariance C(T) � �T

0 �(T, t)�H(T, t)dt. In
the case of stochastic forcing, the structure of the forc-
ing producing the greatest response is the finite-time
stochastic optimal, which is the first eigenvector of the
stochastic optimal matrix B(T) � �T

0 �H(T, t)�(T, t)dt,
and this forcing generally tends to have the structure of
the optimal initial condition. Finally, in the case of
point impulsive forcing, the greatest response is ob-
tained by a forcing concentrated at the global optimiz-
ing time in the past and with the structure of the global
optimal initial condition.

Most forcings make little or no contribution to fore-

FIG. 8. For the observer-stabilized Eady model: (a) structure of the stochastic optimal that
produces the greatest expected square error at T � 40, (b) structure of the optimal impulsive
forcing that produces the greatest expected square error at T � 40. The optimal impulsive
forcing is concentrated 7 units of time before the optimization time and has the structure of
the optimal initial condition associated with the global optimal growth. The parameters are as
described in Fig. 4.
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FIG. 10. For the unstable Eady forecast error model: the square norm of the state,
||�opt(T ) ||2, at optimizing time, T, as a function of optimizing time under deterministic forcing
of unit norm, which, for this strongly unstable error model, coincides with the optimal ex-
pected square error norm under statistically stationary stochastic forcing. For comparison, the
optimal square error norm under optimal impulsive forcing is also shown. The zonal wave-
number is k � 1.5 and the Rayleigh damping coefficient is r � 0.15. The forecast system is
unstable with a growth rate 1/2.5 day	1.

FIG. 9. Structure of the (left to right) first three eigenvectors of C(T ) (EOFs) at T � 40
maintained by the stochastic optimal in the observer-stabilized Eady model. The parameters
are as described in Fig. 4.
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FIG. 12. For the unstable Eady forecast model: (left) structure of the deterministic optimal
forcing Re [f(z, t)eikx] that optimizes the state norm at T � 20. The optimal forcing is shown
at times t � 2, 10, 15, 20. (right) the corresponding structure of the state Re [�(z, t)eikx]. The
parameters are as described in Fig. 10.

FIG. 11. For the unstable Eady forecast model example: (a) norm of the deterministic
forcing that optimizes the energy of the state at T � 20. (b) Corresponding norm of the state
| �opt(t) |. The parameters are the same as described in Fig. 10.

474 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 62



cast and assimilation error, and a small subspace of
forcings produce most of the error that is realized pri-
marily in a small subspace of error states. These forc-
ings are the optimal forcings that project on the domi-
nant eigenvectors of the finite-time covariance matrix.

Forecast error may arise primarily from error in the
initial analysis, or it may be forced by error sources
distributed over the forecast interval. Initial error in-
fluence on forecast is characterized by the set of opti-
mal perturbations, while error distributed in time is
characterized by optimal forcing functions. It remains
to determine the relative importance of these error
sources in practical forecast situations.

Consider macroscopic cyclone formation as distinct
from perturbation error growth. The cyclone may arise
from forcing distributed over a given interval or from
an initial disturbance at the beginning of the interval.
Improved understanding of the origin of cyclones de-
pends, in part, on a better characterization of the rela-
tive role of initial conditions and distributed forcings in
the cyclogenesis process.
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