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Understanding of the stability of deterministic and stochastic dynamical systems

has evolved recently from a traditional grounding in the system’s normal modes

to a more comprehensive foundation in the system’s propagator and especially in

an appreciation of the role of non-normality of the dynamical operator in deter-

mining the system’s stability as revealed through the propagator. This set of ideas,

which approach stability analysis from a non-modal perspective, will be referred

to as generalised stability theory (GST). Some applications of GST to determinis-

tic and statistical forecast are discussed in this review. Perhaps the most familiar

of these applications is identifying initial perturbations resulting in greatest error

in deterministic error systems, which is in use for ensemble and targeting appli-

cations. But of increasing importance is elucidating the role of temporally dis-

tributed forcing along the forecast trajectory and obtaining a more comprehensive

understanding of the prediction of statistical quantities beyond the horizon of deter-

ministic prediction. The optimal growth concept can be extended to address error

growth in non-autonomous systems in which the fundamental mechanism produc-

ing error growth can be identified with the necessary non-normality of the sys-

tem. The influence of model error in both the forcing and the system is examined

using the methods of stochastic dynamical systems theory. In this review determin-

istic and statistical prediction, i.e. forecast and climate prediction, are separately

discussed.
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5.1 Introduction

The atmosphere and ocean are constantly evolving and the present state of these

systems, while notionally deterministically related to previous states, in practice

becomes exponentially more difficult to predict as time advances. This loss of pre-

dictability of the deterministic state is described as sensitive dependence on initial

conditions and quantified by the asymptotic exponential rate of divergence of ini-

tially nearby trajectories in the phase space of the forecast system (Lorenz, 1963)

given by the first Lyapunov exponent (Lyapunov, 1907; Oseledets, 1968). Moreover,

the optimality of the Kalman filter as a state identification method underscores the

essentially statistical nature of the prediction problem (Ghil and Malanotte-Rizzoli,

1991; Berliner, 1996). The initial state is necessarily uncertain but so is the forecast

model itself and the system is subject to perturbations from extrinsic and subgrid-

scale processes. Given all these uncertainties the notion of a single evolving point in

phase space is insufficient as a representation of our knowledge of forecast dynamics,

and some measure of the uncertainty of the determination of the system state and the

evolution of this uncertainty must be included in a comprehensive forecast system

theory (Epstein, 1969; Ehrendorfer, this volume; Palmer, this volume).

The appropriate methods for studying errors in deterministic and statistical fore-

cast are based on the system’s propagator and proceed from advances in mathemat-

ics (Schmidt, 1906; Mirsky, 1960; Oseledets, 1968) and dynamical theory (Lorenz,

1963, 1965, 1985; Farrell, 1988, 1990; Lacarra and Talagrand, 1988; Molteni and

Palmer, 1993; Penland and Magorian, 1993; Buizza and Palmer, 1995; Farrell and

Ioannou, 1996a, 1996b; Moore and Kleeman, 1996; Kleeman and Moore, 1997;

Palmer, 1999; DelSole and Hou, 1999a, 1999b; Ehrendorfer, this volume; Palmer,

this volume; Timmermann and Jin, this volume).

We review recent advances in linear dynamical system and stability theory relevant

to deterministic and statistical forecast. We begin with deterministic error dynamics

in autonomous and non-autonomous certain systems and then address the problem

of prediction of statistical quantities beyond the deterministic time horizon; finally,

we study model error in certain and uncertain systems.

5.2 Deterministic predictability of certain systems

The variables in a certain forecast model are specified by the finite dimensional state

vector y which is assumed to evolve according to the deterministic equation

dy
dt

= f(y). (5.1)

Consider a solution of the forecast equations y(t) starting from a given initial state.

Sufficiently small forecast errors x ≡ δy are governed in the linear limit by the tangent
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linear equations

dx
dt

= A(t) x, (5.2)

in which the Jacobian matrix

A(t) ≡ ∂f
∂y

∣∣∣∣
y(t)

, (5.3)

is evaluated along the known trajectory y(t) and is considered to be known.

The matrix A(t) is time dependent and in general its realisations do not commute,

i.e. A(t1)A(t2) �= A(t2)A(t1). It follows that the evolution of the error field cannot

be determined from analysis of the eigenvalues and eigenfunctions of A, as would

be the case for time independent normal matrices, but instead the analysis must be

made using the methods of generalized stability theory (GST) (for a review see

Farrell and Ioannou, 1996a, 1996b). GST concentrates attention on the behaviour of

the propagator �(t, 0), which is the matrix that maps the initial error x(0) to the error

at time t :

x(t) = �(t, 0) x(0). (5.4)

Once the matrix A(t) of the tangent linear system is available, the propagator is

readily calculated. Consider a piecewise approximation of the continuous operator

A(t): A(t) = Ai where Ai is the mean of A(t) over (i − 1)τ ≤ t < iτ for small enough

τ . At time t = nτ the propagator is approximated by the time ordered product

�(t, 0) =
n∏

i=1

eAi τ . (5.5)

If A is autonomous (time independent) the propagator is the matrix exponential

�(t, 0) = eAt . (5.6)

Deterministic error growth is bounded by the optimal growth over the interval [0, t]:

‖�(t, 0)‖ ≡ maxx(0)

‖x(t)‖
‖x(0)‖ . (5.7)

This maximisation is over all initial errors x(0). The optimal growth for each t is

the norm of the propagator ‖�(t, 0)‖. The definition of the optimal implies a choice

of norm. In many application ‖x(t)‖2 is chosen to correspond to the total perturbation

energy.

We illustrate GST by applying it to the simple autonomous Reynolds1 matrix A:

A =
( −1 100

0 −2

)
. (5.8)
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Figure 5.1 The upper curve gives the optimal growth as function of time for the
simple matrix (5.8). The optimal growth is given by the norm of the propagator eAt .
The lower curve shows the evolution of the amplitude of the least damped eigenmode
which decays at a rate of −1.

Consider the model tangent linear system:

dx
dt

= Ax. (5.9)

Traditional stability theory concentrates on the growth associated with the most

unstable mode, which in this example gives decay at rate −1, suggesting that the

error decays exponentially at this rate. While this is indeed the case for very large

times, the optimal error growth, shown by the upper curve in Figure 5.1, is much

greater at all times than that predicted by the fastest growing mode (the lower curve

in Figure 5.1). The modal prediction fails to capture the error growth because A is

non-normal, i.e. AA† �= A†A and its eigenfunctions are not orthogonal.

The optimal growth is calculated as follows:

G = ‖x(t)‖2

‖x(0)‖2
= x(t)†x(t)

x(0)†x(0)
= x(0)†eA†t eAt x(0)

x(0)†x(0)
. (5.10)

This Rayleigh quotient reveals that the maximum eigenvalue of the positive def-

inite matrix eA†t eAt determines the square of the optimal growth at time t . The
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corresponding eigenvector is the initial perturbation that leads to this growth, called

the optimal perturbation (Farrell, 1988). Alternatively, we can proceed with a Schmidt

decomposition (singular value decomposition) of the propagator:

eAt = U�V† (5.11)

with U and V unitary matrices and � the diagonal matrix with elements the singular

values of the propagator, σi , which give the growth achieved at time t by each of

the orthogonal columns of V. The largest singular value is the optimal growth and

the corresponding column of V is the optimal perturbation. The orthogonal columns,

vi , of V are called optimal vectors (or right singular vectors), and the orthogonal

columns, ui , of U are the evolved optimal vectors (or left singular vectors) because

from the Schmidt decomposition we have

σi ui = eAt vi . (5.12)

The forecast system has typical dimension 107 so we cannot calculate the propagator

directly as in Eq. (5.5) in order to obtain the optimal growth. Instead we integrate the

system

dx
dt

= Ax (5.13)

forward to obtain x(t) = eAt x(0) (or its equivalent in a time dependent system), and

then integrate the adjoint system

dx
dt

= −A†x (5.14)

backward in order to obtain eA†t x(t) = eA†t eAt x(0). We can then find the optimal

vectors (singular vectors) by the power method (Moore and Farrell, 1993; Molteni

and Palmer, 1993; Errico, 1997). The leading optimal vectors are useful input for

selecting the ensemble members in ensemble forecast (Buizza, this volume; Kalnay

et al., this volume) because they span and order in growth the initial error (Gelaro

et al., 1998). They also identify sensitive regions that can be targeted for further

observation (Thorpe and Petersen, this volume).

We have remarked that optimal growth depends on the norm. The choice of norm

is dictated by the physical situation; we are usually interested in growth in energy

but other norms can be selected to concentrate on the perturbation growth in other

physical measures such as growth in square surface pressure, or in square potential

vorticity (for a discussion of the choice of the inner product see Palmer et al., 1998;

for a discussion of norms that do not derive from inner products see Farrell and

Ioannou, 2000). Formally for autonomous operators there exist ‘normal coordinates’

in which the operator is rendered normal; however, this coordinate system is not

usually physical in the sense that the inner product in these coordinates is not usually

associated with a physically useful measure. But a more deeply consequential reason
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why the concept of ‘normal coordinates’ is not useful is that time dependent operators,

such as the tangent linear forecast system, are inherently non-normal, in the sense

that there is no transformation of coordinates that renders a general A(t) normal at all

times. It follows that analysis of error growth in time dependent systems necessarily

proceeds through analysis of the propagator as outlined above.

The tangent linear forecast system is generally assumed to be asymptotically

unstable in the sense that the Lyapunov exponent of the tangent linear system is

positive. Lyapunov showed that for a general class of time dependent but bounded

matrices A(t) the perturbations x(t) grow at most exponentially so that ‖ x(t) ‖∝ eλt

as t → ∞, where λ is the top Lyapunov exponent of the tangent linear system which

can be calculated by evaluating the limit

λ = limt→∞
ln ‖ x(t) ‖

t
. (5.15)

This asymptotic measure of error growth is independent of the choice of norm, ‖ · ‖.

It is of interest and of practical importance to determine the perturbation subspace

that supports this asymptotic exponential growth of errors. Because this subspace

has a much smaller dimension than that of the tangent linear system itself, a theory

that characterises this subspace can lead to economical truncations of the tangent

linear system. Such a truncation could be used in advancing the error covariance of

the tangent linear system which is required for optimal state estimation. We now

show that the inherent non-normality of time dependent operators is the source of the

Lyapunov instability which underlies the exponential increase of forecast errors and

that understanding the role of non-normality is key to understanding error growth.

Consider a harmonic oscillator with frequency ω. In normal coordinates (i.e.

energy coordinates), y = [ωx, v]T , where x is the displacement and v = ẋ , the system

is governed by

dy
dt

= Ay, (5.16)

with

A = ω

(
0 1

−1 0

)
. (5.17)

This is a normal system AA† = A†A and the system trajectory lies on a constant

energy surface, which is a circle. In these coordinates the perturbation amplitude is

the radius of the circle and there is no growth.

Assume now that the frequency switches periodically between ω1 and ω2: at

T1 = π/(2ω1) units of time the frequency is ω1 and T2 = π/(2ω2) units of time the

frequency is ω2. There is no single transformation of coordinates that renders the

matrix A simultaneously normal when ω = ω1 and when ω = ω2 so we revert to
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Figure 5.2 The parametric instability of the harmonic oscillator governed by (5.18)
is caused by the non-normality of the time dependent operator. So long as there is
instantaneous growth and the time dependent operators do not commute, asymptotic
exponential growth occurs. For this example ω1 = 1/2 and ω2 = 3. See text for
explanation of numbers 1 to 5.

the state y = [x, v]T with dynamical matrices:

A1,2 =
(

0 1

−ω2
1,2 0

)
. (5.18)

When the frequency is ω1 the state y traverses the ellipses of Figure 5.2 that are

elongated in the direction of the x axis and when the frequency is ω2 it traverses the

ellipses of Figure 5.2 that are elongated in the v axis (both marked with dots). The

dynamics of this system can be understood by considering the evolution of the initial

condition y(0) = [1, 0] marked with 1 in Figure 5.2. Initial condition 1 goes to 2 at

time t = T2 under the dynamics of A2, then the dynamics switch to A1 taking the

system from 2 to 3 at time t = T1 + T2; reverting back to A2, the system advances

from 3 to 4 at t = T1 + 2T2, and then under A1, 4 goes to 5 at time t = 2(T1 + T2) with

coordinates y(2(T1 + T2)) = [36, 0]. As time advances the trajectory clearly grows

exponentially as this cycle is repeated despite the neutral stability of the system at
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each instant of time. How is this possible? The key lies in the inherent non-normality

of the operator in time dependent systems. If the operator were time independent and

stable, transient growth would necessarily give way to eventual decay. In contrast,

a time dependent operator reamplifies the perturbations that would have otherwise

decayed. This process of continual rejuvenation producing asymptotic destabilisation

is generic and does not depend on the stability properties of the instantaneous operator

state (Farrell and Ioannou, 1999).

As a further example consider harmonic perturbations �(y, t)eikx on a time depen-

dent barotropic mean flow U (y, t) in a β plane channel −1 ≤ y ≤ 1. The perturba-

tions evolve according to

d�

dt
= A(t)�, (5.19)

with time dependent operator:

A = ∇−2

(
−ik U (y, t)∇2 − ik

(
β − d2U (y, t)

dy2

) )
, (5.20)

in which discretised approximations of the operators on the right-hand side is implied.

According to Rayleigh’s theorem (Drazin and Reid, 1981) this flow cannot sustain

growth unless the mean vorticity gradient Qy = β − U ′′ changes sign. Let us con-

sider only flows that are asymptotically stable at all times by Rayleigh theorem, and

for simplicity that the mean velocity switches periodically between the two flows

shown in the left panels of Figure 5.3. The corresponding mean vorticity gradient

is shown in the right panels of the same figure. Despite the asymptotic stability of

each instantaneous flow the periodically varying flow is asymptotically unstable. The

Lyapunov exponent of the instability as a function of the switching period is shown

in Figure 5.4.

This instability arises from sustaining the transient growth of the operator through

time dependence. The same process is operative when the flow is varying continu-

ously in time. Then the Lyapunov exponent for given statistically stationary fluctua-

tions in operator structure can be shown to depend on two parameters: the fluctuation

amplitude and the autocorrelation time, Tc, of the fluctuations (Farrell and Ioannou,

1999). Snapshots of the perturbation structure revealing the process of accumulation

of transient growth by the interaction of the perturbations with the time dependent

operator in a continuously varying flow are shown in Figure 5.5. This mechanism of

error growth predicts that the perturbation structure should project most strongly on

the subspace of the leading optimal (singular) vectors. This is indeed the case, as can

be seen in the example in Figure 5.6.

Study of the asymptotic error structure in more realistic tangent linear systems

confirms the conclusions presented above (Gelaro et al., 2002). We conclude that

error structure in forecast systems projects strongly on the optimal vectors. This
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Figure 5.3 (Left panels) the mean flow velocity as a function of latitude for the
Rayleigh stable example. (Right panel) the associated mean vorticity gradient,
Qy = β − U ′ ′, with β = 10.

result is key for dynamical evolution of the error covariance which is required for

optimal state estimation (Farrell and Ioannou, 2001).

5.3 Model error in deterministic forecast

We have already discussed methods for determining the impact of uncertainties in

the initial state on the forecast. However, as the initialisation of forecast models is

improved with the advent of new data sources and the introduction of variational

assimilation methods, the medium range forecast will become increasingly affected

by uncertainties resulting from incomplete physical parametrisations and numeri-

cal approximations in the forecast model, and by the necessarily misrepresented

subgrid-scale chaotic processes such as cumulus convection which act as temporally

stochastic distributed forcing of the forecast error system. These influences, referred

to collectively as model error, conventionally appear as an external forcing in the

forecast error system (Allen et al., this volume).
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Figure 5.4 Lyapunov exponent as a function of switching period T for the example
shown in Figure 5.3. The time dependent flow results from periodic switching every
T time units between the Rayleigh stable flow profiles shown in Figure 5.3. The
zonal wavenumber is k = 1 and β = 10.

Improving understanding of model error and specifically identifying forcings that

lead to the greatest forecast errors are centrally important in predictability studies.

In analogy with the optimal perturbations that lead to the greatest forecast error

in the case of initial condition error, these continuous error sources will be called

optimal distributed forcings. In an approach to this problem D’Andrea and Vautard

(2000) obtained approximate optimal temporally distributed deterministic forcings

of the forecast error system (which they refer to as forcing singular vectors) and

Barkmeijer et al. (2003) obtained the optimal temporally distributed deterministic

forcing of the forecast error system over fixed spatial structures. We here describe

the method for determining the general optimal forcing in both the forecast and

assimilation systems.

The underlying theory for determining the optimal forcing in the deterministic

case is based on analysis of the dynamical system as a mapping from the space of

input forcings to the space of states at later time. We seek the deterministic forcing

f(t) of unit norm on t ∈ [0, T ] producing the greatest state norm at time T , i.e. that
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Figure 5.5 For a continuously varying barotropic flow, the structure of the state
�(y, t)eikx in the zonal (x), meridional (y) plane at four consecutive times separated
by an autocorrelation time Tc. The rms velocity fluctuation is 0.16 and the noise
autocorrelation time is Tc = 1. The zonal wavenumber is k = 2, β = 0, and the
Reynolds number is Re = 800. The Lyapunov exponent is λ = 0.2. At first (top
panel) the Lyapunov vector is configured to grow, producing an increase over Tc of
1.7; in the next period the Lyapunov vector has assumed a decay configuration
(second panel from top) and suffers a decrease of 0.7; subsequently (third panel from
top) it enjoys a slight growth of 1.1; and finally (bottom panel) a growth by 1.8.
Further details can be found in Farrell and Ioannou (1999).

maximises the square norm of the state ‖x(T )‖2, assuming the state is initially zero,

x(0) = 0, and that x obeys the tangent linear forecast equation

dx
dt

= A(t)x + f(t). (5.21)

The forcing f(t) over the interval [0, T ] is measured in the square integral norm

‖f‖2
L2

=
∫ T

0

f†(t)f(t)dt, (5.22)

while the state x is measured in the vector square norm

‖x‖2 = x†x. (5.23)

The use of alternative inner products can be easily accommodated.
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Figure 5.6 (Top panel) Mean and standard deviation of the projection of the
Lyapunov vector on the optimal vectors of the mean flow calculated for a time
interval equal to Tc in the energy norm. (Bottom panel) The mean projection and
standard deviation of the Lyapunov vector on the Tc evolved optimal vectors of the
mean flow in the energy norm.

The optimal forcing, f(t), is the forcing that maximises the final state at time T ,

i.e. that maximises the quotient

Rd = ‖ x(T ) ‖2

‖ f ‖2
L2

. (5.24)

It can be shown (Dullerud and Paganini, 2000; Farrell and Ioannou, 2005) that this

intractable maximisation over functions, f(t), can be transformed to a tractable max-

imisation over states, x(T ). Specifically the following equality is true:

max
f(t)

‖ x(T ) ‖2

‖ f(t) ‖2
L2

= max
x(T )

‖ x(T ) ‖2

x(T )†C−1x(T )
, (5.25)

where C is the finite time state covariance matrix at time T under the assumption

of temporally white noise forcing with unit covariance I. The covariance can be
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obtained by integrating from t = 0 to t = T the Lyapunov equation

dC
dt

= A(t)C + CA†(t) + I, (5.26)

with the initial condition C(0) = 0. Note that the form of the second optimisation

in Eq. (5.25) is reminiscent of the covariance or Mahalanobis metric used in pre-

dictability analysis (Palmer et al., 1998), suggesting the interpretation of optimals

weighted by the Mahalanobis metric as structures that are most easily forced.

Quotient (5.25) is maximised for unit forcing by the state

xopt (T ) =
√

λ1v1, (5.27)

where λ1 is the maximum singular value of C and v1 is the corresponding singular

vector of C (v1 is conventionally called the top empirical orthogonal function (EOF)

of C). It can be shown (Farrell and Ioannou, 2005) that the optimal forcing and

the associated state of the system can be obtained simultaneously by integrating the

following coupled forward and adjoint systems backwards over the finite interval

from time t = T to the initial time t = 0:

dx
dt

= A(t)x + f

df
dt

= −A†(t)f , (5.28)

with x(T ) = √
λ1v1 and f(T ) = v1/

√
λ1. The initial state xopt (0) = 0 is recovered as

a consistency check.

5.4 Prediction of statistics of certain systems

Beyond the limit of deterministic forecast it is still possible to predict the statisti-

cal properties which constitute the climate of a system. Consider the perturbation

structure, x, produced by the forced equation

dx
dt

= Ax + Fn(t). (5.29)

Here A may be the deterministic linear operator governing evolution of large-scale

perturbations about the mean midlatitude flow, and Fn(t) an additive stochastic forc-

ing with spatial structure F, representing neglected non-linear terms. For simplicity

we assume that the components of n(t) are white noise with zero mean and unit vari-

ance. We wish to determine the perturbation covariance matrix (or density matrix)

C(t) = 〈xx†〉, (5.30)

where 〈·〉 denotes the ensemble average over the realisations of the forcing Fn(t).
If a steady state is reached, 〈·〉 is also the time mean covariance. We argue
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(Farrell and Ioannou, 1993; DelSole, 1996, 1999, 2001, 2004)2 that the midlatitude

jet climatology can be obtained in this way because the transient climatology in the

midlatitudes is the statistical average state resulting from random events of cycloge-

nesis. Because cyclogenesis is a rapid transient growth process primarily associated

with the non-normality of A, its statistics are well approximated by the structure of

the linear operator A. The diagonal elements of the steady state covariance C are

the climatological variance of x, and they locate the storm track regions. All mean

quadratic fluxes are also derivable from C, from which the observed climatological

fluxes of heat and momentum can be obtained. In this way we obtain a theory for

the climate and can address systematically statistical predictability questions such

as how to determine the sensitivity of the climate, that is of C, to changes in the

boundary conditions and physical parameters which are reflected in changes in the

mean operator A and the forcing structure matrix F.

If n(t) is a white noise process it can be shown (Farrell and Ioannou, 1996a) that

C(t) =
∫ t

0

eAsQeA†s ds, (5.31)

where

Q = FF† (5.32)

is the covariance of the forcing. It can also be shown that the ensemble mean covari-

ance evolves according to the deterministic equation

dC
dt

= AC + CA† + Q ≡ HC + Q , (5.33)

where H is a n2×n2 matrix if C is a n×n covariance matrix. It should be noted that

the above equation is also valid for non-autonomous A(t). If A is time independent

the solution of the above equation is

C(t) = eHt C(0) +
(∫ t

0

eH(t−s)ds

)
Q

= eHt C(0) + H−1(eHt − I)Q . (5.34)

As t → ∞ and assuming the operator A is stable a steady-state is reached, which

satisfies the steady-state Lyapunov equation

AC∞ + C∞A† = −Q . (5.35)

This equation can be readily solved for C∞, from which ensemble mean quadratic

flux quantities can be derived.

Interpretation of C requires care. The asymptotic steady-state ensemble aver-

age, C∞, is the same as the time averaged covariance and can be obtained from a

single realisation of x(t) by averaging the covariance over a sufficient long inter-

val. However, the time dependent C(t) cannot be associated with a time average3 but
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rather is necessarily an ensemble average. With this consideration in mind, C(t) from

Eq. (5.34) is appropriate for evolving the error covariance in ensemble prediction as

will be discussed in the next section. In this section we consider a time independent

and stable A and interpret the steady state C∞ as the climatological covariance.

It has been demonstrated that such a formulation accurately models the midlat-

itude climatology (Farrell and Ioannou, 1994, 1995; DelSole, 1996, 1999, 2001,

2004; Whitaker and Sardeshmukh, 1998; Zhang and Held, 1999) and reproduces the

climatological heat and momentum fluxes. The asymptotic covariance captures the

distribution of the geopotential height variance of the midlatitude atmosphere as well

as the distribution of heat and momentum flux in the extratropics.

The algebraic equation (5.35) gives C∞ as an explicit functional of the forcing

covariance Q and the mean operator A, which is in turn a function of the mean flow and

the physical process parameters. This formulation permits systematic investigation

of the sensitivity of the climate to changes in the forcing and structure of the mean

flow and parameters.

We first address the sensitivity of the climate to changes in the forcing under the

assumption that the mean state is fixed.

We determine the forcing structure, f, given by a column vector, that contributes

most to the ensemble average variance 〈E(t)〉. This structure is the stochastic optimal

(Farrell and Ioannou, 1996a; Kleeman and Moore, 1997; Timmermann and Jin, this

volume).

The ensemble average variance produced by stochastically forcing this structure

(i.e. introducing the forcing fn(t) in the right-hand side of Eq. (5.29) can be shown

to be

〈E(t)〉 = 〈x†x〉 = f† B(t) f, (5.36)

where B(t) is the stochastic optimal matrix

B(t) =
∫ t

0

eA†seAs ds. (5.37)

The stochastic optimal matrix satisfies the time dependent back Lyapunov equation,

analogous to Eq. (5.33):

dB
dt

= BA + A†B + I . (5.38)

If A is stable the statistical steady state B∞ satisfies the algebraic equation

B∞A + A†B∞ = − I , (5.39)

which can be readily solved for B∞.

Having obtained B∞ from (5.36) we obtain the stochastic optimal as the eigen-

function of B∞ with the largest eigenvalue. The stochastic optimal determines the

forcing structure, f, that is most effective in producing variance. Forcings will have
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impact on the variance according to the forcing’s projection on the top stochastic

optimals (the top eigenfunctions of B∞).

As another application the sensitivity of perturbation statistics to variations in the

mean state can be obtained. Assume, for example, that the mean atmospheric flow

U is changed by δU inducing the change δA in the mean operator. The statistical

equilibrium that results satisfies the Lyapunov equation

(A + δA)(C∞ + δC∞) + (C∞ + δC∞) + (A + δA)† = −Q , (5.40)

under the assumption that the forcing covariance Q has remained the same. Because

C∞ satisfies the equilibrium (5.35) the first order correction δC∞ is determined from

AδC∞ + δC∞A† = −(δAC∞ + C∞δA†) . (5.41)

From this one can determine a bound on the sensitivity of the climate by determining

the change in the mean operator that will result in the largest change δC∞. This

operator change leading to maximum increase in a specified quadratic quantity is

called the optimal structural change. Farrell and Ioannou (2004) show that a single

operator change fully characterises any chosen quadratic quantity tendency, in the

sense that, if an arbitrary operator change is performed, the quadratic tendency, δC∞,

is immediately obtained by projecting the operator change on this single optimal

structure change.

In this way the sensitivity of quadratic quantities such as variance, energy, and

fluxes of heat and momentum, to change in the mean operator can be found. The mean

operator change could include jet velocity, dissipation and other dynamical variables,

and these jet structure changes, as well as the region over which the response is

optimised, can be localised in the jet. The unique jet structure change producing

the greatest change in a chosen quadratic quantity also completely characterises the

sensitivity of the quadratic quantity to jet change in the sense that an arbitrary jet

change increases the quadratic quantity in proportion to its projection on this optimal

structure change. This result provides an explanation for observations that substantial

differences in quadratic storm track quantities such as variance occur in response to

apparently similar influences such as comparable sea surface temperature changes,

and moreover provides a method for obtaining the optimal structural change.

5.5 Prediction of statistics of uncertain systems

The sensitivity of forecasts to various aspects of the model can be determined by per-

forming parallel computations of the forecast system in which the uncertain aspects

of the model are varied. These integrations produce an ensemble of forecasts (Palmer,

Kalnay et al., and Buizza, this volume). The ensemble mean of these predictions is

for many systems of interest a best estimate of the future state (Gauss, 1809; Leith,

1974). These ensemble integrations also provide estimates of the probability density
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Figure 5.7 Schematic evolution of a sure initial condition x(0) in an uncertain
system. After time t the evolved states x(t) lie in the region shown. Initially the
covariance matrix C(0) = x(0)x†(0) is rank 1, but at time t the covariance matrix has
rank greater than 1. For example if the final states were xi (t) (i = 1, · · · , 4) with

equal probability, the covariance at time t : C(t) = 1
4

∑4
i=1 xi (t)x

†
i (t) would be rank 4,

representing an entangled state. In contrast, in certain systems the degree of
entanglement is invariant and a pure state evolves to a pure state.

function of the prediction. The covariance matrix of the predicted states C = 〈xx†〉,
where 〈·〉 signifies the ensemble mean, provides the second moments of the proba-

bility density of the predictions and characterises the sensitivity of the prediction to

variation in the model. We wish to determine bounds on the error covariance matrix

resulting from such model uncertainties.

5.5.1 The case of additive uncertainty

Consider first a tangent linear system with additive model error. With the assumption

that the model error can be treated as a stochastic forcing of the tangent linear system

the errors evolve according to

dx
dt

= A(t)x + Fn(t), (5.42)

where A(t) is the tangent linear operator which is considered certain, F the structure

matrix of the uncertainty which is assumed to be well described by zero mean and

unit covariance white noise processes n(t). Such systems are uncertain and as a

result a single initial state maps to a variety of states at a later time depending on the

realisation of the stochastic process n(t). This is shown schematically in Figure 5.7

for the case of four integrations of the model.
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Let us assume initially that the ensemble had model error covariance C(0). At a

time t later the error covariance is given by Eq. (5.34). The homogeneous part of

(5.34) is the covariance resulting from the deterministic evolution of the initial C(0)

and represents error growth associated with uncertainty in specification of the initial

state. Predictability studies traditionally concentrate on this source of error growth.

The inhomogeneous part of (5.34) represents the contribution of additive model error.

The deterministic part of the growth of the error covariance at any time is bounded

by the growth produced by the optimal perturbation. The forced error growth at

any time, by contrast, is bounded by the error covariance at time t forced by the

quite different stochastic optimal that is determined as the eigenfunction with largest

eigenvalue of the stochastic optimal matrix

B(t) =
∫ t

0

eA†seAs ds (5.43)

at time t . Given an initial error covariance, C(0), and a forcing covariance, Q, it

is of interest to determine the time at which the accumulated covariance from the

model error exceeds the error produced by uncertainty in the initial conditions. As

an example consider the simple system (5.8). Assume that initially the state has

error such that trace(C(0)) = 1 and that the additive model error has covariance

trace(Q) = 1. The growth of errors due to uncertainty in the initial conditions is

plotted as a function of time in Figure 5.8. After approximately unit time the error

covariance is dominated by the accumulated error from model uncertainty.

From this simple example it is realised that in both stable and unstable systems

as the initial state is more accurately determined error growth will inevitably be

dominated by model error. At present the success of the deterministic forecasts

and increase in forecast accuracy obtained by decreasing initial state error suggest

that improvements in forecast accuracy are still being achieved by reducing the

uncertainty in the initial state.

5.5.2 The case of multiplicative uncertainty

Consider now a forecast system with uncertain parametrisations (Palmer, 1999;

Sardeshmukh et al., 2001, 2003) so that the tangent linear system operator itself

is uncertain and for simplicity takes the form

A(t) = A + εBη(t), (5.44)

where η(t) is a scalar stochastic process with zero mean and unit variance and B is a

fixed matrix characterising the structure of the operator uncertainty, and ε is a scalar

amplitude factor.

An important property of these multiplicative uncertain systems is that different

realisations produce highly disparate growths. Fix the inner product with which

the perturbation magnitude is measured and concentrate on calculation of the error
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Figure 5.8 Error variance resulting from free evolution of the optimal unit variance
initial covariance and evolution of error variance forced by additive uncertainty with
unit forcing variance. The operator A is the simple 2 × 2 Reynolds operator given in
(5.8).

growth. Because of the uncertainty in the operator, different realisations, η, will result

in different perturbation magnitudes, and because the probability density function

of η is known, perturbation amplitudes can be ascribed a probability. A measure of

error growth is the expectation of the growths:

〈g〉 =
∫

P(ω)) g(ω)dω, (5.45)

where ω is a realisation of η, P(ω) is the probability of its occurrence, and g(ω) is the

error growth associated with this realisation of the operator. Because of the convexity

of the expectation the root-mean-square second moment error growth exceeds the

amplitude error growth, i.e.

√
〈g2〉 ≥ 〈g〉. (5.46)

It follows that in uncertain systems different moments generally have different growth

rates and the Lyapunov exponent of an uncertain system may be negative while

higher moments are unstable. This emphasises the fact that rare or extreme events
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that are weighted more by the higher moment measure, while difficult to predict, are

potentially highly consequential.

As an example consider two classes of trajectories which with equal probability

give growth in unit time of g = 2 or g = 1/2. What is the expected growth in unit

time? While the Lyapunov growth rate is 0 because

λ = 〈log g〉
t

= log 2

2
+ log(1/2)

2
= 0, (5.47)

the second moment growth rate is positive:

λ2 = log〈g2〉
t

= log

(
1

2
× 4 + 1

2
× 1

4

)
= 0.75, (5.48)

proving that the error covariance increases exponentially fast and showing that uncer-

tain systems may be Lyapunov (sample) stable, while higher order moments are

unstable. The second moment measures include the energy, so that this example

demonstrates that multiplicative uncertain systems can be Lyapunov stable while

expected energy grows exponentially with time. In fact if the uncertainty is Gaus-

sian there is always a higher moment that grows exponentially (Farrell and Ioannou,

2002a).

One implication of this property is that optimal error growth in multiplicative

uncertain systems is not derivable from the norm of the ensemble mean propagator.

To obtain the optimal growth it is necessary to first determine the evolution of the

covariance C = 〈xx†〉 under the uncertain dynamics and then determine the optimal

C(0) of unit trace that leads to greatest trace(C(t)) at later times.

Consider the multiplicative uncertain tangent linear system:

dx
dt

= Ax + εn(t)Bx, (5.49)

where A is the sure mean operator and B is the structure of the uncertainty in the oper-

ator and n(t) is its time dependence. Take n(t) to be a Gaussian random variable with

zero mean, unit variance and autocorrelation time tc. Define �(t, 0) to be the prop-

agator for a realisation of the operator A + εη(t)B. For that realisation the square

error at time t is

x(t)†x(t) = x(0)†�† (t, 0)�(t, 0) x(0) (5.50)

where x(0) is the initial error. The optimal initial error, i.e. the initial error that leads

to the greatest variance at time t , for this realisation is the eigenvector of

H(t) = �† (t, 0)�(t, 0) (5.51)

with largest eigenvalue.

For uncertain dynamics we seek the greatest expected variance at t by determining

the ensemble average

〈H(t)〉 = 〈
�†(t, 0)�(t, 0)

〉
. (5.52)
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The optimal initial error is identified as the eigenvector of 〈H(t)〉 with largest eigen-

value. This eigenvalue determines the optimal ensemble expected error growth. This

gives constructive proof of the remarkable fact that there is a single sure initial error

that maximises expected error growth in an uncertain tangent linear system; that is,

the greatest ensemble error growth is produced when all ensemble integrations are

initialised with the same state.

To quantify the procedure one needs to obtain an explicit form of the ensemble

average 〈H(t)〉 in terms of the statistics of the uncertainty. It turns out that this is

possible for Gaussian fluctuations (Farrell and Ioannou, 2002b, 2002c), in which

case 〈H(t)〉 evolves according to the exact equation

d 〈H〉
dt

= (A + ε2E(t)B)† 〈H(t)〉 + 〈H(t)〉 (A + ε2E(t)B) (5.53)

+ ε2(E†(t) 〈H〉 B + B† 〈H〉 E(t)) (5.54)

where

E(t) =
∫ t

0

e−AsBeAse−νs ds. (5.55)

For autocorrelation times of the fluctuations which are small compared with the time

scales of A, the above equation reduces to

d 〈H〉
dt

=
(

A + ε2

ν
B2

)†
〈H(t)〉 + 〈H(t)〉

(
A + ε2

ν
B2

)

+ 2ε2

ν
B† 〈H〉 B. (5.56)

As an example application of this result, the ensemble for an uncertain tangent

linear system arising from a forecast system with Gaussian statistical distribution of

parameter value variation could be constructed from this basis of optimals, i.e. the

optimals of 〈H〉.

5.6 Conclusions

Generalised stability theory (GST) is required for a comprehensive understanding of

error growth in deterministic autonomous and non-autonomous systems. In contrast

to the approach based on normal modes in GST applied to deterministic systems,

attention is concentrated on the optimal perturbations obtained by singular value anal-

ysis of the propagator or equivalently by repeated forward integration of the system

followed by backward integration of the adjoint system. The optimal perturbations are

used to understand and predict error growth and structure and for such tasks as build-

ing ensembles for use in ensemble forecast. In addition this approach provides theoret-

ical insight into the process of error growth in both autonomous and non-autonomous
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systems. In the case of non-autonomous systems the process of error growth is iden-

tified with the intrinsic non-normality of a time dependent system and the unsta-

ble error is shown to lie in the subspace of the leading optimal (singular) vectors.

Beyond the deterministic time horizon, GST can be used to address questions of

predictability of statistics and of sensitivity of statistics to changes in the forcing and

changes in the system operator. As an example of the power of these methods, the

sensitivity of a statistical quantity is found to be related to a single structured change

in the mean operator.

Finally, we have seen how GST addresses error growth in the presence of both addi-

tive and multiplicative model error. In the case of multiplicative model error the role of

rare trajectories is found to be important for the stability of higher statistical moments,

including quadratic moments which relate sample stability to stability in energy.
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Notes
1. It is called the Reynolds matrix because it captures the emergence of rolls in

three-dimensional boundary layers that are responsible for transition to turbulence.

2. See also the related linear inverse model perspective (Penland and Magorian, 1993;

Penland and Sardeshmukh, 1995).

3. Under certain conditions it can be associated with a zonal mean; for discussion and

physical application of this interpretation see Farrell and Ioannou (2003).
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