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ABSTRACT

The origin of low-frequency variability in the midlatitude jet is investigated using a two-level baroclinic

channel model. The model state fields are separated into slow and fast components using intermediate time-

scale averaging. In the equation for the fast variables the nonlinear wave–wave interactions are parameterized

as a stochastic excitation. The slowly varying ensemble mean eddy fluxes obtained from the resulting sto-

chastic turbulence model are coupled with the slowly varying mean flow dynamics. This forms a coupled set of

deterministic equations on the slow time scale that governs the dynamics of the eddy–mean flow interaction.

The equilibria of this coupled system are found as a function of the excitation strength, which controls the

level of turbulence. At low levels of turbulence the equilibrated flow with zonally symmetric mean forcing

remains zonally symmetric, but as excitation increases it undergoes zonal symmetry-breaking bifurcations.

Time-dependent flows arising from these bifurcations take the form of westward-propagating wavelike

structures resembling blocking patterns. Features of these waves are characteristic of blocking in both ob-

servations and atmospheric general circulation model simulations including retrogression, eddy variance

concentrated upstream of the waves, and eddy momentum flux forcing the waves.

1. Introduction

Obtaining a physical understanding of the low-frequency

variability (LFV) of the midlatitude atmosphere at syn-

optic and planetary scales is a central problem in dy-

namic meteorology. A familiar manifestation of LFV is

blocking (Dole and Gordon 1983; Dole 1986), in which

the regional to planetary-scale flow deviates substantially

from the climatological mean for time periods that can

last several weeks producing anomalous temperatures

and precipitation and results in disruption of agricultural

activity and marked changes in power consumption

(Carrera et al. 2004). Blocking frequently manifests as an

amplification of the Pacific–North America (PNA) or

North Atlantic Oscillation (NAO) patterns, and the mag-

nitude of the PNA and NAO indices are strongly cor-

related with anomalies in temperature and precipitation

associated with the patterns (Notaro et al. 2006). These

strong correlations with regional climate provide addi-

tional motivation to understand the mechanisms un-

derlying LFV.

Although atmospheric general circulation model

(AGCMs) simulate the strength and location of the

storm tracks, there is disagreement among them re-

garding LFV (D’Andrea et al. 1996). There are cur-

rently four prominent theories addressing the origin of

LFV. The first identifies it as a weakly growing modal

instability tied to zonal asymmetries in the background

flow (Simmons et al. 1983; Swanson 2002). The second

of these theories associates LFV with eddy–mean flow

interactions (Shutts 1983; Robinson 1991). The third

identifies LFV with attractors that resemble blocking

patterns (Crommelin 2003), and the fourth identifies

blocks with strongly nonlinear flow structures called

modons (McWilliams 1980).

It has long been known that eddy interactions can

force large-scale flows. Colucci (1985) presents a de-

tailed case study showing propagation of a cyclone into

a diffluence region triggering the onset of a blocking

episode. Nakamura and Wallace (1990, 1993) show that

transient eddy statistics are closely linked to the onset,

maintenance, and decay of blocking patterns. In addi-

tion, observations show that eddy vorticity fluxes force

planetary-scale flow in the midlatitudes (Holopainen
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et al. 1982; Holopainen and Fortelius 1987). These ob-

servational studies are compelling and are complemented

by simulations using models of the atmosphere with

simplified geometries demonstrating that turbulent fluxes

play a crucial role in planetary-scale dynamics (Cai and

Mak 1990; Robinson 1991; Branstator 1992). In addition

to diagnostic studies, Shutts (1983) conducts an initial-

value calculation in which waves propagate into a pre-

existing blocking pattern. The deformation of the eddies

as they approach the block results in a vorticity flux

enhancing the blocking pattern. The studies mentioned

above establish that small-scale waves force large-scale

flows. However, the interaction is not one way. Simula-

tions also indicate that the large-scale flow organizes the

smaller-scale transients and their associated fluxes (Cai

and Mak 1990; Branstator 1995; Lorenz and Hartmann

2003), creating an inherently nonlinear problem in which

the turbulence influences the large-scale flow, which in

turn modifies the structure of the turbulence.

If we are to study this eddy–mean flow interaction it is

necessary to use a method of analysis that incorporates

this two-way interaction between the waves and mean

flow. There are a number of theories in the literature

describing both the turbulence and the eddy–mean flow

interaction. The simplest idea available is eddy diffu-

sivity of potential vorticity (PV). The main drawback of

this method is that it fails to capture the upgradient

momentum fluxes commonly observed in the mid-

latitude jet. Jin et al. (2006) propose a model describing

the eddy–mean flow interactions that has success re-

producing observed patterns. However, the climato-

logical eddy variance in the model is fit to observations.

The model we choose is stochastic structural stability

theory (SSST; Farrell and Ioannou 2003), which cap-

tures the relevant turbulent fluxes without the use of

data.

In SSST the turbulent eddy fluxes are obtained us-

ing a stochastic turbulence model (STM) (Farrell and

Ioannou 1993a,b; DelSole 1996, 2004) that exploits the

fact that in the nonlinear dynamics wave–wave in-

teractions scatter energy, producing short time- and

space-scale perturbations, while the nonnormality of the

associated linear operator is responsible for the growth

and structure of the perturbations and their associated

fluxes. This allows construction of a model in which the

scattering resulting from wave–wave nonlinearity is

modeled as stochastic in space and time. One important

feature of this model is its ability to reproduce both the

cyclone response as well as a low wavenumber structure

excited by the stochastic forcing (Farrell and Ioannou

1995). The low wavenumber response is commonly ob-

served in the atmosphere and is sometimes brought up in

the discussion of LFV (Whitaker and Barcilon 1995).

However, in this work we model LFV as a large de-

viation that is not present in either the forced mean

flow or the linear perturbation solution. To do this it

is necessary to obtain the turbulent fluxes from the

parameterization.

Previous studies show that the STM is in fact able to

accurately reproduce the structure and spectra of mid-

latitude atmospheric eddies and their associated fluxes

(Whitaker and Sardeshmukh 1998; Zhang and Held

1999). With the turbulent fluxes parameterized using the

STM, a coupled set of eddy–mean flow equations can be

derived for the coevolution of the mean flow and its

consistent field of turbulent eddies. This SSST model has

been studied in the context of a zonally averaged at-

mospheric jet (Farrell and Ioannou 2003). However,

blocking is an inherently two-dimensional phenomena

so that an intermediate time-scale mean rather than

a zonal mean is appropriate for obtaining the eddy fluxes

forcing the planetary-scale flow. In this work SSST is

used to formulate the eddy–mean flow interaction in

a two-dimensional channel with periodic boundaries

using an intermediate time-scale mean separation be-

tween fast eddy and slow planetary-scale dynamics in an

attempt to understand blocking in the atmosphere.

Section 2 contains a derivation of the coupled set of

eddy–mean flow equations. Section 3 presents the re-

sults of the calculations. Section 4 compares these results

with observations and AGCM studies. Section 5 con-

tains the conclusions and discusses the future direction

of this work.

2. Equations

A two-level baroclinic potential vorticity model with

relaxation to a baroclinic equilibrium velocity struc-

ture is used (DelSole 1996). Our model differs from

DelSole’s model in the use of meridional sponge layers

to enforce radiation boundary conditions and a scale-

selective diffusion. The equations for the upper- and

lower-level streamfunctions (f1 and f2) are written in

terms of the barotropic and baroclinic streamfunction

(f1 and f2)

f
1

[
1

2
(f

1
1 f

2
) and

f� [
1

2
(f

1
� f

2
),

and the system is nondimensionalized using typical mean

zonal velocity and synoptic space scales U 5 30 m s21

and L 5 2820 km, giving T 5 LU21 ’ 1 day. The re-

sulting nondimensional equations are
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and the sponge layer is defined as
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A dimensional value of bdim 5 1.6e 2 11 s21 m21 is

nondimensionalized using b 5 bdimL2U21. The di-

mensionless parameters are b 5 4.3, Froude number

Fr 5 1, radiative damping rate re 5 0.05, diffusion con-

stant A 5 0.02, and the magnitude of the sponge layer

damping rate rsp 5 0.1. The boundary conditions are

periodic in the zonal direction and rigid channel walls

with sponge layers enforcing a radiation condition in the

meridional. The channel extent is 2L in both zonal and

meridional directions.

a. Equation for the fast variables

Splitting the baroclinic and barotropic streamfunc-

tions into an intermediate time mean (assumed to be

approximately 3–4 days) and the deviation from this

mean gives

f
1

[ C 1 c

f�[ Q 1 u.

Subtracting the equations for evolution of the inter-

mediate time-scale variables from (1) and (2), we obtain

an evolution equation for perturbations (c and u):
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N
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N
cc
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N
uc
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f u, C) 1 J(=2

f Q, c), and

N
cu

5 J(=2C, u) 1 J(=2c, Q).

The terms Nu and Nc are made up of four nonlinear

terms mixing the intermediate time-scale variables,

which we will call slow, and the deviations, which we

refer to as fast (double subscript) and two nonlinear

terms involving only fast time scales each. These fast–

fast nonlinear terms are approximated by a stochastic

excitation with a specified spatial structure. DelSole

(1996) uses a linear inverse model of a geostrophically

turbulent system to show that the linear Markov model

just described can be used to adequately approximate the

turbulence. With this in mind, let h(t) be a zero mean unit

variance (white) noise process, F be a spatial structure,

and « the magnitude of the stochastic excitation. This

approximation transforms (3) into a coupled set of linear

stochastic differential equations that can be written as

›
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where square brackets indicate a matrix. The operators

discussed thus far have been continuous. However, all

calculations must be done using discrete approxima-

tions. Second-order accurate finite difference operators

on a uniform grid are used to represent all derivatives.

Let the discretized linear operator representing A be A,

the discretized forcing structure F be F, the discretized

state vector be p, the discretized noise vector be n(t), and

the infinite ensemble average covariance matrix be C 5

hppTi, where angle brackets denote ensemble averaging.

The ensemble average is over an infinite number of re-

alizations of p, whose structure depends on the partic-

ular realization of the noise n(t). This transforms (4) into

›p

›t
5 Ap 1 �1/2Fn(t).
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The infinite ensemble covariance matrix C associated

with (4) evolves in time according to the time-dependent

Lyapunov equation

›C

›t
5 AC 1 CAT

1 «Q, (5)

where Q 5 FFT and the magnitude of the excitation is

controlled by «. For convenience the excitation structure

(Q) is scaled so that « 5 1 corresponds to an earth-

equivalent energy injection rate of 1 W m22 (see appen-

dix). Realistic estimates for the actual energy injection

rate are on the order of 1 W m22 according to DelSole

and Farrell (1995) and Farrell and Ioannou (1994), and an

energy injection rate of 1.3 W m22 in our model produces

an eddy meridional velocity variance of approximately

700 m2 s2, which is in agreement with observations of

midwinter Northern Hemisphere values in the Atlantic

(Chang et al. 2002).

It is crucial to note that the Lyapunov Eq. (5) is au-

tonomous and deterministic. The eddy fluxes are easily

found from the covariance matrix C, meaning that al-

though the eddy parameterization is stochastic in na-

ture, the eddy–mean flow interaction is captured by this

coupled set of deterministic autonomous differential

equations, which provides the theoretical formulation

with both clarity and simplicity. It remains to derive the

time-dependent mean flow equation for the evolution of

the slow variable.

b. Equation for the slow variable

If the change in the basic-state variable occurs slowly

compared to eddy life cycles, then an intermediate time

scale can be identified for which

c 5 u 5 0

and

C 5 C, Q 5 Q.

This is the method of Reynolds averaging (Holton

1992), and in this work its main function is to eliminate

terms that contain both a slow and fast variable in the

expression for the evolution of the slow variable while

retaining the fast–fast interaction term that has been

parameterized above. Studies show that the fast–fast

fluxes are the dominant terms in the forcing of the mean

flow (Robinson 1991) and this assumption, although

idealized, reduces the slow variable equation to a re-

laxation to a radiative-equilibrium temperature gradi-

ent, the b effect, mean flow advection, and a heat and

vorticity flux due to the fast variables:
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where the overbar represents a time average over the

intermediate scale just discussed. To couple the pertur-

bation and mean flow equations we write the fluxes in

terms of the fast variable covariance C. To simplify this

task we split C into four parts:

C 5
C

cc
C
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C
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C
uu

" #
5
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.

Choosing one of the heat flux terms and writing out the

Jacobian gives
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If we write the continuous operators in terms of their

discretized counterparts,
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then the flux term becomes
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Finally, if we make the assumption that the slow time

mean is equivalent to the ensemble mean, then
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The rest of the fluxes can be written similarly:

J(=2c, u) 5D
x

diag(D
y
C

uc
DT

2 )�D
y

diag(D
x
C

uc
DT

2 ),

J(=2c, c)5D
x

diag(D
y
C

cc
DT

2 )�D
y

diag(D
x
C

cc
DT

2 ), and

J(=2u, u) 5D
x

diag(D
y
C

uu
DT

2 )�D
y

diag(D
x
C

uu
DT

2 ).

FEBRUARY 2010 B E R N S T E I N A N D F A R R E L L 455



Now the mean flow in (6) and (7) is forced by the eddy

covariances C, which evolve according to the time-

dependent Lyapunov Eq. (5).

We make a brief aside here to discuss the nature of

Reynolds averaging and its impact on the dynamics. The

initial averaging is in the time domain. An intermediate

time scale is chosen that is short compared to the time

scale for the evolution of the mean flow but long com-

pared to the eddy time scale. This intermediate time

average is then replaced by an ensemble average, the

reasoning being that over this intermediate time scale

a number of eddies will pass by, acting as independent

members of the ensemble. Realistically, this ensemble

average occurs over a finite number of eddies because

the time interval averaged over is finite. To obtain the

Lyapunov equation we need to make the additional

assumption that this finite ensemble mean is well ap-

proximated by the infinite ensemble mean. The finite

ensemble mean converges to the infinite ensemble av-

erage with an error of O(n21/2) for n members. How-

ever, in the atmosphere we are averaging over a small

number of realizations so we expect the actual turbulent

system to display irregular behavior. Nonetheless, it is

instructive to examine the ensemble mean set of equa-

tions and the structures they generate.

c. Free parameters

The first free parameter in our model is the radiative-

equilibrium thermal forcing,

Q
e
5�1

2
Y 1

1

p
sin[p(Y � 1)]

� �
, (8)

which tends to produce a thermal wind–balanced zonal

baroclinic jet (Fig. 1). The next free parameter is the Q

matrix. The choice of Q controls the spatial structure of

the noise. In extreme cases, if chosen unwisely, it can

produce unphysical results. A spatially uniform excita-

tion excites waves both inside and outside of the jet and

these waves radiate momentum both into and out of the

jet. If damping is small, the flux from the waves outside

the jet can dominate the momentum flux, providing

downgradient fluxes damping the jet. In our examples

the diagonal of F is set to Qe so that the excitation is

confined to the region of the jet. The off-diagonal ele-

ments of F are set to zero, indicating a spatially un-

correlated excitation.

The inherently nonlinear nature of our model invites

the use of methods from bifurcation theory to un-

derstand the dynamics (Guckenheimer and Holmes

1983). The strength of the excitation « is used as the

bifurcation parameter for the problem. The model is

now completely specified. It is nonlinear, deterministic,

and autonomous in spite of the underlying stochastic

nature of the parameterizations. The next section pres-

ents the bifurcation structure of the coupled equilibria

calculations.

3. Results

A 25 3 25 grid is used, giving a resolution of ap-

proximately 225 km in both directions. These N 5 25

grid points in each direction gives a total of O(N2) points

for the system and O(N4) points for the covariance

matrix. If the Jacobian were to be approximated using

finite difference methods in order to employ a descent

algorithm to find the equilibrium, this would require

O(N2) solutions of the Lyapunov Eq. (5), which be-

comes prohibitively expensive. An alternative method is

to numerically integrate the coupled equations in time.

Although the structure of unstable solutions cannot be

found directly using this method, it is efficient enough to

explore the bifurcation structure for a wide range of «. A

fourth-order Runge–Kutta time stepping scheme is used

because of its accuracy and stability properties.

To compare our calculations with previous studies we

obtain the structure of the turbulence in equilibrium

with a fixed flow. This is done by solving the Lyapunov

Eq. (5) using Qe as the background flow. The spectra of

the empirical orthogonal functions (EOFs) and the sto-

chastic optimals (Farrell and Ioannou 1996) are shown in

Figs. 2a,b. Both spectra show two modes well separated

from the rest of the spectrum. These modes are phase-

shifted versions of the same structure. Two modes exist

because there is a single propagating structure. The upper-

and lower-layer streamfunctions for the leading EOF and

stochastic optimal are plotted in Figs. 2c–f. The leading

FIG. 1. Radiative-equilibrium upper-level jet velocity. Lower-layer

jet relaxes to zero.

456 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 67



stochastic optimal has a phase-shifted vertical structure

so that it is leaning against the imposed vertical shear ex-

tracting mean baroclinic energy. The meridional structure

of the optimal is tilted against the meridional shear on

each side of the jet maximum extracting mean barotropic

energy as well. The lower-layer structure has less me-

ridional tilt consistent with there being no lower-layer

flow to extract energy from. The leading EOF is ap-

proximately equivalent-barotropic with a small vertical

tilt against the shear, indicative of positive mean baro-

clinic energetics acting to reduce the mean temperature

gradient. The meridional structure of the EOF tilts with

the shear, indicative of negative mean barotropic ener-

getics maintaining the barotropic jet. We now calculate

the equilibrium structures that the eddy–mean flow in-

teractions produce.

a. Stable fixed points

The initial structure of the turbulence and associated

fluxes was discussed in the previous section. These fluxes

FIG. 2. Structure of the turbulence for the radiative-equilibrium jet. Solid contours are positive and dotted contours

are negative. (a),(d) Spectra for the first 25 EOFs and stochastic optimals, respectively. (b) Upper- and (c) lower-

layer streamfunction for the leading optimal with contour intervals 1.3 3 106 m2 s21. (e) Upper- and (f) lower-layer

streamfunction for the leading EOF with contour intervals 2.4 3 106 m2 s21.
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create a nonzero Qt and Ct so that the mean flow evolves

in time. The radiative equilibrium shown in Fig. 1, cor-

responding to « 5 0, is zonally homogenous, consisting

of a jet in the upper layer and zero flow in the lower

layer. For nonzero « the system initially remains zonally

homogenous and equilibrates to a stable fixed point.

Therefore, only zonally averaged quantities are pre-

sented in Fig. 3, which summarizes the properties of the

equilibria. The zonally averaged stable fixed points are

shown for a small energy injection rate « 5 0.5 and an

energy injection rate of 1.5, which reproduces observed

eddy variance. The radiative-equilibrium flow is plotted

for comparison. The lower-layer flow is initially zero,

but the fluxes drive a lower-layer jet with a positive ve-

locity in the center and negative velocities toward the

flanks. The equilibrated upper-layer flow has a smaller

maximum velocity than the radiative equilibrium. This

becomes more pronounced as « increases.

Comparison to the equilibration of jets in eddy-

resolving models is difficult because of the myriad of

configurations available for simulations. Our model is

based on DelSole (1996) and the equilibration resembles

his results (see his Fig. 1). Whitaker and Barcilon (1995)

run a similar model with a different formulation of dis-

sipation and a weaker mean flow. Their equilibration

shows a stronger upper-level jet as well as the formation

of multiple jets. These cases illustrate the difficulty in

comparing models unless the parameter setting is simi-

lar. Although our particular model does not show mul-

tiple jets, the SSST formulation is capable of producing

multiple jets in other cases (Farrell and Ioannou 2007,

2008).

b. Limit cycles

1) CONSTANT DIPOLE BLOCKING STRUCTURE

For « 5 «c ’ 2.3 the system undergoes a bifurcation

and enters into a limit cycle as shown in Fig. 4. We refer

to this structure as a constant block. It is important to

note that even though we refer to this structure as a block,

there is no onset or decay associated with the structure.

The limit cycle consists of a westward-propagating wave

whose spatial structure is constant. The upper-layer flow

is still westerly, but it now has a wave structure with

zonal wavenumber (k 5 1) and meridional wavenumber

(l 5 2). The structure consists of a confluence and

diffluence region (Fig. 4a) and closely resembles the

classic dipole blocking pattern with a zonal jet. The

structure in the lower layer is the same except the ve-

locities are an order of magnitude smaller and the flanks

of the jet flow westward (not shown). The spatial structure

remains meridionally symmetric, but the zonal symmetry

is broken. The entire structure propagates westward

extremely slowly with phase speed O(0.06) m s21. By

defining

F
bc

5 =�1
f [J(=2

f u, c) 1 J(=c, u)],

F
bt

5 =�1
f [J(=2c, c) 1 J(=2u, u)],

and referring to (6) and (7), we see that these are the

turbulent forcing terms for the baroclinic and barotropic

components of the flow, respectively. Adding them to-

gether gives the turbulent forcing of the upper layer,

which is shown in Fig. 4b. The contributions to the total

streamfunction tendency budget by mean flow advection,

FIG. 3. Turbulent equilibria, which are stable fixed points, are

shown for several values of excitation («). (a) Zonally averaged

upper-layer zonal velocity. (b) Zonally averaged lower-layer zonal

velocity. The dashed line indicates the radiative-equilibrium ve-

locity, the solid line indicates « 5 0.5, and the solid line with circles

indicates « 5 1.5.
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b effect, dissipation, and thermal forcing are shown in

Figs. 4c, 4d, and 4e, respectively. The total streamfunc-

tion tendency is shown in Fig. 4f and is almost two orders

of magnitude smaller then the individual components,

indicating a large degree of cancelation among the

terms. According to Fig. 4 the turbulent forcing and b

effect tend to produce retrogression whereas the mean

flow advection tendency is prograde, creating a three-

way balance. Dissipation and thermal forcing play a

small role in the dynamical balance. The total stream-

function tendency is weak, producing the slow net ret-

rograde motion. Additional dynamical aspects of the

flow are shown in Fig. 5. The upper-layer eddy variance

is calculated using

FIG. 4. Diagnostics of the eddy–mean flow interaction just after the system enters into a limit cycle at «c 5 2.5. (a)

Snapshot of upper-layer streamfunction with contour interval 1 3 108 m2 s21. (b)–(e) Streamfunction tendency (b)

induced by turbulence in the upper layer, (c) due to mean flow advection in the upper layer, (d) due to b effect in the

upper layer, and (e) due to dissipation and thermal forcing, all with contour interval 0.35 3 m2 s22; (f) total

streamfunction tendency in the upper layer, with contour interval 0.35 3 1022 m2 s22.
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and is plotted below f1 for reference. The maximum is

located in the downstream region of the zonal jet. The

turbulent fluxes in terms of their barotropic and baro-

clinic components are shown in Figs. 5c,d. It is evident

that both heat and vorticity fluxes support the blocking

patterns, although the barotropic component is notice-

ably stronger. The fluxes are strongest in the jet exit

because this is the area of greatest deformation and the

deformation of eddies produces momentum fluxes, am-

plifying the block (Shutts 1983).

The frequency of the wave as a function of « is shown

in Fig. 6. Close to «c the frequency of the wave is almost

zero and as « increases the frequency grows linearly with

«. The amplitude of the limit cycle can be measured by

the L2 norm of the deviation from radiative equilibrium

of the upper and lower streamfunction:
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For « , «c the flow is zonally symmetric and for « . «c

a finite-amplitude wave appears. The amplitude of this

wave increases linearly with « as shown in Fig. 6. The

amplitude of the wave grows because increasing « corre-

spondingly increases the turbulent forcing, which supports

FIG. 5. Diagnostics of the eddy–mean flow interaction after the system enters into a limit cycle at «c 5 2.5. (a)

Snapshot of upper-layer streamfunction with contour interval 1 3 108 m2 s21. (b) Barotropic component of the

streamfunction tendency induced by turbulence with contour interval 25 m2 s22. (c) Upper-layer eddy variance with

contour interval 20 m4 s22. (d) Baroclinic component of the streamfunction tendency due to the b effect in the upper

layer with contour interval 0.35 m2 s22.
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the wave. The growth of the phase speed is due to the

increase in amplitude because as the amplitude of the

block grows, the deformation region in the jet exit be-

comes stronger; this results in the eddy variance be-

coming increasingly concentrated upstream of the block

because the deformation prevents propagation of eddies

into the block. This localizes the fluxes farther upstream

and the further upstream of the block the forcing occurs,

the more rapidly it propagates. For « 5 3.3 the system

undergoes another bifurcation.

2) OSCILLATING BLOCK

This limit cycle is referred to as the oscillating block.

The period and amplitude of the limit cycle measured

using Na are shown in Fig. 7 for « 5 3.5. The variation of

Na shown in Fig. 7 shows that the block time dependence

is no longer confined to retrograde propagation but

extends to the spatial structure of the block. To better

characterize this oscillation in spatial structure we ex-

amine the flow at maximum and minimum Na. The pe-

riod of the limit cycle is 12 days and the spatial structure

at the maxima and minima of the oscillation are shown

in Figs. 8 and 9, respectively. The upper-layer stream-

function when Na is at a minimum is a weak block. The

eddy variance is located near the center of the block

(Fig. 9b) and the streamfunction tendency is in phase

with the zonal dipole anomaly (Fig. 9). This causes the

dipole pattern to grow without propagation. This growth

occurs until Na reaches a maximum. Now the upper-layer

streamfunction consists of a strong blocking dipole (Fig. 8a)

and the eddy variance is located upstream of the block in

the diffluence region of the flow (Fig. 8a). It is stronger

and more localized than at the minimum of Na. In ad-

dition, the streamfunction tendency has shifted up-

stream and is out of phase with the block (Fig. 8e). This

results in upstream propagation of the whole structure.

As the block propagates upstream it weakens because

the streamfunction tendency is no longer in phase with

the block. The weakening of the block results in the

zonal elongation and reduction in magnitude of the eddy

variance. This continues until the eddy variance is situ-

ated inside the block, at which point the streamfunction

tendency is in phase with the block and it grows again.

The properties of the limit cycle as a function of « are

shown in Fig. 10. The amplitude of the limit cycle grows

with « but begins to saturate for large « because it is

FIG. 6. Dependence of the limit cycle on excitation «: (a) amplitude

of the zonal anomaly and (b) propagation velocity.

FIG. 7. Block oscillation indicated by the L2 norm of the de-

viation from radiative equilibrium of the upper- and lower-layer

streamfunction as a function of time after the second bifurcation

at « 5 3.5. The changing amplitude of Na shows that the time-

dependent behavior is no longer confined to retrograde propagation

but extends into the spatial structure of the block. To understand the

oscillation in the spatial structure, we analyze the flow at maximum

and minimum Na.

FEBRUARY 2010 B E R N S T E I N A N D F A R R E L L 461



FIG. 8. Diagnostics of the maximum norm case for the second limit cycle at « 5 3.5. (a) Snapshot of upper-layer

streamfunction with contour interval 1.2 3 108 m2 s21. (b) Upper-layer eddy variance with contour interval

42 m4 s22. (c) Streamfunction tendency due to mean flow advection in the upper layer with contour interval 2 m2 s22.

(d) Streamfunction tendency due to the b effect in the upper layer with contour interval 2 m2 s22. (e) Streamfunction

tendency induced by turbulence in the upper layer with contour interval 2 m2 s22. (f) Total streamfunction tendency

in the upper layer with contour interval 2 3 1022 m2 s22.
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confined by the meridional boundaries. The temporal

variation of the block’s growth and decay is measured

by the frequency. As the excitation increases the cycle

takes less time to complete. This results from the in-

crease in strength of the turbulent fluxes forcing the

block.

4. Discussion

We begin the discussion by comparing the results of

our model with previous observations and calculations.

Nakamura and Wallace (1990, 1993) shows that there

is a marked enhancement of baroclinic wave activity

FIG. 9. As in Fig. 8, but for the minimum norm case.
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upstream from the block several days before the onset of

a blocking event. They also show that a meridional flux

of low PV low-latitude air by the eddies is responsible

for the onset and maintenance of the block. This be-

havior is reflected in both our constant and oscillating

block. In the constant block the eddy variance is up-

stream of the block, and during the spinup of the oscil-

lating block the eddy variance concentrates upstream

and becomes stronger. Our model also verifies that the

fluxes from the turbulence are responsible for both the

onset and maintenance of the block.

In addition to composite and statistical studies,

Colucci (1985) presents detailed synoptic analyses of

specific blocking events. He describes the evolution of

a block in which a cyclone grows and propagates into

a weak deformation region. A combination of vorticity

and heat fluxes from the eddy act to enhance this system

into the canonical dipole block, and as the cyclone

propagates eastward the dipole pattern retrogresses.

Although the presence of eddies is correlated with the

onset of blocking, it is not a sufficient precursor. Colucci

(2001) shows that in addition to synoptic-scale activity

the mean flow must present a diffluence region to de-

form the eddies. In this way the mean flow influences the

behavior of the eddies just as they force the mean flow.

These studies all show properties similar to the results of

our calculations. The retrogression of the block is seen in

both the constant and oscillating block. The effect of the

mean flow diffluence region is also evident in the oscil-

lating block. As the eddy variance grows, the diffluence

region amplifies, which causes the variance to concen-

trate farther upstream. Our calculations agree well with

the observations, but it is also useful to compare them

with geostrophically turbulent models.

Cai and Mak (1990) use a two-level b-channel model

with rigid walls to study eddy–mean flow interactions. The

meridional extent is similar to that of our model and the

zonal extent is 5 times larger. Cai and Mak show that

the turbulence forces a planetary-scale wave with k 5 2

and l 5 2. The maximum in eddy variance is located in

the downstream portion of the jets for both models and

the flow forced by the turbulence is upstream of the

deformation it produces. When the forcing is split into

baroclinic and barotropic components both contribute to

maintaining the mean flow, with the barotropic part being

stronger. This model has a geometry similar to ours and

although the zonal wavenumber is larger, the physics of the

planetary-scale wave is the same as ours. All calculations

show that the turbulence forces the wave and the eddy

variance is located upstream of the block. In addition, our

Figs. 5b and 5d show that the relative magnitude of the

heat and momentum fluxes is reproduced by our model.

The model employed by Cai and Mak (1990) is without

doubt an overly simplified view of the atmosphere. More

comprehensive but still relatively simple models using the

primitive equations on a sphere all find a variety of low-

frequency behavior, although the physics of the LFV can

vary between models. For example, Branstator (1992)

finds the turbulence produces mainly momentum fluxes,

whereas Nigam et al. (1986) suggest that heat fluxes are

necessary for maintaining large-scale waves. However,

several common themes emerge. The transients always

act to maintain the LFV and the LFV is equivalent-

barotropic. The eddy variance is located in the exit regions

of the jets and the forcing from turbulence and the mean

flow advection cancel each other to a large degree

(Robinson 1991; Branstator 1992). These properties are

all shared with the model we present. Comparisons with

both observations and geostrophically turbulent models

show that the LFV produced by our model reproduces all

of the previously observed and modeled physics. We now

show how our model compares to other theories for

blocking.

FIG. 10. Dependence of the limit cycle on «: (a) amplitude of the

zonal anomaly and (b) frequency of block growth and decay.
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One theory for LFV in the atmosphere is based on the

linear instability of zonally varying flows (Swanson 2002).

Although this theory produces instabilities that resemble

blocking patterns, the linear nature of the calculations

does not allow for an obvious equilibration mechanism

for the disturbances. Our model does not have this prob-

lem because the mean and perturbation equations are

coupled so that they produce a consistent finite-amplitude

equilibrium, which may be a fixed point or a limit cycle.

Another candidate for explaining the LFV in the atmo-

sphere is strongly nonlinear dipole eddies called modons

(McWilliams 1980). Although these solutions resemble

blocks, they lack a forcing mechanism to excite and

maintain them. One proposed mechanism for the main-

tenance of modons is through transient eddy fluxes

(Haines and Marshall 1987). However, in this study an

artificial wavemaker is needed to generate the eddies that

support the modon. In our model the turbulence is sim-

ulated using an extensively tested parameterization and

the LFV is generated by a dynamically consistent field of

eddies. Finally, there is the idea that the LFV can be

explained either by multiple stable equilibria in the at-

mosphere (Charney and DeVore 1979) or by an exotic

attractor in the dynamics (Crommelin 2003). Although

multiple equilibria can be found in complex AGCMs,

their relevance to geostrophically turbulent flows is dif-

ficult to establish. In addition, one would expect that

a probability distribution function (PDF) associated with

multiple equilibria would display multimodal behavior.

However, all attempts to show this have been incon-

clusive (Berner and Branstator 2007).

To summarize the discussion, we have shown that the

LFV generated by our model is consistent with the

general characteristics of LFV simulated by AGCMs as

well as a variety of observations. In addition, our model

is able to provide a complete and consistent picture of

the dynamics whereas other theories have a variety of

shortcomings in the consistency of their dynamics.

5. Conclusions

We examine turbulence–mean flow interaction in a

quasigeostrophic two-layer b-plane channel using a sto-

chastic turbulence model. Equilibria formed by the tur-

bulence and mean flow were examined as a function of

the turbulence strength. Initially the flow remained zonal,

but as the excitation increased the system underwent

a bifurcation into a (1, 2) wave propagating upstream

with a constant spatial structure. This wave is maintained

by a three-way dynamical balance of the b effect, mean

flow advection, and turbulent forcing. The phase speed of

the wave is initially near zero and increases linearly, with

the turbulence intensity controlled by the parameter «.

The amplitude of the wave also increases linearly with «.

Further increase of the bifurcation parameter results in

a limit cycle in which the initially stationary block grows

until it attains sufficient amplitude to begin propagating.

This propagation causes the forcing to be out of phase

with the block, which then decreases the block’s ampli-

tude, repeating the cycle.

Although the spatial structure of the LFV generated in

this model resembles the observed and modeled blocking

in the atmosphere, the model falls short in two aspects.

The magnitude of the energy injection rate necessary

to produce blocks is larger then the observed energy

injection rate in the atmosphere, and irregular time-

dependent variability is not reproduced. Time-dependent

behavior consisting of the growth and decay of the block

is observed, but the behavior is perfectly regular. The

stochastic nature of cyclone formation precludes a limit

cycle corresponding exactly to observed blocking. There

have been many explanations put forth to describe the

irregular nature of LFV. A strange attractor in the dy-

namics creating coherent structures with irregular phase

space trajectories has been suggested (Crommelin 2003).

However, implicit in this work is another candidate for

the source of variability. The discussion of Reynolds av-

eraging in section 2 points out that the assumptions

needed to derive the Lyapunov Eq. (5) are never entirely

met. This will result in stochastic fluctuations around the

calculation using the infinite ensemble average. It will also

result in stochastic fluctuations in the energy injection

rate. It is possible that on average, the jet is in a zonal state

while the stochastic fluctuations in eddy energy cause the

jet to form blocks on occasion. The next step in this work

is to use an explicitly stochastic model of eddy–mean flow

interactions in the hope that it can reproduce the tem-

poral statistics of blocking in the atmosphere.
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APPENDIX

Scaling of Q

The excitation matrix Q 5 FFT is scaled so that « 5 1

corresponds to energy injection at rate 1 W m22. We

would like F and therefore Q to be dimensionless, im-

plying that « has dimensions of m4 s23 according to the

Lyapunov equation (5). To do this consistently requires

defining the dimension of h to be s21/2 in

›p

›t
5 Ap 1 «�1/2Fh. (9)
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With variables carrying the correct dimensions, the

stochastic energy injection rate is calculated using

E 5�1

2
pTD

2f
pDxDyDz, (10)

where Dx, Dy, and Dz are nondimensional grid spacing.

Following DelSole (1996), an equation for the energy

tendency can be derived by evaluating the expression

pTDT
2f

›p

›t

� �
1

›p

›t

� �T

D
2f

p.

Using the identity

xTYx 5 trace(YxxT),

where x is a vector and Y is a matrix, we obtain

�1

2

›

›t
(pTD

2f
p) 5�1

2
trace[D

2f
(AC 1 CAT

1 Q)].

(11)

The nondimensional stochastic energy injection rate is

identified as

�1

2
trace(D

2f
Q). (12)

Multiplying (12) by MU3Ld
21, where M 5 1 3 104 kg m22

is the mass per unit area of the atmosphere, gives an

energy injection rate of 0.03 W m22 for « 5 1. Therefore,

we scale Q by the inverse of this so « 5 1 corresponds to

an earth-equivalent energy injection rate of 1 W m22.
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