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While linear non-normality underlies the mechanism of energy transfer from the externally driven
flow to the perturbation field that sustains turbulence, nonlinearity is also known to play an es-
sential role. The goal of this study is to better understand the role of nonlinearity in sustaining
turbulence. The method used in this study is implementation in Couette flow of a statistical state
dynamics (SSD) closure at second order in a cumulant expansion of the Navier-Stokes equations
in which the averaging operator is the streamwise mean. The perturbations in this SSD are the
deviations from the streamwise mean and two mechanisms potentially contributing to maintaining
these second cumulant perturbations are identified. These are parametric perturbation growth aris-
ing from interaction of the perturbations with the fluctuating mean flow and transient growth of
perturbations arising from nonlinear interaction between components of the perturbation field. By
the method of comparing the turbulence maintained in the SSD and in the associated direct nu-
merical simulation (DNS) in which these mechanisms have been selectively included and excluded,
parametric growth is found to maintain the perturbation field of the turbulence while the more
commonly invoked mechanism associated with transient growth of perturbations arising from scat-
tering by nonlinear interaction is found to suppress perturbation growth. In addition to verifying
that the parametric mechanism maintains the perturbations in DNS it is also verified that the Lya-
punov vectors are the structures that dominate the perturbation energy and energetics in DNS. It is
further verified that these vectors are responsible for maintaining the roll circulation that underlies
the self-sustaining process (SSP) and in particular the maintenance of the fluctuating streak that
supports the parametric perturbation growth.

INTRODUCTION

Turbulence is widely regarded as the primary exem-
plar of an essentially nonlinear phenomenon. However,
the mechanism by which energy is transferred in shear
flows from the externally forced component of the flow to
the broad spectrum of spatially and temporally varying
perturbations is through linear non-normal interaction
between these components [1–5]. Nevertheless, nonlin-
earity participates in an essential way in the cooperative
interaction between the mean and the perturbation by
which turbulence self-sustains. Our goal in this study is
to provide a more comprehensive understanding of the
role of nonlinearity and its interaction with linear non-
normality in the maintenance of turbulence.

Because realistic wall-turbulence is maintained by the
statistical state dynamics (SSD) of the Navier-Stokes
equations closed at second order with the averaging oper-
ator chosen to be the streamwise mean [5–7] it is inviting
to study the mechanism of wall-turbulence using this SSD
which has the advantage of complete analytic character-
ization. We employ SSD-based analysis to examine the
role of nonlinearity in turbulence maintenance, specifi-
cally its role in maintaining the perturbations from the
streamwise mean at statistical equilibrium.

A commonly invoked physical process by which this
maintenance of the perturbation field is hypothesized to

occur is through recycling of perturbations which have
completed their transient amplification into new pertur-
bations that are at the initial stage of transient growth
leading to renewed growth and in this way to turbulence
maintenance [1, 8–11]. This idea underlies the regener-
ation cycle which was inspired by observations in which
streak breakdown produces perturbations configured to
give rise to new streak formation [12]. An alternative
mechanism of perturbation maintenance that has been
shown to support turbulence in the second order SSD of
a variety of turbulent shear flows is a process of paramet-
ric growth in which fluctuation of the streamwise mean
flow maintains the perturbation field [5–7, 13, 14].

It was shown previously that realistic turbulence is
maintained by restricting the SSD dynamics to the sec-
ond of these mechanisms; this was done by simply ne-
glecting the perturbation-perturbation nonlinearity in
the second order closure [5, 14–16]. However, although
these results establish that the perturbation-perturbation
nonlinearity is not necessary for perturbations from the
streamwise mean as well as the turbulence itself to
be maintained in a second order closure, the influence
of perturbation-perturbation nonlinearity on the turbu-
lence is still of interest because it has been implicated
in Navier-Stokes turbulence dynamics by interpretations
of DNS data [4, 12, 17, 18] and also in part because
perturbation-perturbation nonlinearity alone has been
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shown to maintain turbulent state analogues in sim-
ple model systems [8–11]. Given that the paramet-
ric mechanism supports realistic turbulence in the ab-
sence of perturbation-perturbation nonlinearity, the ex-
periment available to us is to include the perturbation-
perturbation nonlinearity and assess the influence of the
addition of this term on the parametrically maintained
turbulence.

The specific SSD model examined is a reduced non-
linear model (RNL) in which the second cumulant is
approximated as the state covariances obtained from
the perturbation dynamics in which the nonlinearity has
been neglected. We find by comparing RNL simulations
made using this model with DNS that the turbulence and
its energetics are similar whether the nonlinear interac-
tions between perturbations from the streamwise mean
are retained or neglected. This result demonstrates that
the parametric mechanism dominates in the maintenance
of the turbulence and in fact closer examination of the en-
ergetics reveals that the perturbation-perturbation non-
linearity rather than serving to support the turbulence
actually decreases effectiveness of energy transfer from
the mean to the perturbations. Furthermore, it is also
verified that the parametrically maintained Lyapunov
vectors analytically predicted to support the turbulence
by RNL that dominate the perturbation energy and en-
ergetics in DNS. It is further verified that moreover these
vectors are also found to be responsible for maintaining
the roll circulation that underlies the self sustaining pro-
cess (SSP) and in particular the maintenance of the fluc-
tuating streak that supports the parametric perturbation
growth.

FORMULATION

In order to study the mechanism by which nonlinearity
between streamwise varying components in a turbulent
shear flow participate in the maintenance of turbulence
we begin by partitioning the velocity field of plane paral-
lel Couette flow into streamwise mean and perturbation
components, or equivalently into the kx = 0 and the
kx 6= 0 components of the Fourier decomposition of the
flow field, where kx is the wavenumber in the stream-
wise, x, direction. In this decomposition the flow field is
partitioned as:

u = U(y, z, t) + u′(x, y, z, t) , (1)

with cross-stream direction y and spanwise direction z. It
is important to note that in this decomposition the mean
flow retains temporal variation in its spanwise structure
and particularly that this mean flow includes the time-
dependent streaks. The mean used in the cumulant ex-
pansion is fundamental to formulating an SSD that re-
tains the physical mechanism of turbulence in shear flow.

The centrality of spanwise variation of the mean flow,
which is associated with the fluctuating streak compo-
nent, to the maintenance of turbulence has been demon-
strated by numerical experiments that show turbulence
is not sustained when the streaks are sufficiently damped
or removed [18]. Given that in the SSD turbulent state
spanwise and temporal inhomogeneity are required to al-
low the parametric instability of the fluctuating stream-
wise streak to be supported it is necessary to allow both
spanwise and temporal variations in the mean operator
used to define the cumulants in the SSD in (1).

The non-dimensional Navier-Stokes equations ex-
pressed using this mean and perturbation partition are:

∂tU + U · ∇U︸ ︷︷ ︸
N1

+∇P −∆U/R = −〈u′ · ∇u′〉x︸ ︷︷ ︸
N2

, (2a)

∂tu
′ + U · ∇u′ + u′ · ∇U︸ ︷︷ ︸

N3

+∇p′ −∆u′/R

= − (u′ · ∇u′ − 〈u′ · ∇u′〉x )︸ ︷︷ ︸
N4

, (2b)

∇ ·U = 0 , ∇ · u′ = 0 , (2c)

where R = Uwh/ν is the Reynolds number and ±Uw
the wall velocity at y = ±h. The flow satisfies no-
slip boundary conditions in the cross-stream direction:
U(x,±h, z, t) = (±Uw, 0, 0), u′(x,±h, z, t) = (0, 0, 0) and
periodic boundary conditions in the z and x directions.
Lengths are nondimensionalized by h, velocities by Uw,
and time by h/Uw. Averaging is denoted with angle
brackets 〈·〉 with the bracket subscript indicating the av-
eraging variable, so that e.g. the streamwise mean ve-

locity is U
def
= 〈u〉x = L−1

x

∫ Lx

0
u dx, where Lx is the

streamwise length of the channel. The Navier-Stokes
equations with this decomposition are referred to as the
DNS system. In (2) we have indicated with an under-
brace the nonlinear terms in DNS of primary relevance
to our study. In the streamwise mean flow equation (2a)
nonlinear interactions among kx = 0 flow components are
referred to as N1 and Reynolds stress divergence term
produced by nonlinear interaction between the kx and
−kx flow components with kx 6= 0, is referred to as N2.
In the perturbation equation (2b) the interaction between
the instantaneous streamwise mean flow and the kx 6= 0
flow components is referred to as N3. If the mean flow U
is a solution of (2), interaction N3 between the perturba-
tions and this mean flow U can be viewed in the pertur-
bation equation (2b) as a linear interaction. From that
perspective, in the perturbation equation (2b) transfer
of energy from the mean to the perturbations is due to
linear non-normal interaction between U and the pertur-
bations, u′, although from the perspective of the DNS
system (2) as a whole this term is nonlinear. This is a
crucial point in the analysis to follow as we will be taking
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U in N3 to be known and this term to be linear from the
perspective of the perturbation equation (2b). Finally,
the nonlinear interaction between perturbation compo-
nents kx1

6= 0 and kx2
6= 0, with kx1

6= −kx2
is referred

to as N4.

Transition to and maintenance of a self-sustained tur-
bulent state results even when only nonlinearity N2 and
term N3 are retained [5]. By retaining both nonlinear-
ities N1 and N2 and term N3 we obtain the restricted
non-linear system (RNL):

∂tU + U · ∇U +∇P −∆U/R = −〈u′ · ∇u′〉x , (3a)

∂tu
′ + U · ∇u′ + u′ · ∇U +∇p′ −∆u′/R = 0 , (3b)

∇ ·U = 0 , ∇ · u′ = 0 . (3c)

It has been confirmed that this RNL system supports a
realistic self-sustaining process (SSP) which maintains a
turbulent state in minimal channels [5, 19], in channels of
moderate sizes at both low and high Reynolds numbers
(at least for Rτ ≤ 1000) [6, 13, 14], and also in very long
channels [15].

Consider in isolation the time varying mean flow U
obtained from a state of turbulence either of the RNL or
the DNS system. Sufficiently small perturbations, u′, to
this mean flow evolve according to

∂tu
′+U·∇u′+u′ ·∇U+∇p′−∆u′/R = 0 , ∇·u′ = 0 ,

(4)
which is the perturbation equation (3b) of the RNL sys-
tem, while in the DNS system the finite perturations u′

obey the different equation (2b) with the N4 term in-
cluded. In the self-sustained RNL turbulence the pertur-
bations, u′, that evolve under the linear dynamics (3b) or
equivalently under (4) remain finite and bounded. There-
fore the mean-flow, U, of the RNL turbulent state is sta-
ble in the sense that perturbations, i.e. the streamwise
varying flow components, u′, that evolve under (4), have
zero asymptotic growth rate and the mean flow can be
considered to be in the critical state of neutrality, poised
between stability and instability. A question that will
be addressed in this paper is whether the mean flow, U,
that is obtained from a DNS shares this property of being
adjusted similarly to neutrality in the sense that pertur-
bations, u′, that evolve under (4), remain bounded and
therefore have vanishing asymptotic growth rate and the
mean flow of the DNS can therefore be considered to be
similarly in a critical state of parametric neutrality when
proper account is taken of dissipation. If the turbulent
mean flow U of the DNS can be shown to be neutral,
in this sense of parametric neutrality, and the associated
perturbations can be shown to be the Lyapunov vectors
of this U, then the mechanism of turbulence identified
analytically in the RNL system, in which the perturba-
tions arise from parametric instability of the mean flow
with the mean flow being regulated to neutrality through
quasi-linear interaction with the perturbation field, will

have been extended to DNS. Identification of DNS tur-
bulence dynamics with that of RNL would represent a
fundamental advance in understanding because RNL tur-
bulence is fully and analytically characterized so that this
identification would imply extension of the full analytical
characterization of RNL turbulence to the DNS system.
For this program to succeed it is required to show that
the dynamically substantive difference between the RNL
system and the DNS, which is the appearance in DNS of
the perturbation-perturbation nonlinearity N4, does not
fundamentally change the dynamics of turbulence.

An illustrative aspect of the insight that can be gained
by identifying in the DNS system the mechanisms that
are known to be operating in the RNL system relates to
the adjustment of turbulence to a statistically station-
ary state. The mechanism by which the statistical state
of turbulence in the RNL system is regulated to its sta-
tistical mean can be related to an influential conjecture
that in a turbulent system the linear instability of the
mean state is adjusted by quasi-linear interaction with
the perturbations to a state of modal neutrality [20–22].
The theory of turbulence based on the second order SSD
we use has in common with this influential hypothesis
the concept of adjustment by quasi-linear interaction be-
tween the mean flow and perturbations to neutrality as
the general mechanism determining the statistical state
of turbulence. While turbulent convection [23, 24] dis-
plays a usefully close approximate adherence to modal
neutrality when both the spatial and temporal means are
taken to define the mean flow, the turbulent mean state
of wall-bounded shear flows, defined as the streamwise,
spanwise and temporal mean, 〈U〉z,t, is hydrodynami-
cally stable and far from neutrality in apparently strong
violation of the adjustment to neutrality conjecture [25].
However, study of RNL turbulence suggests that this
program is essentially correct and can be extended to
wall-turbulence requiring only the additional recognition
that the instability to be equilibrated is the instability
of the time-dependent operator associated with lineariza-
tion about the temporally varying streamwise mean flow.
Among the theoretical advances arising from identifying
the mechanism of RNL turbulence and that of DNS is ex-
tension of this physical mechanism determining the sta-
tistical steady state to DNS turbulence.

The maximum growth rate of perturbations to the
streamwise mean governed by the linear dynamics of (4)
is given by the top Lyapunov exponent of u′ defined as:

λLyap = lim
t→∞

log |u′|
t

. (5)

RNL turbulence with mean (1) satisfies the neutrality
conjecture precisely under our interpretation because for
RNL

λLyap = 0 . (6)
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An issue we wish to examine in this work is whether
DNS turbulence (with the N4 term included) is simi-
larly neutral in the Lyapunov sense with its perturba-
tions being supported by parametric growth on its fluc-
tuating mean flow and with perturbation structure being
that predicted by the associated Lyapunov vector struc-
tures. Specifically, whether fluctuations, u′, evolving un-
der (4) on the time dependent mean flow, U, that has
been obtained from a turbulent DNS, have λLyap, as de-
fined in (5), zero when proper account is taken of dis-
sipative processes and in addition whether the predicted
Lyapunov structure can be verified to be maintaining the
perturbations in the DNS. We caution the reader that the
Lyapunov structures and exponents we are calculating
are not the familiar Lyapunov structures and exponents
associated with small perturbations to the full turbulent
state trajectory. This more familiar use of Lyapunov ex-
ponents and associated vectors is concerned with growth
of perturbations δU, δu′ to the tangent linear dynamics
of the full Navier-Stokes equations linearized about the
entire turbulent trajectory U, u′. This tangent linear dy-
namics typically has many positive Lyapunov exponents
[26]. We instead calculate the Lyapunov exponents and
structures only of perturbations, u′, evolving under the
linear dynamics (4) about the time dependent mean flow
U and there are typically only a small set of these that
correspond to the perturbation component of the turbu-
lent state which are neutrally stable while the rest are
damped. It is also important to recognize that the para-
metric perturbation evolution equation (4) governing the
perturbation dynamics of RNL is not limited to small
perturbation amplitude because the perturbation equa-
tion is strictly linear and the nonlinearity required to
regulate the perturbations to their finite statistical equi-
librium state is not explicit in (4) but rather is contained
in the Reynolds stress feedback term N2 appearing in the
mean equation which serves to provide feedback regula-
tion of the mean state to neutral Lyapunov stability.

The mean used in the cumulant expansion is funda-
mental to formulating an SSD that retains the physical
mechanism of turbulence in shear flow. The centrality
of spanwise variation of the mean flow, which is associ-
ated with the streak component, to the maintenance of
turbulence has been demonstrated by numerical exper-
iments that show turbulence is not sustained when the
streaks are sufficiently damped or removed [18]. Given
that in the SSD turbulent state spanwise and tempo-
ral inhomogeneity are required to allow the parametric
instability of the the fluctuating streamwise streak to be
supported it is necessary to allow both spanwise and tem-
poral variations in the mean operator used to define the
cumulants in the SSD which requires representation (1).
The requirement that the streamwise mean be taken to
support turbulence in a second order SSD provides a par-
tition of the mechanisms by which nonlinearity enters the
dynamics. This naturally compelled partition is into the

completely characterized nonlinearity mechanism of the
RNL dynamics and the remaining nonlinearity that has
not yet been completely characterized which is that con-
tained in the N4 term of the DNS system perturbation
equation.

We now compare RNL and DNS dynamics in order
to gain insight into the role of perturbation-perturbation
nonlinearity N4 in the maintenance and regulation of tur-
bulence. The N4 term in (2b) does not contribute di-
rectly to maintaining the perturbation energy because
the perturbation-perturbation interactions redistribute
energy internally among the streamwise kx 6= 0 compo-
nents of the flow and the term 〈u′ · N4〉x,y,z is zero [27]
in the DNS. From (2b) we obtain that the perturbation
energy density, Ep = 〈|u′|2/2〉x,y,z, evolves according to:

dEp
dt

= 〈u′ · (−U · ∇u′ − u′ · ∇U + ∆u′/R)〉x,y,z︸ ︷︷ ︸
Ėlinear

. (7)

just as in RNL turbulence. The term Ėlinear comprises
the energy transfer to the streamwise-varying perturba-
tions by interaction with the fluctuating mean U(y, z, t)
and the dissipation. The top Lyapunov exponent of the
perturbation field u′ associated with the mean flow taken
from the DNS, as defined in (5) is also given by the time-
average of the instantaneous perturbation energy growth
rates:

λLyap =

〈
1

2Ep

dEp
dt

〉
t

. (8)

Equation (8) converges asymptotically in t to the top
Lyapunov exponent for any mean flow and particularly
for our analysis for the mean flow obtained from the DNS.
The full spectrum of exponents can also be obtained us-
ing orthogonalization techniques [28].

This top Lyapunov exponent should be contrasted with
the exponent obtained by inserting into (7) and obtain-
ing (8) with the u′ taken from DNS. This u′ is bounded
because it is the perturbation state vector and therefore
this exponent is exactly λstate = 0. While only the top
Lyapunov vector is maintained by the RNL system of
our example, in DNS a spectrum of Lyapunov vectors
comprise the u′ of the state and because these are or-
thogonal in energy we can consider the energetics of each
of the streamwise Fourier components of u′ separately. If
we decompose the perturbation field into its streamwise
components:

u′ =

N∑
nx=1

Re
(
anx

ekxx
)︸ ︷︷ ︸

u′
nx

, (9)

with kx = 2πnx/Lx and Re denoting the real part, the
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FIG. 1: The top Lyapunov exponent of perturbations with channel wavenumbers nx = 1, . . . , 8 evolving under the
time-dependent turbulent mean flow in the DNS, U. The Lyapunov exponent of all nx ≥ 2 components of u′ is
negative. For comparison, the least stable mode of the streamwise-spanwise-temporal mean of U has decay rate

σ = −0.12 Uw/h at nx = 1 and nz = 3. The Lyapunov exponent was nondimensionalized using advective time units,
h/Uw. A plane Couette channel at R = 600 was used.

effective time average growth rate:

λnx,state =

〈
1

2Enx

〈
u′nx
·
(
−U · ∇u′nx

− u′nx
· ∇U

+ ∆u′nx
/R+N4,nx

)〉
y,z

〉
t

,

(10)

of each Fourier component u′nx
of the perturbation field

is zero. In (10) Enx = 〈|u′nx
|2/2〉y,z is the kinetic en-

ergy of the nx streamwise component and N4,nx
is the

nx streamwise perturbation component of the N4 term
in (2b). In the energetics of DNS in addition to the rate
of the instantaneous energy transfer to the perturbations
from the mean flow:

Ėdef,nx
=
〈
u′nx
·
(
−U · ∇u′nx

− u′nx
· ∇U

)〉
y,z

, (11)

and the perturbation energy dissipation rate:

Ėdissip,nx
=

1

R

〈
u′nx
·∆u′nx

〉
y,z

, (12)

which are the only terms in (7) involved in the determi-
nation of the Lyapunov exponent, the additional term

Ėnonlin,nx =
〈
u′nx
·N4,nx

〉
y,z

, (13)

giving the net energy transfer rate at each instant to
the other nonzero streamwise components appears in the
DNS equations.

For convenience we define the linear operator A so that

u′ · (−U · ∇u′ − u′ · ∇U)
def
= u′ · (A+A†)u′/2 ,

where A† is the adjoint operator in the energy inner prod-
uct. The eigenvalues of the linear operator (A + A†)/2
order in the orthonormal basis of the eigenfunctions of
this operator the rate of transfer of energy from the in-
stantaneous streamwise mean flow to the perturbations.

The dynamical significance of N4 in sustaining the tur-
bulent state is revealed by comparing the perturbation
energetics under the influence of the DNS mean flow U
with and without the term N4. This can be achieved by
calculating the Lyapunov exponents λLyap of the U ob-
tained from a DNS and the associated Lyapunov vectors
together with the contributions of each of these Lyapunov
vectors to the energy transfer rates Ėdef,nx

, Ėdissip,nx
,

Ėnonlin,nx
and comparing these rates with and without

the term N4. Although the N4 term is energetically neu-
tral it may have a profound impact on the energetics by
modifying the perturbations to extract more or less en-
ergy from the mean flow. Evidence that the term N4 is
not fundamental to sustaining the turbulence but instead
the parametric mechanism of RNL is fundamentally re-
sponsible for maintaining DNS turbulence would be pro-
vided by the following four conditions: (i) the top Lya-
punov exponent, λnx , is associated with the same stream-
wise components nx of the turbulent field in RNL and
DNS and is neutral after accounting for the transfer of
energy to the other streamwise perturbation components,
which would indicate that the turbulent state is regulated
to neutralize the top Lyapunov vector growth rate (max-
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FIG. 2: The first 15 Lyapunov exponents of the DNS mean flow for nx = 1.

imum Lyapunov exponent) coincident with the (neces-
sary) neutralization of the state vector, (ii) the transfer
of energy from the mean flow by the top Lyapunov vector
Ėdef,nx

should exceed that by the state vector indicat-
ing that N4 has disrupted the Lyapunov vector making it
less effective at transferring energy from the mean flow,
(iii) the Lyapunov vectors span the energy and the en-
ergetics of the DNS perturbation field in a convincingly
efficient manner, most tellingly if they span it in the or-
der of their growth rate, and (iv) in addition to support-
ing the perturbation energy and energetics the Lyapunov
vectors support the roll circulation maintaining the co-
herent roll/streak structure.

Satisfying these conditions would strongly support the
conclusion that the DNS turbulence is being maintained
primarily through the parametric perturbation growth
process associated with the temporal variation of U that
supports turbulence in RNL, without substantial contri-
bution from the N4 nonlinearity. The alternative is that
the N4 term contributes at leading order to the energetics
which would imply centrality in the dynamics of turbu-
lence for the alternative role for N4, which is to replen-
ish the subset of perturbations lying in the directions of
growth. This distinction in mechanism can be clarified by
observing that, if instead of making the dynamically cru-
cial choice of the streamwise average as the mean in con-
structing the RNL system and the mean flow were instead
chosen to be the time-independent streamwise-spanwise-
temporal mean, which in a boundary layer flow is the
stable Reynolds-Tiederman profile [25], the N4 nonlin-
earity must assume this role if turbulence is to be sus-
tained. This follows because the alternative parametric
mechanism would not be available. Turbulence could in

TABLE I: The channel is periodic in the streamwise, x,
and spanwise, z, direction and at the channel walls
y = ±h the velocity is u = (±Uw, 0, 0). The channel
length is Lx and Lz in the streamwise and spanwise

directions respectively. The number of streamwise and
spanwise Fourier components is Nx and Nz after

dealiasing in the streamwise and spanwise direction by
the 2/3 rule, and we use Ny grid points in the

wall-normal direction. R = Uwh/ν is the Reynolds
number of the simulation, with ν the kinematic

viscosity.

Parameter [Lx, Lz]/h Nx ×Nz ×Ny R
NS600 [1.75π , 1.2π] 17× 17× 35 600

principle be sustained by this mechanism if N4 were suffi-
ciently effective in scattering perturbations back into the
directions of non-normal growth. However, the experi-
ments of Jimenez & Pinelli [18] show that this is not the
case. They demonstrate that removing the streak com-
ponent in a DNS of a channel flow laminarizes the flow.
Although the mean flow in their DNS remains highly
non-normal the mechanism of nonlinear scattering back
into the growing subspace of the non-normal operator can
not maintain a turbulent state in the absence paramet-
ric mechanism made available by the specific structure of
the fluctuating streak.
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FIG. 3: Contribution to the instantaneous energy growth rate of the nx = 1 perturbation component in DNS:
extraction from the fluctuating nx = 0 mean component Ėlin,nx

/(2Enx
) (blue, solid); loss to dissipation

Ėdissip,nx
/(2Enx

) (red, solid); transfer to the other nx > 1 streamwise components Ėnonlin,nx
/(2Enx

) (green). The
mean values of these rates are indicated with the dashed lines with the corresponding color. These average rates

sum to λstate = 0. The corresponding rates for the first Lyapunov vector are shown in black and purple dash-dotted
lines (there is no energy transfer to the other components as N4 is absent in this calculation). These rates sum to
the Lyapunov exponent λLyap = 0.02Uw/h, which is as expected positive and comparable to the transfer rate from

the state vector, Ėnonlin,nx
/(2Enx

) = 0.04Uw/h.

THE LYAPUNOV EXPONENT OF THE MEAN
FLOW IN COUETTE TURBULENCE AT R=600

Consider a Couette turbulence simulation at R = 600
in a periodic channel with parameters given in Table I.
This is a larger channel than the minimal Couette flow
channel studied by Hamilton, Kim & Waleffe [17] at R =
400. RNL turbulence with these parameters at R = 600
was systematically examined recently [7].

We first calculate the Lyapunov exponent λLyap of the
DNS streamwise mean flow by estimating (8) from a long
integration of (4) with the mean flow U obtained from
a turbulent DNS. The initial state u′ is inconsequential
because, with measure zero exception, any random initial
condition converges in this system with exponential accu-
racy to the Lyapunov vector associated with the largest
Lyapunov exponent. The full spectrum of Lyapunov ex-
ponents and vectors can be obtained by an orthogonal-
ization procedure. For a discussion of the calculation
and properties of Lyapunov exponents and the associated
Lyapunov vectors refer to Refs. [7, 28–31]. Because of the
streamwise independence of U, the different streamwise
Fourier components of u′ in this Lyapunov exponent cal-
culation, in which the N4 term is absent, evolve indepen-
dently and the Lyapunov vector associated with a given
Lyapunov exponent has streamwise structure confined to
a single streamwise wavenumber kx = 2πnxh/Lx, corre-
sponding to the nx streamwise Fourier component.

The top Lyapunov exponent at each nx is shown in fig-
ure 1. This plot reveals that the time dependent stream-

wise mean flow U is asymptotically stable to all pertur-
bations with nx > 1 with only the nx = 1 streamwise
component supporting a positive Lyapunov exponent of
λLyap ≈ 0.02Uw/h. Recall that in RNL the top Lyapunov
exponent also has wavenumber nx = 1 and is exactly
zero consistent with mean U being adjusted by feedback
through the Reynolds stress term N2 to exact neutral-
ity. The top Lyapunov exponent obtained using the U
of DNS is positive consistent with the requirement to
account for the energy exported to other perturbations.
Figure 2 shows that the DNS mean flow being without
energy loss to scattering by the N4 term actually sup-
ports two positive Lyapunov exponents with nx = 1.

Contributions to the Lyapunov exponent from mean
flow energy transfer and from dissipation are plotted as
a function of time in figure 3. The growth rate associ-
ated with energy transfer from the fluctuating streamwise
mean is on average 0.11Uw/h, while the dissipation rate is
on average 0.09Uw/h resulting in the positive Lyapunov
exponent λLyap = 0.02Uw/h. These transfers occur when
perturbations evolve under the dynamics of the fluctuat-
ing streamwise mean flow U of the DNS but in the ab-
sence of two effects: (i) disturbance to the perturbation
structure by the perturbation-perturbation nonlinearity
N4 and (ii) transfer of energy to other perturbations by
N4. This result demonstrates that the parametric growth
mechanism is able to maintain the perturbation turbu-
lence component against dissipation with additional en-
ergy extraction to account for transfer to the other scales.

We now contrast the energetics of the Lyapunov vec-
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FIG. 4: Average energy percentage of the nx = 1 flow accounted for by each Lyapunov vector (black squares).
Average energy percentage of the nx = 1 flow accounted for by the eigenvectors of A+A† ordered in descending

order of their eigenvalue (blue crosses). A is the operator in (4) governing the linear evolution of the perturbations
about U. The eigenvectors of A+A† are the orthogonal directions of stationary instantaneous perturbation energy

growth rate, with this growth rate given by the corresponding eigenvalue. The perturbation component of the
turbulent flow is adjusted to have a small projection on the first eigenvectors of A+A† associated with large

instantaneous energy growth rates. Also shown is the energy percentage accounted for by the PODs of the nx = 1
component of the NL perturbation state (green circles).

tors on the DNS mean flow just shown with the corre-
sponding energetics of the nx = 1 Fourier component of
the state vector obtained from the DNS itself in order to
determine whether the N4 term has the effect of influ-
encing the perturbations to have a more or less favorable
configuration for extracting energy from the mean flow.
These results are also shown in figure 3 from which it
can be seen that although the DNS turbulent state vec-
tor episodically exceeds its associated Lyapunov vector
in rate of energy transfer from the mean flow this trans-
fer rate with the influence of the N4 term included is
slightly less on average than that achieved by the first
Lyapunov vector in the absence of the influence of N4:
energy transfer rate to the DNS state vector produces
growth rate 0.099Uw/h compared to 0.107Uw/h for the
Lyapunov vector on the DNS mean flow. This demon-
strates that the nonlinear term N4 does not configure the
perturbations to transfer more energy from the highly
non-normal streamwise mean flow U on average. How-
ever, despite the fact that the energy transferred from the
streamwise mean flow by the DNS perturbation state and
by the first Lyapunov vector are nearly equal when aver-

aged over time, the correlation coefficient of the transfer
rate time series, shown in figure 3, is low (0.26) suggest-
ing that the N4 term has disrupted the first Lyapunov
vector and spread its energy to other Lyapunov vectors.
The fact that this disruption does not substantially al-
ter the time-mean energy transfer from the streamwise
mean flow suggests that the time mean energetics result-
ing from projection on the Lyapunov vectors of U is not
substantially altered by N4 while the projection at an
instant in time is. Note also that in the energetics of
the nx = 1 perturbation component in DNS there is a
term not present in the corresponding Lyapunov vector:
the energy interchanged with the remaining nx 6= 0 com-
ponents, which is also shown in figure 3. The nx = 1
perturbation component of the DNS exports energy to
the other streamwise components of the flow and this
transfer contributes 0.04Uw/h at this wavenumber to the
decay rate. This additional decay is just sufficient to re-
duce the mean growth rate of the DNS to the required
value λstate = 0.

We conclude that the Lyapunov exponent of the fluc-
tuating streamwise mean flow U in DNS turbulence
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FIG. 5: Contribution of the Lyapunov vectors (black squares), the PODs (green stars) and the eigenvectors of
A+A† (blue crosses) to the energy transfer rate, Ėlin, from the mean flow.

has been adjusted to near neutrality and with energet-
ics consistent with the parametric growth mechanism
fully accounting for the maintenance of the perturba-
tion component of the turbulent state. The perturbation-
perturbation nonlinearity, N4, does not configure the per-
turbations to extract more energy from the streamwise
mean flow than in the absence of this term, implying
that N4 acts as a negative influence on the perturbation
growth process. This is opposite to the mechanism in
toy models of turbulence in which nonlinearity system-
atically configures perturbations to be more effective at
exploiting the non-normality of the mean flow (cf. [8]).
The fact that the mean DNS flow has been adjusted to
near neutrality of its first Lyapunov vector suggests this
structure is controlling the parametric instability of the
mean state and therefore that the first Lyapunov vec-
tor should be a dominant component of the perturbation
state in the DNS. However, differences between the time
series of the energy transfer rate by the DNS state vector
and by the top Lyapunov vector of the associated mean
state suggests that other (decaying) Lyapunov vectors
have been excited by N4. This will be examined in the
next section.

ANALYSIS OF PERTURBATION ENERGETICS
BY PROJECTION ONTO THE LYAPUNOV

VECTOR BASIS

Despite the correspondence between the mean ener-
getics of the DNS perturbation state and the mean en-
ergetics of the top Lyapunov vector calculated using the
associated fluctuating streamwise mean flow it remains to
explain why time series of perturbation growth rate for
these shown in figure 3 reveal considerable differences.
This suggests further analysis to clarify the relation be-
tween the perturbation state and the Lyapunov vectors.
The orthogonality property imposed on the Lyapunov
vectors makes them an attractive basis for analyzing the
relation between perturbation structure and energetics.
Expanding the nx = 1 DNS perturbation state û′ in the
basis of the orthonormal in energy nx = 1 Lyapunov vec-
tors, u′i:

û′(t) =
∑
i

ai(t)u
′
i(t), (14)

with projection coefficient:

ai(t) = 〈u′i(t) · û′(t)〉x,y,z , (15)
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we obtain that the contribution to the perturbation en-
ergy of Lyapunov vector u′i is Ei = a2

i (t)/2. Projection
of the energy of the nx = 1 component of the perturba-
tion state on the first 150 Lyapunov vectors is shown in
figure 4. The percentage of energy accounted for by pro-
jection on the most unstable Lyapunov vector is 11%, sig-
nificantly larger than the energy in each of the remaining
Lyapunov vectors. Adding the second unstable Lyapunov
vector raises this value to 17.4% and the first 100 nx = 1
Lyapunov vectors account for 82% of the energy of the
nx = 1 component of the perturbation state. In order
to understand the significance of the Lyapunov vectors
as a basis for representing the DNS perturbation state
we have determined the orthonormal structures of the
proper orthogonal decomposition (PODs) of the nx = 1
component of the DNS with the methods discussed in
Ref. [32]. Comparison of the perturbation energy pro-
jected on the Lyapunov and the canonical POD basis in
Figure 4 demonstrates that the Lyapunov vectors provide
a good representation of the DNS perturbation state. We
note that the energy of the perturbation state is parti-
tioned into the Lyapunov vectors in the order of their
Lyapunov exponent, while the energy accounted for by
the POD basis necessarily decrease monotonically with
the order of the POD this is not required of the Lyapunov
vectors and therefore this monotonic decrease provides
evidence that the Lyapunov vectors are active agents in
the perturbation energetics. On the other hand, note
that the Lyapunov vectors are not constrained by opti-
mality of the POD basis to be an inferior basis for span-
ning the energy, because the Lyapunov vectors are time
dependent and could theoretically span all the perturba-
tion energy, as indeed is the case in RNL for which the
entire energy and energetics is accounted for by the first
Lyapunov vector.

In figure 4 we also show the average projection of the
DNS state on the eigenvectors of the operator A + A†

ordered in descending order of their eigenvalues. A is the
linear operator in (4) governing the evolution of the per-
turbations, u′, about U. The eigenvectors of A+A† form
an orthonormal set of perturbation structures ordered de-
creasing in instantaneous energy growth rate in the flow,
U. Typically in turbulent flows both the Lyapunov vec-
tors and the perturbation state have small projection on
the first eigenvectors of A+A†, which are the structures
producing greatest instantaneous energy growth rates.
The turbulent mean flow U is such that perturbations
that lead to large instantaneous growth rate have large
wavenumber and are located in episodically occurring re-
gions of high deformation. The top Lyapunov and state
vectors are instead concentrated at larger scale with rela-
tively small instantaneous growth rate. Small projection
of the perturbation state on the directions of maximum
instantaneous growth rate was previously seen in RNL
simulations at R = 600 [7]. What is remarkable and
indicative of the fundamental role of the Lyapunov vec-

tors in the dynamics of DNS is the ordering of the per-
turbation energy in the Lyapunov vectors. Despite the
dynamic importance of the basis of the eigenvectors of
A + A† comparable ordering does not occur for this ba-
sis.

In RNL simulations at R = 600 the perturbation tur-
bulent state is entirely supported by the top Lyapunov
vector and the energetics of the perturbation state conse-
quently are the energetics of this single Lyapunov vector.
The N4 nonlinearity distributes the perturbation energy
over a subspace spanned primarily by the leading Lya-
punov vectors, as shown in figure 4. We can determine
the distribution of the first N Lyapunov vectors ordered
in contribution to the perturbation state energy growth
rate, Ėi,def by calculating

N∑
i=1

Ėi,def
def
= 〈u′< · (−U · ∇u′< − u′< · ∇U)〉

x,y,z,t
,

(16)
where

u′<(t) = Re

(
N∑
α=1

aα(t)u′α(t)e2πix/Lx

)
, (17)

is the projection of the nx = 1 perturbation state, given
in (14), on the first N Lyapunov vectors. From this cal-
culation, we can obtain the incremental contribution to
the perturbation energy growth, Ėi,def , of each Lyapunov
vector. We can similarly determine the contribution of
each of the eigenvectors of A + A† and of the PODs to
the energetics of the perturbation state. The results,
shown in Fig. 5, reveal that the Lyapunov vectors provide
the primary support for the perturbation energetics and
their energetic contribution follows the Lyapunov vector
growth rate ordering. If the N4 term were dominant in
determining the structures supporting the perturbation
state the energetics of the turbulent state in the DNS
would not be expected to so closely reflect the asymptotic
structures of the Lyapunov vectors. Also note that the
first 70 PODs, which contain 95% of the perturbation en-
ergy, are responsible for most of the energetic transfers,
but their contribution is not ordered as in the case of
the Lyapunov vectors, actually it is almost white. Note
also that the contribution of the first 45 eigenfunctions of
A+ A† is in reverse order of their instantaneous growth
rate.

ANALYSIS OF THE CONTRIBUTION OF THE
LYAPUNOV VECTORS TO THE SELF

-SUSTAINING PROCESS

We have seen that the perturbation structure in a DNS
has significant projection on the first LV (11% on aver-
age) and about 20% on average on the subspace spanned
by the four least stable LVs. These least stable Lyapunov
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FIG. 6: Time evolution of the contribution of the
torques arising from the Reynolds stresses produced by
u′< to maintenance of Ψ2, which largely consists of the
rolls (blue). The torques from u′> (red) make no net
contribution to the rolls in this measure. The time
mean contributions are indicated with dashed lines.

This figure identifies the perturbation subspace
responsible for maintaining the roll against dissipation

to be the subspace spanned by the four least stable LVs.

vectors also dominate the others in the rate of energy
extraction from the streamwise flow U(y, z, t). Remark-
ably, they also account fully for the forcing of the roll
and therefore the SSP. In order to assess the contribu-
tion of the Lyapunov vectors to the roll forcing consider
the equation for the streamwise component Ωx = ∆hΨ

with ∆h
def
= ∂2

y+∂2
z , of the mean vorticity equation, which

is obtained by taking the streamwise component of the
curl of (2a):

DΩx
Dt

= −
[
(∂2
y − ∂2

z )〈vw〉x + ∂yz
(
〈w2〉x − 〈v2〉x

)]︸ ︷︷ ︸
GΩx

+ν∆hΩx ,

(18)
where D/Dt = ∂t + U · ∇ is the substantial derivative
on the streamwise mean flow. From (18) we see that if it
were not for the streamwise mean torque from the pertur-
bation Reynolds stresses, GΩx , the roll would decay. The
contribution of perturbation Reynolds stresses to the rate
of change of the normalized streamwise square vorticity
can be measured by λΩx

=
∫
V

ΩxGΩx
dV /(2

∫
V

Ω2
xdV ),

and similarly, if more emphasis is to be given to the large
scales, we could use as a measure the contribution of the
perturbation Reynolds stresses to the maintenance of the
square of the streamfunction. This normalized measure
of contribution to Ψ2 is λΨ =

∫
V

ΨGΨdV /(2
∫
V

Ψ2dV ),

where GΨ
def
= ∆−1

h GΩx and ∆−1
h is the inverse cross-

stream/spanwise Laplacian. In order to analyze the con-
tribution of the first few Lyapunov vectors to the main-
tenance of the roll component of the SSP we decompose
the perturbation field u′ into its component, u′<, pro-

jected on the subspace spanned by the 4 least damped
energy orthonormal LVs, denoted u′i, i = 1, 2, 3, 4 and
the projection on the complement u′>:

u′<
def
=

4∑
i=1

(u′ · u′i)u′i , u′>
def
= u′ − u′< , (19)

and estimate GΨ produced by u′< and u′>. The con-
tribution of these subspaces to λΨ is shown in Fig. 6.
It can be seen that the first four least stable LVs con-
tribute 100% on average to the roll maintenance [33].
This identification of a small subset of the least stable
LVs as the perturbation structures that support the SSP
anticipates laminarization of the turbulence in the DNS
upon removal of this subspace (cf. [34]).

CONCLUSIONS

Analyses made using SSD systems closed at sec-
ond order have demonstrated that a realistic self-
sustained turbulent state is maintained by the parametric
growth mechanism arising from interaction between the
temporally and spanwise/cross-stream spatially varying
streamwise-mean flow and the associated perturbation
component [13–15]. In these second order SSD systems
the streamwise-mean flow is necessarily adjusted exactly
to neutral stability, with the understanding that the time
dependent streamwise mean flow is considered neutral
when the first Lyapunov exponent is zero. This result
reinterprets the conjecture that the statistical state of in-
homogeneous turbulence should have mean flow adjusted
to neutral hydrodynamic stability.

In this work identification of the parametric mecha-
nism supporting the perturbation component of turbu-
lence obtained using SSD in the RNL system has been
extended to DNS. While in the case of RNL support of
the energy, energetics and the roll forcing is solely on the
feedback neutralized first Lyapunov vector, in the case
of DNS, energy, energetics and roll forcing are spread by
nonlinearity over the Lyapunov vectors. Indicative that
the Lyapunov vectors maintain their centrality in DNS
dynamics is that support of the perturbation structure
and energetics is ordered in the Lyapunov vectors de-
scending in their associated exponents. The neutrality of
the top Lyapunov vector in both RNL and DNS, when ac-
count is taken of the transfer of energy to other scales in
the case of DNS, implies that the mean state neutrality
conjecture for determining the statistical state is valid
if neutrality of the mean state is reinterpreted as neu-
trality of the top Lyapunov vector(s). Consistent with
the parametric mechanism sustaining the turbulence, the
perturbation structure is concentrated on the top Lya-
punov vectors of the time varying streamwise-mean flow
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and ordered in their Lyapunov exponents. Identifica-
tion of the dynamical support of RNL and DNS tur-
bulence to be the neutrally and stable Lyapunov vec-
tors with associated parametric growth mechanism vin-
dicates the conjecture that the mechanism that under-
lies turbulence in wall-bounded shear flow is paramet-
ric instability of the time and spanwise varying stream-
wise mean. Although essentially unstructured scattering
by perturbation-perturbation nonlinearity constitutes a
plausible mechanism by which the subspace of tran-
siently growing perturbations is supported, we find the
perturbation-perturbation nonlinearity does not config-
ure the perturbations to extract more energy from the
mean flow than they would in the absence of this term
implying that the nonlinearity acts as a disruption to
the parametric growth process supporting the perturba-
tion field rather than augmenting the perturbation main-
tenance process. The perturbation-perturbation nonlin-
earity instead transfers energy to other Lyapunov vectors
maintaining them as parametric energy extracting struc-
tures despite their negative exponents. These Lyapunov
vectors that are being excited by scattering and main-
tained by extracting energy from the mean flow and are
primarily responsible for the structure and maintenance
of the perturbation field in contradistinction to the famil-
iar implication of a perturbation cascade in this process.

We conclude that the mean flow in the DNS has been
adjusted to Lyapunov neutrality and that the Lyapunov
vectors support the energy, energetics and role in the
SSP of the perturbation component of the turbulent
state. These properties of the Lyapunov vectors verify
that parametric growth on the fluctuating streamwise
mean flow and its regulation by Reynolds stress feed-
back, which has been identified in RNL turbulence, is
also the mechanism underlying the support of as well as
the regulation to a statistical steady state of turbulence
in the DNS.
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based analysis of turbulence in the reduced nonlinear dy-
namics system.” J. Phys.: Conf. Ser. 708, 012002 (2016).

[33] The first LV contributes to λΨ on average 60%, while
inclusion of the second LV adds another 26%. The cor-
responding contribution to λΩx by u′< is 20% consistent
with more emphasis being placed on small scale vorticity
by the square vorticity measure.

[34] B. F. Farrell, P. J. Ioannou, and Nikolaidis M.-
A., “Mechanism and structure of turbulence predicted
by statistical state dynamics is verified in Couette
flow by DNS,” Phys. Rev. Lett. (2018), (submitted,
arXiv:1808.03870).

http://dx.doi.org/10.1017/S0022112067000308
http://dx.doi.org/ 10.1017/S0022112092002258
http://dx.doi.org/ 10.1017/S0022112092002258
http://dx.doi.org/ 10.1175/1520-0469(1996)053<2041:GSTPIN>2.0.CO;2
http://dx.doi.org/ 10.1175/1520-0469(1996)053<2041:GSTPIN>2.0.CO;2
http://dx.doi.org/ 10.1175/1520-0469(1999)056<3622:PGASIT>2.0.CO;2
http://dx.doi.org/ 10.1175/1520-0469(1999)056<3622:PGASIT>2.0.CO;2
http://dx.doi.org/10.1111/j.1600-0870.2007.00234.x
http://dx.doi.org/ 10.1103/PhysRevLett.117.024101
http://dx.doi.org/ 10.1103/PhysRevLett.117.024101
http://dx.doi.org/ 10.1088/1742-6596/708/1/012002
http://arxiv.org/abs/1808.03870

	Statistical State Dynamics Based Study of the Role of Nonlinearity in the Maintenance of Turbulence in Couette Flow
	Abstract
	 Introduction
	 Formulation
	 The Lyapunov exponent of the mean flow in Couette turbulence at R=600
	 Analysis of perturbation energetics by projection onto the Lyapunov vector basis
	 Analysis of the contribution of the Lyapunov vectors to the self -sustaining process
	 Conclusions
	 Acknowledgments
	 References


