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The perspective of statistical state dynamics (SSD) has recently been applied to the
study of mechanisms underlying turbulence in a variety of physical systems. An example
application of SSD is that of the second order closure, referred to as stochastic structural
stability theory (S3T), which has provided insight into the dynamics of wall turbulence
and specifically the emergence and maintenance of the roll/streak structure. When
implemented as a coupled set of equations for the streamwise mean and perturbations, this
closure eliminates nonlinear interactions among the perturbations restricting nonlinearity
in the dynamics to that of the mean equation and interaction between the mean and
perturbations. Simulations at modest Reynolds numbers reveal that the essential features
of wall-turbulence dynamics are retained with the dynamics restricted in this manner.
Here this restriction of the dynamics is used to obtain a closely related dynamical system,
referred to as the restricted non-linear (RNL) system, which is used to study the structure
and dynamics of turbulence in plane Poiseuille flow at moderately high Reynolds numbers.
Remarkably, the RNL system spontaneously limits the support of its turbulence to a small
set of streamwise Fourier components giving rise to a natural minimal representation
of its turbulence dynamics. Although greatly simplified, this RNL turbulence exhibits
natural-looking structures and statistics. Surprisingly, even when a further truncation of
the perturbation support to a single streamwise component is imposed the RNL system
continues to produce self-sustaining turbulent structure and dynamics. The turbulent
flow in RNL simulations at the Reynolds numbers studied is dominated by the roll/streak
structure in the buffer layer and very-large-scale structure (VLSM) in the outer layer. In
this work diagnostics of the structure, spectrum and energetics of RNL and DNS turbulence
are used to demonstrate that the roll/streak dynamics supporting the turbulence in the
buffer and logarithmic layer is essentially similar in RNL and DNS.

1. Introduction

Turbulence in wall-bounded shear flow is maintained by transfer of kinetic energy from
the forced flow to perturbations. If the forced flow is inflectional then fast hydrodynamic
linear instabilities are available to provide the mechanism for this transfer. However,
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most wall-bounded shear flows such as those in channels or pipes are not inflectional and
the mechanism of energy transfer to the perturbations involves nonlinear processes that
exploit the non-normality of the flow dynamics to produce sustained transfer of energy
from the mean to the perturbations. Mechanisms proposed to effect this transfer we refer
to collectively as self-sustaining processes (SSP). These mechanisms have in common
exploiting non-normal transient growth by nonlinearly destabilizing the optimal roll/streak
structure resulting in sustained transfer of energy to the perturbations (Farrell & Ioannou
2012). The fundamental importance of the roll/streak structure in the dynamics of wall-
turbulence was first inferred after it was observed in the near wall region in boundary
layer flows by the use of hydrogen bubbles (Kline et al. 1967) and seen in the early direct
numerical simulations (DNS) of channel flows (cf. Kim et al. (1987)). Recently, in both
experiments and numerical simulations of turbulent flows at high Reynolds numbers,
roll/streak structures have been identified in the logarithmic layer with self-similar
structure scaling with the distance from the wall (del Álamo et al. 2006; Lozano-Durán
et al. 2012; Lozano-Durán & Jiménez 2014b). Higher in the flow similar very large streaky
structures are seen that scale with the channel half-height or pipe radius, h, or with the
boundary layer thickness δ (Bullock et al. 1978; Jiménez 1998; Kim & Adrian 1999). These
are variously referred to as global modes, superstructures or very large-scale motions
(VLSM) (del Álamo et al. 2004; Toh & Itano 2005; Hutchins & Marusic 2007; Marusic
et al. 2010). The streamwise extent of the VLSM has been estimated from cross-spectral
analysis to be of the order of 30h in pipe flows and of the order of 10− 15δ in boundary
layer flows (Jiménez & Hoyas 2008; Hellström et al. 2011), but Hutchins & Marusic (2007)
argue that these are underestimates of their actual length. In recent DNS simulations
of turbulent channels at Reτ = 550 Lozano-Durán & Jiménez (2014a) determined that
VLSM structures extended to 30h.

Statistical state dynamics (SSD) has provided a new perspective on the nonlinear
instability of the SSP operating in wall-turbulence by employing a second order closure
of the equations governing the cumulants of the full SSD (Farrell & Ioannou 2012).
This closure, referred to as S3T, had been used previously to study large-scale coherent
structure dynamics in planetary turbulence (Farrell & Ioannou 2003, 2007, 2008, 2009a;
Marston et al. 2008; Srinivasan & Young 2012; Bakas & Ioannou 2013; Constantinou et al.
2014a, 2015; Parker & Krommes 2014) and drift-wave turbulence in plasmas (Farrell &
Ioannou 2009b; Parker & Krommes 2014). At low Reynolds numbers the S3T closure
of wall-bounded turbulence maintains a self-sustained turbulent state that has been
comprehensively analyzed (Farrell & Ioannou 2012). The dynamic interactions retained in
S3T are restricted to those between the mean (defined as flow components with streamwise
wavenumber kx = 0) and perturbations (defined as flow components with streamwise
wavenumber kx 6= 0) with nonlinearity retained only in the mean equations. Restriction
of Navier–Stokes (NS) dynamics in this way produces the RNL (Restricted Nonlinear)
approximation to NS. Because the perturbation-perturbation interactions have been
neglected in the perturbation equation, RNL/S3T does not support a classical turbulent
cascade. Further, in this work RNL will be regarded as an approximation to the SSD of
S3T in which a single member of the infinite ensemble retained in S3T is used to calculate
the second order statistics. One consequence of this formulation is that phase information
is not retained for the perturbation fields, only their second order correlations being
relevant to this second order SSD. While approximating the second order statistics as an
RNL has the advantage over S3T that it can be easily implemented at high resolution and
the resulting simulations can be compared to DNS providing insight into the dynamics of
turbulence (cf. Thomas et al. (2014); Constantinou et al. (2014b)).

In this paper, turbulent simulations using RNL and DNS at relatively high Reynolds
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Figure 1: Nonlinear interactions that are included or excluded in the RNL approximation
of the NS equations. Mean flow Fourier components Û(k) with wavenumber k = (0, ky, kz)
are indicated with solid arrows, the perturbation Fourier components û′(k) with kx 6= 0
with dashed arrows. The possible nonlinear interactions are: (a) a perturbation with
streamwise wavenumber kx1 interacts with another perturbation with kx2 = −kx1 to
produce a mean flow component with kx = 0, (b) two mean flow components interact
to make another mean flow component, (c) a mean flow component interacts with a
perturbation to make a perturbation component and (d) two perturbation components with
streamwise wavenumbers kx1 6= −kx2 interact to make another perturbation component.
All interactions are included in the NS equations (2.1). Interactions (a) and (b) are included
in the RNL mean equations (2.3a), while in the RNL perturbation equations (2.3b) only
interactions (c) are included.

numbers in pressure driven channel flow are compared. Included in this comparison are
flow statistics, structures, and dynamical diagnostics. This comparison allows the effects
of the dynamical restriction in the S3T closure to be studied at these moderately high
Reynolds numbers for which exact closure using a fully converged second cumulant is not
numerically feasible.

We find that the highly simplified RNL dynamics supports a self-sustaining roll/streak
SSP in the buffer layer similar to that of DNS and that roll/streak structures in the
log-layer are also supported by an essentially similar SSP. Because of the dynamical
restrictions inherent in RNL, by necessity this SSP is sustained by the non-normal
parametric nonlinear instability mechanism previously identified by using S3T to maintain
perturbation variance in Couette flow at low Reynolds number (Farrell & Ioannou 2012).
Similar to the SSP identified in Couette flow using S3T, this roll/streak structure has
zero streamwise wavenumber. It follows that nonzero streamwise wavenumbers observed
in association with RNL turbulence do not indicate a fundamental limitation of the
streamwise extent of the streak underlying RNL turbulence. Because kx 6= 0 perturbations
may be of large amplitude, observation may suggest that the underlying roll/streak
structure has nonzero wavenumber (Hutchins & Marusic 2007) but in RNL this is by
definition not the case. Moreover, in this work we provide evidence closely relating NS
turbulence in its dynamics to RNL turbulence. Because the dynamics of RNL turbulence
can be understood fundamentally from its direct relation with S3T turbulence these
results support the conclusion that the mechanism responsible for the large scale structure
seen in wall-bounded turbulence in moderate Reynolds number flow is the same in S3T,
RNL and DNS: the roll/streak/perturbation SSP that was previously identified in S3T
turbulence.
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2. RNL Dynamics

Consider a plane Poiseuille flow in which a constant mass flux is maintained by
application of a time-dependent pressure, G(t)x, where x is the streamwise coordinate.
The wall-normal direction is y and the spanwise direction is z. The lengths of the
channel in the streamwise, wall-normal and spanwise direction are respectively Lx, 2h
and Lz. The channel walls are at y/h = 0 and 2. Averages are denoted by square
brackets with a subscript denoting the variable which is averaged, i.e. spanwise averages

by [ · ]z = L−1z
∫ Lz

0
· dz, time averages by [ · ]t = T−1

∫ T
0
· dt, with T sufficiently long.

Multiple subscripts denote an average over the subscripted variables in the order they
appear, i.e. [ · ]x,y ≡ [ [ · ]x ]y. The velocity, u, is decomposed into its streamwise mean
value, denoted by U(y, z, t) ≡ [u(x, y, z, t)]x, and the deviation from the mean (the
perturbation), u′(x, y, z, t), so that u = U + u′. The pressure gradient is similarly written
as ∇p = ∇ (−G(t)x+ P (y, z, t) + p′(x, y, z, t)). The NS decomposed into an equation for
the mean and an equation for the perturbation are:

∂tU + U · ∇U−G(t)x̂ +∇P − ν∆U = − [u′ · ∇u′]x , (2.1a)

∂tu
′ + U · ∇u′ + u′ · ∇U +∇p′ − ν∆u′ = − (u′ · ∇u′ − [u′ · ∇u′]x ) , (2.1b)

∇ ·U = 0 , ∇ · u′ = 0 , (2.1c)

where ν is the coefficient of kinematic viscosity. Nonlinear interactions among the mean flow
components (flow components with streamwise wavenumber kx = 0) and perturbations
(flow components with streamwise wavenumber kx 6= 0) in (2.1) are summarized in Fig. 1
The x, y, z components of U are (U, V,W ) and the corresponding components of u′ are
(u′, v′, w′). Streamwise mean perturbation Reynolds stress components are denoted as e.g.
[u′u′]x, [u′v′]x.

The streak component of the streamwise mean flow is denoted by Us and defined as

Us ≡ U − [U ]z . (2.2)

The V and W are the streamwise mean velocities of the roll vortices. We also define
the streak energy density, Es = h−1

∫ h
0

dy 1
2

[
U2
s

]
z
, and the roll energy density, Er =

h−1
∫ h
0

dy 1
2

[
(V 2 +W 2)

]
z
.

The RNL approximation is obtained by neglecting the perturbation–perturbation
interaction terms in (2.1b) (cf. Fig. 1). The RNL system is:

∂tU + U · ∇U−G(t)x̂ +∇P − ν∆U = − [u′ · ∇u′]x , (2.3a)

∂tu
′ + U · ∇u′ + u′ · ∇U +∇p′ − ν∆u′ = 0 , (2.3b)

∇ ·U = 0 , ∇ · u′ = 0 . (2.3c)

Equation (2.3a) describes the dynamics of the streamwise mean flow, U, which is driven
by the divergence of the streamwise mean perturbation Reynolds stresses. These Reynolds
stresses are obtained from (2.3b) in which the streamwise varying perturbations, u′,
evolve under the influence of the time dependent streamwise mean flow U(y, z, t) with no
explicitly retained interaction among these streamwise varying perturbations (the retained
interactions are shown in the diagram of Fig. 1). Remarkably, RNL self-sustains turbulence
solely due to the perturbation Reynolds stress forcing of the streamwise mean flow (2.3a),
in the absence of which a self-sustained turbulent state cannot be established (Gayme
2010; Gayme et al. 2010).

Because the RNL equations do not include interactions among the perturbations and
because U is streamwise constant each component û′kxe

ikxx of perturbation velocity u′ in
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Abbreviation [Lx, Lz]/h Nx ×Nz ×Ny Reτ [L+
x , L

+
z ]

NS950 [π , π/2] 256× 255× 385 939.9 [2953, 1476]
RNL950 [π , π/2] 256× 255× 385 882.4 [2772, 1386]

RNL950kx12 [π , π/2] 3× 255× 385 970.2 [3048, 1524]

Table 1: Simulation parameters. [Lx, Lz]/h is the domain size in the streamwise and
spanwise direction. Nx, Nz are the number of Fourier components after dealiasing and Ny
is the number of Chebyshev components. Reτ is the Reynolds number of the simulation
based on the friction velocity and [L+

x , L
+
z ] is the channel size in wall units. The Reynolds

number based on the bulk velocity is Re = Ubh/ν = 18511 in all cases.

the Fourier expansion:

u′(x, y, z, t) =
∑
kx

û′kx(y, z, t) eikxx , (2.4)

with kx = ±(2π/Lx)[1, 2, 3, . . . , Nx/2], evolves independently in (2.3b) and equations (2.3b)
can be split into independent equations for each kx. By taking the Fourier transform of
(2.3b) in x and eliminating the perturbation pressure, equations (2.3b) can be symbolically
written as:

∂tû
′
kx = Akx(U) û′kx , (2.5)

with

Akx(U) û′kx = PL

(
−U · ∇kx û′kx − û′kx · ∇kxU + ν∆kx û′kx

)
, (2.6)

and PL is the Leray projection enforcing non-divergence of the kx Fourier components of
the perturbation velocity field with ∇kx ≡ (ikx, ∂y, ∂z) and ∆kx ≡ ∂2y + ∂2z − k2x (Foias
et al. 2001). The RNL system can then be written in the form:

∂tU + U · ∇U−G(t)x̂ +∇P − ν∆U = −1

2

∑
kx∈Kx

Re
[
∂y(v̂′kx û′∗kx) + ∂z(ŵ

′
kx û′∗kx)

]
,

(2.7a)

∂tû
′
kx = Akx(U) û′kx , kx ∈ Kx , (2.7b)

∇ ·U = 0 , (2.7c)

with Kx the positive kx wavenumbers 2π/Lx[1, 2, 3, . . . , Nx/2] included in the simulation
and ∗ in (2.7a) denoting complex conjugation.

3. DNS and RNL Simulations

The data were obtained from a DNS of (2.1) and from an RNL simulation, governed
by (2.3), that is directly associated with the DNS. Both the DNS and its directly
associated RNL are integrated with no-slip boundary conditions in the wall-normal
direction and periodic boundary conditions in the streamwise and spanwise directions.
The dynamics were expressed in the form of evolution equations for the wall-normal
vorticity and the Laplacian of the wall-normal velocity, with spatial discretization and
Fourier dealiasing in the two wall-parallel directions and Chebychev polynomials in
the wall-normal direction (Kim et al. 1987). Time stepping was implemented using the
third-order semi-implicit Runge-Kutta method.
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The geometry and resolution of the DNS and RNL simulations is given in Table 1.
Quantities reported in outer units lengths are scaled by the channel half-width, h,
and time by h/uτ and the corresponding Reynolds number is Reτ = uτh/ν where
uτ =

√
ν dU/dy|w (dU/dy|w is the shear at the wall) is the friction velocity. Inner units

lengths are scaled by hτ = Re−1τ h and time by Re−1τ h/uτ . Velocities scaled by the friction
velocity uτ will be denoted with the superscript +, which indicates inner unit scaling.

We report results from three simulations: a DNS simulation, denoted NS950, with
Reτ ≈ 940, the corresponding RNL simulation, denoted RNL950 and a constrained
RNL simulation, denoted RNL950kx12. Both RNL simulations were initialized with an
NS950 state and run until a steady state was established. In RNL950kx12 only the single
streamwise Fourier component with wavenumber kxh = 12 was retained in (2.7b) by
limiting the spectral components of the perturbation equation to only this streamwise
wavenumber; this simulation self-sustained a turbulent state with Reτ = 970.2. In RNL950
the number of streamwise Fourier components was not constrained; this simulation self-
sustained a turbulent state at Reτ = 882.2.

We show in Fig. 2 the transition from NS950 to RNL950 turbulence. The NS950 is
switched at time tuτ/h = 100 to an RNL950 simulation by suppressing the perturbation-
perturbation interactions, represented by the r.h.s. in equation (2.1b). The transition
from DNS to RNL is evident in the time series of the energy density

Ekx = (hLz)
−1
∫ h

0

dy

∫ Lz

0

dz
∣∣û′kx ∣∣2 , (3.1)

of the streamwise Fourier components of the perturbation field. The time evolution of
the energy density of the first 15 streamwise Fourier components, with wavenumbers
hkx = 2, 4, . . . , 30, in NS950 and in RNL950 is shown in Fig. 2a. In NS950, all kx
components maintain non-zero energy density. After the transition asymptotically the
dynamics of the RNL950 turbulence is maintained by interaction between the set of 6
surviving wavenumbers, hkx = 2, 4, . . . , 12 and the kx = 0 component of the flow (cf.
Fig. 2a). The result of restriction of NS dynamics to RNL is thus a spontaneous reduction
in the support of the turbulence in streamwise Fourier components with all Fourier
components having wavelength smaller than πh/6 (hkx > 12) decaying exponentially
producing a reduced complexity dynamics in which turbulence self-sustains on this greatly
restricted support in streamwise Fourier harmonics. We view this transition of NS950
turbulence to RNL950 turbulence as revealing the set of structures that are naturally
involved in maintaining the turbulent state. Given this spontaneous complexity reduction
the question arises: how few streamwise varying perturbation components are required in
order to self-sustain RNL turbulence at this Reynolds number? We show in RNL950kx12
that even if we retain only the single perturbation component with wavelength πh/6
(hkx = 12) a realistic self-sustained turbulent state persists†.

4. RNL as a minimal turbulence model

We have seen that as a result of its dynamical restriction, RNL turbulence is supported
by a small subset of streamwise Fourier components. In order to understand this property
of RNL dynamics consider that the time dependent streamwise mean state of a turbulent
RNL simulation has been stored, so that the mean flow field U(y, z, t) is known at each
instant. Then each kx component of the perturbation flow field that is retained in the

† For a discussion of the streanwise wavenumber support of RNL turbulence cf. Thomas et al.
(2015).
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Figure 2: An NS950 simulation up to t/(hu−1τ ) = 100 (indicated with the vertical line) is
continued subsequently under RNL dynamics. (a) The energy density, Ekx ,of the first
15 streamwise varying Fourier components (hkx = 2, 4, . . . , 30). The energy density of
the Fourier components decreases monotonically with increasing wavenumber. Decaying
Fourier components are indicated with dashed lines. After the transition to RNL dynamics
all components with hkx > 14 decay (hkx = 14 decays, although it is not apparent until
later times than shown in this figure). Asymptotically the dynamics of the RNL950
turbulence is maintained by interaction between the set of surviving hkx = 2, 4, . . . , 12
Fourier components and the mean flow (kx = 0). (b) Detailed view showing the energy
density of the mean and surviving perturbation components during the transition from
NS to RNL dynamics, in which the total energy increased by 10%. For the kx = 0 shown
are: the streak energy density, Es, and roll energy density, Er.The energy density of the
hkx = 2, 4, 6, 8 components increases rapidly during the adjustment after transition to
RNL dynamics. Note that the total energy density in the perturbation kx 6= 0 components
decreases from 0.91u2τ in the NS950 (0.56u2τ being in the components that survive in the
RNL) to 0.78u2τ in RNL950. Also the roll/streak energy density decreases from 1.1u2τ
in NS950 to 0.8u2τ in RNL950, while the energy density of the kx = kz = 0 component
increases from 397u2τ to 448u2τ .

RNL evolves according to (2.7b):

∂tû
′
kx = Akx(U) u′kx , (4.1)

with Akx(U) given by (2.6).
With the time dependent mean flow velocity U obtained from a simulation of a
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turbulent state imposed, equations (4.1) are time dependent linear equations for û′kx
with the property that each kx streamwise component of the perturbation state of the
RNL, û′kx , can be recovered with exponential accuracy (within an amplitude factor and a
phase) by integrating forward (4.1) regardless of the initial state. This follows from the
fundamental property of time dependent systems that all initial states, ûkx(y, z, t = 0),
converge eventually with exponential accuracy to the same structure. In fact, each of
the û′kx assumes the unique structure of the top Lyapunov vector associated with the
maximum Lyapunov exponent of (4.1) at wavenumber kx,

λkx = lim supt→∞
log ‖û′kx(y, z, t)‖

t
, (4.2)

where ‖ · ‖ is any norm of the velocity field (cf. Farrell & Ioannou (1996)). Moreover, for
each kx this top Lyapunov exponent has the further property of being either exactly zero
or negative with those structures having λkx = 0 supporting the perturbation variance.
Vanishing of the maximum Lyapunov exponent of the perturbation system is required for
it to constitute a component of the turbulence state trajectory, as exactly zero Lyapunov
exponent is necessary in order that the perturbation state variance be finite and nonzero
(Farrell & Ioannou 2012).

This property of RNL turbulence being sustained by the top Lyapunov perturbation
structures implies that the perturbation structure contains only the streamwise varying
perturbation Fourier components, kx, that are contained in the support of these top
Lyapunov structures with λkx = 0 (cf. Farrell & Ioannou (2012)). It is remarkable that
only 6 Fourier components, kx, are contained in the support of RNL950 and even more
remarkable that the RNL SSP persists even when this naturally reduced set is further
truncated to a single streamwise Fourier component, as demonstrated in RNL950kx12.
This result was first obtained in the case of self-sustained Couette turbulence at low
Reynolds numbers (cf. Farrell & Ioannou (2012); Farrell et al. (2012)).

This vanishing of the Lyapunov exponent associated with each streamwise wavenumber
is enforced in RNL by the nonlinear feedback process acting between the streaks and the
perturbations by which the parametric instability of the perturbations is suppressed at
sufficiently high streak amplitude so that the instability maintains in the asymptotic limit
zero Lyapunov exponent.

5. Comparison between NS and RNL turbulence structure and
dynamics

In this section we compare turbulence diagnostics obtained from self-sustaining
turbulence in the RNL system (2.3), to diagnostics obtained from a parallel associated
DNS of (2.1) (cf. Table 1 for the parameters). The corresponding turbulent mean profiles
for the NS950 and the RNL950 and RNL950kx12 simulations are shown in Fig. 3.

Previous simulations in Couette turbulence (Thomas et al. 2014) at lower Reynolds
numbers (Reτ = 65) showed very small difference between the mean turbulent profile in
NS and RNL simulations. These simulations at larger Reynolds numbers show significant
differences in the mean turbulent profiles sustained by NS950 and RNL950 simulations.
This is especially pronounced in the outer regions where RNL950 sustains a mean turbulent
profile with substantially smaller shear.

All these examples exhibit a logarithmic layer. However, the shear in these logarithmic
regions are different: the von Kármán constant of NS at Reτ = 950 is κ = 0.4 while
for the RNL950 it is κ = 0.77 and for the RNL950kx12 it is κ = 0.53. Formation of a
logarithmic layer indicates that the underlying dynamics of the logarithmic layer are
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Figure 4: Comparison of velocity fluctuations for the simulations listed in table 1. Shown are
(a):

[
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]
x,z,t

, (b):
[
U2+
s

]
z,t

, (c):
[
v′2+

]
x,z,t

, (d):
[
w′2+

]
x,z,t

for NS950 (solid), RNL950

(dashed) and RNL950kx12 (dash-dot).

retained in RNL. Because in the logarithmic layer RNL dynamics maintains in local
balance with dissipation essentially the same stress and variance as NS but with a smaller
shear, RNL dynamics is in this sense more efficient than NS in that it produces the same
local Reynolds stress while requiring less local energy input to the turbulence. To see this
consider that local energy balance in the log-layer requires that the energy production,
U ′u2τ , (with U ′ ≡ d [U ]z,t/dy) equals the energy dissipation ε, and because in the log-layer
U ′ = uτ/κy, local balance requires that u3τ/(κy) = ε, as discussed by Townsend (1976);
Dallas et al. (2009), which indicates that the higher κ in RNL simulations at the same uτ
is associated with smaller dissipation. In RNL dynamics this local equilibrium determining
the shear and by implication κ results from establishment of a statistical equilibrium
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(dashed). Also shown are each of the terms, − [UsV ]z,t and − [u′v′]x,z,t that sum to
− [uv]x,z,t. Although the NS and RNL values of the total− [uv]x,z,t are almost identical, the
contribution of − [UsV ]z,t and − [u′v′]x,z,t differ in NS and RNL. (b): Structure coefficient,

F , in NS950 (solid) and in RNL950 (dashed). Shown are FB = − [UV ]z,t
/√

[U2]z,t [V 2]z,t,

Fe = − [u′v′]x,z,t
/√

[u′2]x,z,t [v′2]x,z,t and F = − [uv]x,z,t
/√

[u2]x,z,t [v2]x,z,t.

by the feedback between the perturbation equation and the mean flow equation, with
this feedback producing a κ determined to maintain energy balance locally in y. These
considerations imply that the κ observed produces a local shear for which, given the
turbulence structure which is influenced by the restricted set of retained Fourier structures
in RNL, the Reynolds stress and dissipation are in local balance.

Examination of the transition from NS950 to RNL950, shown by the simulation
diagnostics in Fig. 2b, reveals the action of this feedback control associated with
the reduction in shear of the mean flow. When in (2.1b) the interaction among the
perturbations is switched off, so that the simulation is governed by RNL dynamics, an
adjustment occurs in which the energy of the surviving kx 6= 0 components obtain new
statistical equilibrium values. Initial increase of the energy of these components is expected
because the dissipative effect of the perturbation–perturbation nonlinearity that acts on
these components is removed in RNL. As these modes grow, the SSP cycle adjusts to
establish a new turbulent equilibrium state which is characterized by increase in energy
of the largest streamwise scales and reduced streak amplitude. In the outer layer this new
equilibrium is characterized in the case of RNL950 by reduction of the shear of the mean
flow and reduction in the streak amplitude (cf. Fig. 3).

A comparison of the perturbation statistics of RNL950 with NS950 is shown in
Fig. 4. The u′ component of the perturbation velocity fluctuations are significantly
more pronounced in RNL950 (cf. Fig. 4a) and the magnitude of the streak in RNL950
exceeds significantly the streak magnitude in NS950 in the inner wall region (cf. Fig. 4b).
In contrast, the wall-normal and spanwise fluctuations in RNL950 are less pronounced
than in NS950 (cf. Fig. 4c,d) and the streak fluctuations in the outer region are also less
pronounced in RNL950 (cf. Fig. 4b).

Despite these differences in the r.m.s. values of the velocity fluctuations, both RNL950
and NS950 produce very similar uv Reynolds stress (cf. Fig. 5). The Reynolds stress
− [uv]x,z,t is the sum of − [UsV ]z,t and − [u′v′]x,z,t. Comparison of the wall-normal
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Figure 6: Perturbation structure, u′+ in (y, z) plane cross-section for (a) RNL950 and
(b) NS950 in the inner wall region, 0 6 y/h 6 0.2. Both panels show contours of the u′+

field, superimposed with components the (v′+, w′+) velocities.

Figure 7: Instantaneous streak component of the flow, U+
s , shown as a (y, z) plane

cross-section for (a), (c) RNL950 and (b), (d) NS950. All panels show contours of the
streak velocity, U+

s , superimposed with the components of the (V +,W+) velocities. The
top panels show the whole channel while the bottom panels show the inner wall region,
0 6 y/h 6 0.2.

distribution of the time mean of these two components of the Reynolds stress is shown in
Fig. 5a. Because the turbulence in NS950 and RNL950 is sustained with essentially the
same pressure gradient, the sum of these Reynolds stresses is the same linear function
of y outside the viscous layer in these simulations. The Reynolds stress is dominated
by the perturbation Reynolds stress − [u′v′]x,z,t in all simulations, with the RNL stress
penetrating farther from the wall. This is consistent with the fact that the perturbation
structure in RNL has larger scale. This can be seen in a comparison of the NS and
RNL perturbation structure shown in Fig. 6. Note that the Reynolds stress − [UsV ]z,t
associated with the streak and roll in the outer region of the NS950 simulation is larger
than that in RNL950. Further, the average correlation between the perturbation u′ and
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Figure 8: 3D perspective plots of the flow at a single time for (a) NS950, and (b) RNL950
for lower half of the channel, 0 6 y/h 6 1. Both images show contours of the streak
component plus streamwise perturbation, U+

s + u′+. The central x-z panel shows the flow
at channel height, y/h = 0.65. The superimposed vectors represent the (U+

s + u′+, w+)
velocities for the (x, z)-plane, (U+

s + u′+, v+) velocities for the (x, y)-plane and (v+, w+)
velocities for the (y, z)-plane. The parameters of the simulations are given in table 1.

v′ fields are almost the same in both simulations while the correlation between the Us
and V in RNL950 is much smaller than that in NS950 in the outer layer. This is seen in
a plot of the structure coefficient (cf. Flores & Jiménez (2006)) shown in Fig. 5b.

Turning now to the flow structures in the NS950 and RNL950 simulations, a (y, z) plane
snapshot of the streamwise mean flow component (corresponding to kx = 0 streamwise
wavenumber) is shown in Fig. 7. Contours of the streamwise streak, Us, are shown together
with vectors of the streamwise mean (V,W ) field, which indicates the velocity components
of the large-scale roll structure. The presence of organized streaks and associated rolls is
evident both in the inner-wall and in the outer-wall region. Note that in comparison with
the streak in NS950, the streak in RNL950 has a finer (y, z) structure which is consistent
with the energy of the streak being more strongly dissipated by diffusion in RNL (cf.
Fig. 7). A three-dimensional perspective of the flow in NS950 and RNL950 is shown
in Figure 8. Note that in RNL950 there is no visual evidence of the kx = 0 roll/streak
structure which is required by the restriction of RNL dynamics to be the primary structure
responsible for organizing and maintaining the self-sustained turbulent state. Rather, the
most energetic structure among the perturbations maintaining the pivotal streamwise
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mean roll/streak is the structure that dominates the observed turbulent state. We interpret
this as indicating that the kx = 0 roll/streak structure, which is the dynamically central
organizing structure in RNL turbulence and which organizes the turbulence on scale
unbounded in the streamwise direction, cannot be reliably identified by visual inspection
of the flow fields which would lead one to conclude that the organizing scale was not
just finite but the rather short scale of the separation between perturbations to the
streak. Essentially this same argument is cast in terms of the inability of Fourier analysis
to identify the organization scale of the roll/streak structure by Hutchins & Marusic
(2007). This dynamically central structure which appears necessarily at kx = 0 in RNL
dynamics is reflected in the highly streamwise elongated structures seen in simulations
and observations of DNS wall turbulence. In the short channel used here the kx = 0
component is prominent in both the RNL950 and DNS950 (cf. Fig. 7).

An alternative view of turbulence structure is provided by comparison of the spectral
energy densities of velocity fields as a function of streamwise and spanwise wavenumber,
(kx, kz). The premultiplied spectral energy densities of each of the three components of
velocity, Euu, Evv and Eww, are shown at heights y+ = 20, representative of the inner-wall
region; and at y/h = 0.65, representative of the outer-wall region, in Fig. 9. While RNL950
produces spanwise streak spacing and rolls similar to those in NS950, the tendency of
RNL to produce longer structures in this diagnostic is also evident. The spectra for the
outer region indicate similar large-scale structure and good agreement in the spanwise
spacing between RNL950 and NS950. This figure establishes the presence of large-scale
structure in the outer region in both RNL950 and NS950. It has been noted that in NS950
while the dominant large-scale structures scale linearly with distance from the wall in the
inner-wall region, in the outer regions structures having the largest possible streamwise
scale dominate the flow variance at high Reynolds number (Jiménez 1998; Jiménez &
Hoyas 2008). This linear scaling near the wall can also be seen in Fig. 10 where contour
plots of normalized premultiplied one-dimensional spectral energy densities as a function
of spanwise wavelength, kz, and wall-normal distance, as in Jiménez (1998); Jiménez &
Hoyas (2008), for both NS950 and RNL950. In both simulations the spanwise wavelength
associated with the spectral density maxima increases linearly with wall distance and
this linear dependence is intercepted at y/h ≈ 0.5 (or y+ ≈ 450). Beyond y/h ≈ 0.5
structures assume the widest wavelength allowed in the channel, suggesting simulations
be performed in larger boxes in future work (cf. discussion by Jiménez & Hoyas (2008)
and Flores & Jiménez (2010)). Corresponding contour plots of spectral energy density
as a function of streamwise wavelength and wall-normal distance are shown in Fig. 11.
These plots show that the perturbation variance in the inner wall and outer wall region is
concentrated in a limited set of streamwise components which is also apparent in Fig. 8.
The spontaneous restriction on streamwise perturbation wavenumber support that occurs
in RNL dynamics produces a corresponding sharp shortwave cutoff in the kx components
of the RNL950 simulation spectra as seen in panels (d,e,f) of Fig. 11. Note that the
maximum wavelength in these graphs is equal to the streamwise length of the box and
not to the infinite wavelength associated with the energy of the roll/streak structure in
RNL dynamics.

6. Streak structure dynamics in NS and RNL dynamics

That RNL dynamics maintains a turbulent state similar to that of NS with nearly the
same Reτ (Reτ = 882 with the 6 Fourier components of RNL950 and Reτ = 970.2 for
the single Fourier component with kxh = 12 of RNL950kx12 vs. Reτ = 940 of the NS950;
cf. table 1) implies that these systems have approximately the same energy production
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Figure 9: Contours of pre-multiplied power spectra kxkzEff (kx, kz) with f = u, v, w, as
a function of λ+x and λ+z for NS950 (solid) and RNL950 (dashed). Panels (a), (b) and
(c) show the spectral energy densities at wall distance y/h = 0.65 for the u, v and w
respectively, while panels (d), (e) and (f) show the corresponding spectral energy densities
at y+ = 20. Contours are (0.2,0.4,0.6,0.8) times the maximum value of the corresponding
spectrum. The maximum λ+x and λ+y are the lengths L+

x , L+
z of the periodic channel.

and dissipation and that the reduced set of Fourier components retained in RNL dynamics
assume the burden of accounting for this energy production and dissipation. Specifically,
the components in NS950 that are not retained in RNL dynamics are responsible for
approximately 1/3 of the total energy dissipation, which implies that the components
that are retained in RNL950 dynamics must increase their dissipation, and consistently
their amplitude, by that much.

Large scale roll/streak structures are prominent in the inner layer as well as in the outer
layer both in NS950 and in RNL950. The dynamics of this structure can be diagnosed
using the time evolution of the energy of each kx component during the transition from
NS to RNL, shown in Fig. 2b. It can be seen in the short NS950 box that the energy
associated with the streamwise mean structure with kx = 0 and kz 6= 0 is dominant among
the structures that deviate from the mean flow, [U ]z,t. In the inner layer the interaction
of roll/streak structures with the kx 6= 0 perturbation field maintains turbulence through
an SSP (Hamilton et al. 1995; Jiménez & Pinelli 1999; Farrell & Ioannou 2012). The RNL
system provides an especially simple manifestation of this SSP as its dynamics comprise
only interaction between the mean (kx = 0) and perturbation (kx 6= 0) components. The
fact that RNL self-sustains a close counterpart of the DNS turbulent state in the inner
wall region provides strong evidence that the RNL SSP captures the essential dynamics
of turbulence in this region.

The structure of the RNL system compels the interpretation that the time dependence
of the SSP cycle in this system, which might appear to an observer to consist of a
concatenation of random and essentially unrelated events, is instead an intricate interaction
dynamics among streaks, rolls and perturbations that produces the time dependent
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Figure 10: Normalized pre-multiplied spectral densities kzEf (kz) = kz
∑
kx
Eff (kx, kz),

with f = u, v, w, as a function of spanwise wavelength, λz/h, and y/h. Spectral densities
are normalized so that at each y the total energy,

∑
kz
Ef (kz), is the same. Shown are

for NS950 (a): kzEu(kz), (b): kzEv(kz), (c): kzEw(kz) and for RNL950 (d): kzEu(kz),
(e): kzEv(kz), (f): kzEw(kz). The isocontours are 0.2, 0.4, . . . , 1.4 and the thick line marks
the 1.0 isocontour.
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streamwise mean flow U(y, z, t) which, when introduced in (2.7b), results in generation
of a particular evolving perturbation Lyapunov structure with exactly zero Lyapunov
exponent that simultaneously produces Reynolds stresses contrived to maintain the
associated time dependent mean flow. S3T identifies this exquisitely contrived SSP cycle
comprising the generation of the streak through lift-up by the rolls, the maintenance of
the rolls by torques induced by the perturbations which themselves are maintained by
time-dependent parametric non-normal interaction with the streak (Farrell & Ioannou
2012).

This statistical equilibrium SSP cycle is more efficient than its DNS counterpart in
producing downgradient perturbation momentum flux as with smaller mean shear over
most of the channel a self-sustained turbulence with approximately the same Reτ as that
in NS950 is maintained, as discussed above (cf. section 5). A comparison of the shear, of
the r.m.s. V velocity, and of the r.m.s. streak velocity, Us, in the outer layer is shown as
a function of y in Fig. 12, from which it can be seen that the fractional reduction of the
amplitude of the streak in the transition to RNL is approximately equal to the fractional
reduction in the mean flow shear. It is important to note that these dependencies arise due
to the feedback control exerted by the perturbation dynamics on the mean flow dynamics
in the RNL system by which its statistical steady state is determined. The structure of
RNL isolates this feedback control process so that it can be studied and elucidating its
mechanism and properties are the subject of ongoing work.

In the discussion above we have assumed that the presence of roll and streak structure in
the log-layer in RNL indicates the existence of an SSP cycle there and by implication also
in NS. In order to examine this SSP consider the momentum equation for the streamwise
streak:

∂tUs = −
(
V ∂yU − [V ∂yU ]z

)
−
(
W ∂zU − [W ∂zU ]z

)
︸ ︷︷ ︸

A

−
([
v′ ∂yu

′ − [v′ ∂yu
′]z

]
x

)
−
([
w′ ∂zu

′ − [w′ ∂zu
′]z

]
x

)
︸ ︷︷ ︸

B

+ ν ∆Us︸ ︷︷ ︸
C

. (6.1)

Term A in (6.1) is the contribution to the streak acceleration by the ‘lift-up’ mechanism
and the ‘push-over’ mechanism, which represent transfer to streak momentum by the
mean wall-normal and spanwise velocities respectively; Term B in (6.1) is the contribution
to the streak momentum by the perturbation Reynolds stress divergence (structures with
kx 6= 0); Term C is the diffusion of the streak momentum due to viscosity.

In order to identify the mechanism of streak maintenance we determine the contribution
of terms A, B and C in (6.1) to the streak momentum budget by evaluating these
contributions. The time averaged results are shown as a function of y over these cross-
stream regions of the flow, indicated by R: the whole channel, the outer region, 0.2 6
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Figure 13: Cross-stream structure of the time averaged contributions to streak acceleration
for NS950 (solid) and RNL950 (dashed) from: (a,e) the lift-up mechanism [IA]t(y), (b,f)
the perturbation Reynolds stress divergence [IB ]t(y) and (c,g) the momentum diffusion
[IC ]t(y).Upper panels show structure in the outer layer, 0.2 6 y/h 6 1, lower panels show
the structure in the inner layer, 0 6 y+ 6 200. In (d,h) we plot the sum of these terms
which averaged over a long time interval should add exactly to zero.
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Figure 14: Time series of the total IA(t) (lift-up) for NS950 (solid) and RNL950 (dashed),
(a): over the whole channel, (b): over the outer region, 0.2 6 y/h 6 1.8, (c): over the inner
region, 0 6 y/h 6 0.2 and 1.8 6 y/h 6 2. Similarly for IB(t) (Reynolds stress divergence),
(d): over the whole channel, (e): over the outer region, 0.2 6 y/h 6 1.8, (f): over the inner
region, 0 6 y/h 6 0.2 and 1.8 6 y/h 6 2.
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y/h 6 1.8 and the inner region, 0 6 y/h < 0.2 and 1.8 < y/h 6 2, in Fig 13. The
contributions are respectively the lift up:

IA(t) = h−1
∫
R

dy IA(y, t) , with IA(y, t) =
[

sgn(Us)× (Term A)
]
z
, (6.2)

the perturbation Reynolds stress divergence,

IB(t) = h−1
∫
R

dy IB(y, t) , with IB(y, t) =
[

sgn(Us)× (Term B)
]
z
, (6.3)

and diffusion,

IC(t) = h−1
∫
R

dy IC(y, t) , with IC(y, t) =
[

sgn(Us)× (Term C)
]
z
, (6.4)

In the inner and outer wall regions in both NS950 and RNL950 the streak is maintained
only by the lift-up mechanism, while streak momentum is lost on average at all cross-
stream levels to both the Reynolds stress divergence and the momentum diffusion. In
RNL950 the magnitude of streak acceleration by lift-up is greater than that of NS950
in the inner region, in the outer region the acceleration by lift-up in RNL950 is about
half that in NS950 consistent with their similar roll amplitude (cf. Fig. 12b) but the
smaller mean flow shear maintained at statistical steady state in RNL950. In the outer
region of the NS950 the Reynolds stress divergence almost completely balances the
positive contribution from lift-up while in RNL950 the lift up is balanced equally by
the Reynolds stress divergence and the diffusion. Enhancement of the contribution by
diffusion in the outer layer in RNL950 results from the increase in the spanwise and
cross-stream wavenumbers of the streak (cf. Fig. 7c) resulting from the nonlinear advection
of the streak by the V and W velocities. This increase in the spanwise and cross-stream
wavenumbers of the streak in RNL950 due to nonlinear advection by the mean (V,W )
roll circulation also implies that the dissipation of streak energy in RNL950 is similarly
enhanced. This constitutes an alternative route for energy transfer to the dissipation scale
which continues to be available for establishment of statistical equilibrium in RNL950
despite the limitation in the streamwise wavenumber support inherent in RNL turbulence.
The lift-up process is a positive contribution to the maintenance of the streak and the
Reynolds stress divergence is a negative contribution not only in a time averaged sense
but also at every time instant. This is shown in plots of the time series of the lift up and
Reynolds stress divergence contribution to the streak momentum over the inner region
0 6 y/h < 0.2 and 1.8 < y/h 6 2, over the outer region 0.2 6 y/h 6 1.8 and over the
whole channel in Fig. 14. We conclude that in both NS950 and RNL950 the sole positive
contribution to the outer layer streaks is lift-up, despite the small shear in this region.
We next consider the dynamics maintaining the lift-up.

7. Roll dynamics: maintenance of mean streamwise vorticity in NS
and RNL

We have established that the lift-up mechanism is not only responsible for streak
maintenance in the inner layer but also in the outer layer. We now examine the mechanism
of the lift-up by relating it to maintenance of the roll structure using as a diagnostic
streamwise averaged vorticity, Ωx = ∂yW − ∂zV . In order for roll circulation to be
maintained against dissipation there must be a continuous generation of Ωx. There are
two possibilities for the maintenance of Ωx in the outer layer: either Ωx is generated
locally in the outer layer, or it is advected from the near wall region.
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Figure 15: (a)-(c) Time series of the contribution to the time rate of change of streamwise
square vorticity

∫
dy
[
Ω2
x/2
]
z

by perturbation torques, IF , and by advection of streamwise
mean vorticity by the mean flow, ID, for NS950 (solid) and RNL950 (dashed). (a) IF over
the whole channel, 0 6 y/h 6 2 (ID = 0 in this case). The time mean IF is 2103.6h−3u3τ
for NS950 and 982.8u3τ for RNL950. (b) IF over the outer layer, 0.2 6 y/h 6 1.8. The
time mean IF for this region is 242.5h−3u3τ for NS950 and only 28.7h−3u3τ for RNL950.
(c) ID for the outer layer 0.2 6 y/h 6 1.8. The time mean ID is 2.9h−3u3τ for NS950
and 11.2h−3u3τ for RNL950. These figures show that in NS950 and RNL950 the roll is
maintained locally by the perturbation Reynolds stresses. (d,e) Cross-stream structure
of the time averaged contribution to the streamwise mean vorticity generation from
perturbation Reynolds stress induced torques [IF ]t(y).

From (2.1a) we have that Ωx satisfies the equation:

∂tΩx = − (V ∂y +W ∂z)Ωx︸ ︷︷ ︸
D

+
(
∂zz − ∂yy

) [
v′w′

]
x
− ∂yz

([
w′2
]
x
−
[
v′2
]
x

)︸ ︷︷ ︸
F

+ ν ∆Ωx .

(7.1)

Term D expresses the streamwise vorticity tendency due to advection of Ωx by the
streamwise mean flow (V,W ). Because there is no vortex stretching contribution to Ωx
from the (V,W ) velocity field, this term only advects the Ωx field and cannot sustain it
against dissipation. However, this term may be responsible for systematic advection of Ωx
from the inner to the outer layer. Term F is the torque induced by the perturbation field.
This is the only term that can maintain Ωx. The overall budget for square streamwise
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vorticity in the region R, y1 6 y 6 y2, 0 6 z 6 Lz, is given by:

∂t

y2∫
y1

dy
1

2

[
Ω2
x

]
z

= − 1

2

[
Ω2
x V
]
z

∣∣∣∣y2
y=y1︸ ︷︷ ︸

=h ID

+

y2∫
y1

dy
[
Ωx × Term F

]
z︸ ︷︷ ︸

=h IF

+ ν

y2∫
y1

dy
[
Ωx∆Ωx

]
z
,

(7.2)

where:

ID(t) = h−1
∫
R

dy ID(y, t) ,with ID(y, t) =
[
Ωx × (Term D)

]
z
, (7.3)

to be the advection into cross-stream region, R, and

IF (t) = h−1
∫
R

dy IF (y, t) ,with ID(y, t) =
[
Ωx × (Term D)

]
z
, (7.4)

the Reynolds stress torque production in region R.
Time series of the contributions from ID(t) and IF (t) to the Ωx production for NS950

and RNL950, shown in Fig. 15, demonstrate that Ωx is primarily generated in situ by
Reynolds stress torques. The corresponding wall-normal structure of the time mean of
IF , representing the local contribution to streamwise mean vorticity generation from
perturbation Reynolds stress induced torques is shown in Fig. 15d,e. Note that for NS950
in the outer layer the streamwise mean vorticity generation by the Reynolds stress is
strongly positive at each instant. This implies a systematic positive correlation between
the roll circulation and the torque from Reynolds stress with the torque configured so
as to maintain the roll. S3T theory explains this systematic correlation between the
roll/streak structure and the perturbation torques maintaining it as a direct consequence
of the straining of the perturbation field by the streak (Farrell & Ioannou 2012).

Having established that the streamwise vorticity in the outer layer is maintained in situ
by systematic correlation of Reynolds stress torque with the roll circulation we conclude
that the SSP cycle in both NS and RNL operates in the outer layer in a manner essentially
similar to that in the inner layer.

8. Discussion and Conclusions

We have established that RNL self-sustains turbulence at moderate Reynolds numbers
in pressure driven channel flow, despite its greatly simplified dynamics when compared to
NS. Remarkably, in the RNL system, the turbulent state is maintained by a small set
of structures with low streamwise wavenumber Fourier components (at Reτ = 950 with
the chosen channel the SSP involves only the kx = 0 streamwise mean and the next 6
streamwise Fourier components). Not only that, but this minimal turbulent dynamics
arises spontaneously when the RNL system is initialized by NS turbulence at the same
Reynolds number. In this way RNL spontaneously produces a turbulent state of reduced
complexity. RNL identifies an exquisitely contrived SSP cycle which has been previously
identified to comprise the generation of the streak through lift-up by the rolls, the
maintenance of the rolls by torques induced by the perturbations which themselves are
maintained by an essentially time-dependent parametric non-normal interaction with the
streak (rather than e.g. inflectional instability of the streak structure) (Farrell & Ioannou
2012). The vanishing of the Lyapunov exponent associated with the SSP is indicative of a
feedback control process acting between the streaks and the perturbations by which the
parametric instability that sustains the perturbations on the time dependent streak is
reduced to zero Lyapunov exponent, so that the turbulence neither diverges nor decays.
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We have established that both NS and RNL produce a roll/streak structure in the
outer layer and that an SSP is operating there despite the low shear in this region. It
has been shown elsewhere that turbulence self-sustains in the log-layer in the absence of
boundaries (Mizuno & Jiménez 2013). This is consistent with our finding that an SSP
cycle exists in both the inner-layer and outer-layer.

The turbulence maintained in RNL is closely related to its associated NS turbulence
and both exhibit a log-layer, although with substantially different von Kármán constants
for some RNL truncations in streamwise wavenumber. Existence of a log-layer is a
fundamental requirement of asymptotic matching between regions with different spatial
scaling, as was noted by Millikan (1938). However, the exact value of the von Kármán
constant does not have a similar fundamental basis in analysis and RNL turbulence,
which is closely related to NS turbulence but more efficient in producing Reynolds stress,
maintains as a consequence a smaller shear and therefore greater von Kármán constant.
Specifically, we have determined that the SSP cycle in RNL is characterized by a more
energetic and larger scale perturbation structure, despite having a lower amplitude streak
and mean shear.

Formation of roll/streak structures in the log-layer is consistent with the universal
mechanism by which turbulence is modified by the presence of a streak in such way as to
induce growth of a roll structure configured to lead to continued growth of the original
streak. This growth process underlies the non-normal parametric mechanism maintaining
perturbation variance in the SSP that maintains turbulence (Farrell & Ioannou 2012).
This universal mechanism does not predict nor require that the roll/streak structures
be of finite streamwise extent and in its simplest form it has been demonstrated that
it supports roll/streak structures with zero streamwise wavenumber. From this point of
view the observed length of roll/streak structures is not a consequence of the primary
mechanism of the SSP supporting them but rather a secondary effect of disruption by the
turbulence. In this work we have provided evidence that NS turbulence is closely related in
its dynamics to RNL turbulence from the wall through the log-layer. Moreover, given that
the dynamics of RNL turbulence can be understood fundamentally from its direct relation
with S3T turbulence we conclude that the mechanism of turbulence in wall bounded
shear flow can be insightfully related to the analytically tractable roll/streak/perturbation
SSP that was previously identified to maintain S3T turbulence. We conclude that the
severe restriction of the dynamics coupled with the restricted support of the dynamics in
streamwise wavenumber that are inherent in the RNL system result in the establishment
of a statistically steady turbulent state in which, while the maintained statistics differ in
particulars from those of a DNS at the same Re, these systems share fundamental aspects
of both structure and dynamics and that this relation provides an attractive pathway to
further understanding of wall-turbulence.
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Dynamics of the roll and streak structure in transition and turbulence. CTR, Proceedings
of the Summer Program pp. 43–54.

Farrell, B. F. & Ioannou, P. J. 1996 Generalized stability. Part II: Non-autonomous operators.
J. Atmos. Sci. 53, 2041–2053.

Farrell, B. F. & Ioannou, P. J. 2003 Structural stability of turbulent jets. J. Atmos. Sci. 60,
2101–2118.

Farrell, B. F. & Ioannou, P. J. 2007 Structure and spacing of jets in barotropic turbulence.
J. Atmos. Sci. 64, 3652–3665.

Farrell, B. F. & Ioannou, P. J. 2008 Formation of jets by baroclinic turbulence. J. Atmos.
Sci. 65, 3353–3375.

Farrell, B. F. & Ioannou, P. J. 2009a Emergence of jets from turbulence in the shallow-water
equations on an equatorial beta plane. J. Atmos. Sci. 66, 3197–3207.

Farrell, B. F. & Ioannou, P. J. 2009b A stochastic structural stability theory model of the
drift wave-zonal flow system. Phys. Plasmas 16, 112903.

Farrell, B. F. & Ioannou, P. J. 2012 Dynamics of streamwise rolls and streaks in turbulent
wall-bounded shear flow. J. Fluid Mech. 708, 149–196.
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Jiménez, J. 1998 The largest scales of turbulent wall flows. CTR Annual Research Briefs pp.
137–154.
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